Comparison of Intelligence Control Systems for Voltage Controlling on Small Scale Compressed Air Energy Storage
Abstract
:1. Introduction
2. Small Scale Compressed Air Energy Storage Design
2.1. Prototype Design
2.2. Control Block
3. Intelegence Controller
3.1. Fuzzy Logic Controller
3.2. Artificial Neural Network
3.3. Adaptive Neuro Fuzzy Inference System
4. Testing Scenario
5. Result and Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
AI | Artificial intelligence |
AM | Air motor |
b | Bias |
de(t) | Delta error |
e(t) | Error |
e(t − 1) | Error in time before |
MG | Motor generator |
PWM(t) | Pulse Width Modulator (actual output) |
PWM(t − 1) | Pulse Width Modulator (actual output in time t − 1) |
PWM(AIOutput) | Pulse Width Modulator from AI output process |
V | Voltage, V |
VOut | Voltage output, V |
VRef | Voltage reference, V |
w | Weight |
References
- Alhamali, A.; Farrag, M.E.; Bevan, G.; Hepburn, D.M. Review of Energy Storage Systems in electric grid and their potential in distribution networks. In Proceedings of the 2016 Eighteenth International Middle East Power Systems Conference (MEPCON), Cairo, Egypt, 27–29 December 2016; pp. 546–551. [Google Scholar]
- Ubertini, S.; Facci, A.L.; Andreassi, L. Hybrid Hydrogen and Mechanical Distributed Energy Storage. Energies 2017, 10, 2035. [Google Scholar] [CrossRef]
- Luo, X.; Wang, J.; Dooner, M.; Clarke, J. Overview of current development in electrical energy storage technologies and the application potential in power system operation. Appl. Energy 2015, 137, 511–536. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Kong, D.; Wu, J. A New Hybrid Model FPA-SVM Considering Cointegration for Particular Matter Concentration Forecasting: A Case Study of Kunming and Yuxi, China. Comput. Intell. Neurosci. 2017, 2017, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lal, A.; Kumar, R.; Mehta, U. Energy dispatch fuzzy model in hybrid power system. Int. Energy J. 2014, 14, 133–142. [Google Scholar]
- Ellabban, O.; Abu-Rub, H.; Blaabjerg, F. Renewable energy resources: Current status, future prospects and their enabling technology. Renew. Sustain. Energy Rev. 2014, 39, 748–764. [Google Scholar] [CrossRef]
- Lv, S.; He, W.; Zhang, A.; Li, G.; Luo, B.; Liu, X. Modelling and analysis of a novel compressed air energy storage system for trigeneration based on electrical energy peak load shifting. Energy Convers. Manag. 2017, 135, 394–401. [Google Scholar] [CrossRef]
- Mohan, V.; Singh, J.G.; Ongsakul, W.; Madhu, M.N.; Suresh, M.P.R. Economic and network feasible online power management for renewable energy integrated smart microgrid. Sustain. Energy Grids Netw. 2016, 7, 13–24. [Google Scholar] [CrossRef]
- Luo, X.; Wang, J.; Dooner, M.; Clarke, J.; Krupke, C. Overview of Current Development in Compressed Air Energy Storage Technology. Energy Procedia 2014, 62, 603–611. [Google Scholar] [CrossRef] [Green Version]
- Akinyele, D.; Rayudu, R.; Rayudu, R. Review of energy storage technologies for sustainable power networks. Sustain. Energy Technol. Assess. 2014, 8, 74–91. [Google Scholar] [CrossRef]
- Hussain, H.; Javaid, N.; Iqbal, S.; Hasan, Q.; Aurangzeb, K.; Alhussein, M. An Efficient Demand Side Management System with a New Optimized Home Energy Management Controller in Smart Grid. Energies 2018, 11, 190. [Google Scholar] [CrossRef]
- Khamis, A.; Shahrieel, M.; Aras, M.; Nizam, H.; Shah, M.; Zamzuri, M.; Rashid, A. Design and Analysis of Diesel Generator with Battery Storage for Microgrid System. Int. J. Adv. Eng. Res. Technol. 2017, 5, 26–32. [Google Scholar]
- Lim, Y.; Al-Atabi, M.; Williams, R.A. Liquid air as an energy storage: A review. J. Eng. Sci. Technol. 2016, 11, 496–515. [Google Scholar]
- Kassim, A.H.; Miskon, M.T.; Rustam, I.; Mat Zain, M.Y.; Mod Arifin, A.I.; Rizman, Z.I. Optimum storage size for thermal energy storage system. ARPN J. Eng. Appl. Sci. 2017, 12, 3304–3307. [Google Scholar]
- Han, X.; Liao, S.; Ai, X.; Yao, W.; Wen, J. Determining the Minimal Power Capacity of Energy Storage to Accommodate Renewable Generation. Energies 2017, 10, 468. [Google Scholar] [CrossRef]
- Sun, H.; Luo, X.; Wang, J. Feasibility study of a hybrid wind turbine system—Integration with compressed air energy storage. Appl. Energy 2015, 137, 617–628. [Google Scholar] [CrossRef]
- Li, S.; Dai, Y. Design and Simulation Analysis of a Small-Scale Compressed Air Energy Storage System Directly Driven by Vertical Axis Wind Turbine for Isolated Areas. J. Energy Eng. 2015, 141, 04014032. [Google Scholar] [CrossRef]
- Krupke, C.; Wang, J.; Clarke, J.; Luo, X. Modeling and Experimental Study of a Wind Turbine System in Hybrid Connection with Compressed Air Energy Storage. IEEE Trans. Energy Convers. 2017, 32, 137–145. [Google Scholar] [CrossRef]
- Saadat, M.; Shirazi, F.A.; Li, P.Y. Modeling and control of an open accumulator Compressed Air Energy Storage (CAES) system for wind turbines. Appl. Energy 2015, 137, 603–616. [Google Scholar] [CrossRef]
- Hadjipaschalis, I.; Poullikkas, A.; Efthimiou, V. Overview of current and future energy storage technologies for electric power applications. Renew. Sustain. Energy Rev. 2009, 13, 1513–1522. [Google Scholar] [CrossRef]
- Winslow, K.M.; Laux, S.J.; Townsend, T.G. A review on the growing concern and potential management strategies of waste lithium-ion batteries. Resour. Conserv. Recycl. 2018, 129, 263–277. [Google Scholar] [CrossRef]
- Orlins, S.; Guan, D. China’s toxic informal e-waste recycling: Local approaches to a global environmental problem. J. Clean. Prod. 2016, 114, 71–80. [Google Scholar] [CrossRef]
- Richa, K.; Babbitt, C.W.; Gaustad, G. Eco-Efficiency Analysis of a Lithium-Ion Battery Waste Hierarchy Inspired by Circular Economy. J. Ind. Ecol. 2017, 21, 715–730. [Google Scholar] [CrossRef]
- Castellani, B.; Morini, E.; Nastasi, B.; Nicolini, A.; Rossi, F. Small-Scale Compressed Air Energy Storage Application for Renewable Energy Integration in a Listed Building. Energies 2018, 11, 1921. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, X.; Liu, J.; Tan, C. Compressed Air Energy Storage. In Energy Storage—Technologies and Applications; Zobaa, A.F., Ed.; InTechOpen: London, UK, 2013; pp. 101–112. ISBN 978-953-51-0951-8. [Google Scholar]
- Wang, J.; Lu, K.; Ma, L.; Dooner, M.; Miao, S.; Li, J. Overview of Compressed Air Energy Storage and Technology Development. Energies 2017, 10, 991. [Google Scholar] [CrossRef]
- Safaei, H.; Aziz, M.J. Thermodynamic Analysis of Three Compressed Air Energy Storage Systems: Conventional, Adiabatic, and Hydrogen-Fueled. Energies 2017, 10, 1020. [Google Scholar] [CrossRef]
- Salvini, C. CAES Systems Integrated into a Gas-Steam Combined Plant: Design Point Performance Assessment. Energies 2018, 11, 415. [Google Scholar] [CrossRef]
- Chong, S.-H. High Development of a Numerical Approach to Simulate Compressed Air Energy Storage Subjected to Cyclic Internal Pressure. Energies 2017, 10, 1620. [Google Scholar] [CrossRef]
- Jerin, R.A.; Thomas, M.; Palanisamy, K.; Umashankar, S. Enhancing Low Voltage Ride Through Capability in Utility Grid Connected Single Phase Solar Photovoltaic System. J. Eng. Sci. Technol. 2018, 13, 1016–1033. [Google Scholar]
- Gafazi, A.; Cheknane, A.; Merzouk, I.; Seddik, B. Control of A Three Levels AC/DC Converter With Virtual-Flux Direct Power Controlling Method for Grid-Connected Wind Power System Under Grid’S Fault. J. Eng. Sci. Technol. 2018, 13, 2236–2245. [Google Scholar]
- Castillo, A.; Gayme, D.F. Grid-scale energy storage applications in renewable energy integration: A survey. Energy Convers. Manag. 2014, 87, 885–894. [Google Scholar] [CrossRef]
- Phochai, O.; Ongsakul, W.; Mitra, J.; Member, S. Voltage Control Strategies for Grid-Connected Solar PV Systems. In Proceedings of the 2014 International Conference and Utility Exhibition on Green Energy for Sustainable Development, Pattaya, Thailand, 19–21 March 2014; pp. 19–21. [Google Scholar]
- Veerasathian, C.; Ongsakul, W.; Mitra, J. Voltage stability assessment of DFIG wind turbine in different control modes. In Proceedings of the 2014 International Conference and Utility Exhibition on Green Energy for Sustainable Development, Pattaya, Thailand, 19–21 March 2014; pp. 1–6. [Google Scholar]
- Venkataramani, G.; Parankusam, P.; Ramalingam, V.; Wang, J. A review on compressed air energy storage—A pathway for smart grid and polygeneration. Renew. Sustain. Energy Rev. 2016, 62, 895–907. [Google Scholar] [CrossRef]
- Martinez, M.; Molina, M.G.; Frack, P.F.; Mercado, P.E.; Molina, M. Dynamic Modeling, Simulation and Control of Hybrid Energy Storage System Based on Compressed Air and Supercapacitors. IEEE Lat. Am. Trans. 2013, 11, 466–472. [Google Scholar] [CrossRef]
- Martinez, M.; Molina, M.; Mercado, P.E. Dynamic performance of compressed air energy storage (CAES) plant for applications in power systems. In Proceedings of the 2008 IEEE/PES Transmission and Distribution Conference and Exposition: Latin America, Sao Paulo, Brazil, 8–10 November 2010; pp. 496–503. [Google Scholar]
- Maia, T.A.; Barros, J.E.; Filho, B.J.C.; Porto, M.P. Experimental performance of a low cost micro-CAES generation system. Appl. Energy 2016, 182, 358–364. [Google Scholar] [CrossRef]
- Kokaew, V.; Moshrefi-Torbati, M.; Sharkh, S.M. Maximum Efficiency or Power Tracking of Stand-alone Small Scale Compressed Air Energy Storage System. Energy Procedia 2013, 42, 387–396. [Google Scholar] [CrossRef] [Green Version]
- Kokaew, V.; Sharkh, S.; Moshrefi-Torbati, M. A hybrid method for maximum power tracking of a small scale CAES system. In Proceedings of the 2014 9th International Symposium on Communication Systems, Networks & Digital Sign (CSNDSP), Manchester, UK, 23–25 July 2014; pp. 61–66. [Google Scholar]
- Kokaew, V.; Sharkh, S.M.; Moshrefi-Torbati, M. Maximum Power Point Tracking of a Small-Scale Compressed Air Energy Storage System. IEEE Trans. Ind. Electron. 2016, 63, 985–994. [Google Scholar] [CrossRef] [Green Version]
- Vongmanee, V.; Monyakul, V. A New Concept of Small-Compressed Air Energy Storage System Integrated with Induction Generator. In Proceedings of the 2008 IEEE International Conference on Sustainable Energy Technologies, Singapore, 24–27 November 2008; pp. 866–871. [Google Scholar]
- Lemofouet, S.; Rufer, A. A Hybrid Energy Storage System Based on Compressed Air and Supercapacitors with Maximum Efficiency Point Tracking (MEPT). IEEE Trans. Ind. Electron. 2006, 53, 1105–1115. [Google Scholar] [CrossRef]
- Moradi, M.H.; Eskandari, M.; Hosseinian, S.M. Cooperative control strategy of energy storage systems and micro sources for stabilizing microgrids in different operation modes. Int. J. Electr. Power Energy Syst. 2016, 78, 390–400. [Google Scholar] [CrossRef]
- Tayab, U.B.; Al Humayun, M.A. Operation and control of cascaded H-bridge multilevel inverter with proposed switching angle arrangement techniques. J. Eng. Sci. Technol. 2017, 12, 3148–3157. [Google Scholar]
- Siri, K. Voltage-mode grid-tie inverter with active power factor correction. In Proceedings of the 2015 IEEE 24th International Symposium on Industrial Electronics (ISIE), Buzios, Brazil, 3–5 June 2015; pp. 1133–1139. [Google Scholar]
- Kilic, E.; Yilmaz, S.; Ozcalik, H.R.; Sit, S. A comparative analysis of FLC and ANFIS controller for vector controlled induction motor drive. In Proceedings of the 2015 Intl Aegean Conference on Electrical Machines & Power Electronics (ACEMP), 2015 Intl Conference on Optimization of Electrical & Electronic Equipment (OPTIM) & 2015 Intl Symposium on Advanced Electromechanical Motion Systems (ELECTROMOTION), Side, Turkey, 2–4 September 2015; pp. 102–106. [Google Scholar]
- Grosenick, L.; Marshel, J.H.; Deisseroth, K. Closed-Loop and Activity-Guided Optogenetic Control. Neuron 2015, 86, 106–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Wang, J.; Deng, B.; Wei, X.-L.; Yu, H.-T.; Li, H.-Y. Variable universe fuzzy closed-loop control of tremor predominant Parkinsonian state based on parameter estimation. Neurocomputing 2015, 151, 1507–1518. [Google Scholar] [CrossRef]
- Khamis, A.; Badarudin, Z.M.; Ahmad, A.; Ab Rahman, A.; Bakar, N. Development of mini scale compressed air energy storage system. In Proceedings of the 2011 IEEE Conference on Clean Energy and Technology (CET), Kuala Lumpur, Malaysia, 27–29 June 2011; pp. 151–156. [Google Scholar]
- Namazov, M. DC motor position control using fuzzy proportional-derivative controllers with different defuzzification methods. Turk. J. Fuzzy Syst. 2010, 1, 36–54. [Google Scholar]
- Agarwal, P.A.P. Brushless Dc Motor Speed Control Using Proportional-Integral and Fuzzy Controller. IOSRJEEE 2013, 5, 68–78. [Google Scholar] [CrossRef]
- Kamble, L.V.; Pangavhane, D.R. Heat transfer studies using artificial neural network—A review. Int. Energy J. 2014, 14, 25–42. [Google Scholar]
- Jafarian, M.; Ranjbar, A. Fuzzy modeling techniques and artificial neural networks to estimate annual energy output of a wind turbine. Renew. Energy 2010, 35, 2008–2014. [Google Scholar] [CrossRef]
- Tino, P.; Benuskova, L.; Sperduti, A. Artificial Neural Network Models; Springer Handbooks: Berlin, Germany, 2015; Volume 8, pp. 455–472. [Google Scholar]
- Yang, H.; Fu, Y.-T.; Zhang, K.-P.; Li, Z.-Q. Speed tracking control using an ANFIS model for high-speed electric multiple unit. Control Eng. Pract. 2014, 23, 57–65. [Google Scholar] [CrossRef]
- Kassem, Y.; Çamur, H.; Bennur, K.E. Adaptive Neuro-Fuzzy interference System (ANFIS) and Artificial Neural Network (ANN) for predicting the kinematic viscosity and density of biodiesel-petroleum diesel blends. Am. J. Comput. Sci. Technol. 2018, 1, 8–18. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Widjonarko; Soenoko, R.; Wahyudi, S.; Siswanto, E. Comparison of Intelligence Control Systems for Voltage Controlling on Small Scale Compressed Air Energy Storage. Energies 2019, 12, 803. https://doi.org/10.3390/en12050803
Widjonarko, Soenoko R, Wahyudi S, Siswanto E. Comparison of Intelligence Control Systems for Voltage Controlling on Small Scale Compressed Air Energy Storage. Energies. 2019; 12(5):803. https://doi.org/10.3390/en12050803
Chicago/Turabian StyleWidjonarko, Rudy Soenoko, Slamet Wahyudi, and Eko Siswanto. 2019. "Comparison of Intelligence Control Systems for Voltage Controlling on Small Scale Compressed Air Energy Storage" Energies 12, no. 5: 803. https://doi.org/10.3390/en12050803
APA StyleWidjonarko, Soenoko, R., Wahyudi, S., & Siswanto, E. (2019). Comparison of Intelligence Control Systems for Voltage Controlling on Small Scale Compressed Air Energy Storage. Energies, 12(5), 803. https://doi.org/10.3390/en12050803