A Numerical and Experimental Investigation of Dimple Effects on Heat Transfer Enhancement with Impinging Jets
Abstract
:1. Introduction
2. Experimental Setup
3. Computational Models and Numerical Method
4. Simulation of Flow Configuration
5. Results and Discussion
5.1. Effect of Dimples Shape
5.2. Effect on the Distance Between Test Plate and Jet (B)
5.3. Effect of the Distance between Dimples (Er, Eθ)
5.4. Simulation of Impinging Jet on Dimple Surface
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ries, F.; Li, Y.; Klingenberg, D.; Nishad, K.; Janicka, J.; Sadiki, A. Near-Wall Thermal Processes in an Inclined Impinging Jet: Analysis of Heat Transport and Entropy Generation Mechanisms. Energies 2018, 11, 1354. [Google Scholar] [CrossRef]
- Ries, F.; Li, Y.; Nishad, K.; Janicka, J.; Sadiki, A. Entropy Generation Analysis and Thermodynamic Optimization of Jet Impingement Cooling Using Large Eddy Simulation. Entropy 2019, 21, 129. [Google Scholar] [CrossRef]
- Meola, C.; de Luca, L.; Carlomagno, G.M. Influence of shear layer dynamics on impingement heat transfer. Exp. Therm. Fluid Sci. 1996, 13, 29–37. [Google Scholar] [CrossRef]
- Guerra, D.R.S.; Su, J.; Silva Freire, A.P. The near wall behavior of an impinging jet. Int. J. Heat Mass Transf. 2005, 48, 2829–2840. [Google Scholar] [CrossRef]
- Chaudhari, M.; Puranik, B.; Agrawal, A. Heat transfer characteristics of synthetic jet impingement cooling. Int. J. Heat Mass Transf. 2010, 53, 1057–1069. [Google Scholar] [CrossRef]
- Draksler, M.; Končar, B. Analysis of heat transfer and flow characteristics in turbulent impinging jet. Nucl. Eng. Des. 2011, 241, 1248–1254. [Google Scholar] [CrossRef]
- Nanan, K.; Wongcharee, K.; Nuntadusit, C.; Eiamsa-ard, S. Forced convective heat transfer by swirling impinging jets issuing from nozzles equipped with twisted tapes. Int. Commun. Heat Mass Transf. 2012, 39, 844–852. [Google Scholar] [CrossRef]
- Nuntadusit, C.; Wae-hayee, M.; Bunyajitradulya, A.; Eiamsa-ard, S. Heat transfer enhancement by multiple swirling impinging jets with twisted-tape swirl generators. Int. Commun. Heat Mass Transf. 2012, 39, 102–107. [Google Scholar] [CrossRef]
- Qiang, Y.; Wei, L.; Luo, X.; Jian, H.; Wang, W.; Li, F. Heat Transfer and Flow Structures of Laminar Confined Slot Impingement Jet with Power-Law Non-Newtonian Fluid. Entropy 2018, 20, 800. [Google Scholar] [CrossRef]
- Tong, A.Y. On the impingement heat transfer of an oblique free surface plane jet. Int. J. Heat Mass Transf. 2003, 46, 2077–2085. [Google Scholar] [CrossRef]
- Goodro, M.; Park, J.; Ligrani, P.; Fox, M.; Moon, H.-K. Effects of hole spacing on spatially-resolved jet array impingement heat transfer. Int. J. Heat Mass Transf. 2008, 51, 6243–6253. [Google Scholar] [CrossRef]
- Pakhomov, M.A.; Terekhov, V.I. Enhancement of an impingement heat transfer between turbulent mist jet and flat surface. Int. J. Heat Mass Transf. 2010, 53, 3156–3165. [Google Scholar] [CrossRef]
- Ekkad, S.V.; Kontrovitz, D. Jet impingement heat transfer on dimpled target surfaces. Int. J. Heat Fluid Flow 2002, 23, 22–28. [Google Scholar] [CrossRef]
- Lienhart, H.; Breuer, M.; Köksoy, C. Drag reduction by dimples? A complementary experimental/numerical investigation. Int. J. Heat Fluid Flow 2008, 29, 783–791. [Google Scholar] [CrossRef]
- Kanokjaruvijit, K.; Martinez-Botas, R.F. Heat transfer correlations of perpendicularly impinging jets on a hemispherical-dimpled surface. Int. J. Heat Mass Transf. 2010, 53, 3045–3056. [Google Scholar] [CrossRef]
- Xing, Y.; Weigand, B. Experimental investigation of impingement heat transfer on a flat and dimpled plate with different crossflow schemes. Int. J. Heat Mass Transf. 2010, 53, 3874–3886. [Google Scholar] [CrossRef]
- Won, Y.; Wang, E.N.; Goodson, K.E.; Kenny, T.W. 3-D visualization of flow in microscale jet impingement systems. Int. J. Therm. Sci. 2011, 50, 325–331. [Google Scholar] [CrossRef]
- Kwon, H.G.; Hwang, S.D.; Cho, H.H. Measurement of local heat/mass transfer coefficients on a dimple using naphthalene sublimation. Int. J. Heat Mass Transf. 2011, 54, 1071–1080. [Google Scholar] [CrossRef]
- Turnow, J.; Kornev, N.; Zhdanov, V.; Hassel, E. Flow structures and heat transfer on dimples in a staggered arrangement. Int. J. Heat Fluid Flow 2012, 35, 168–175. [Google Scholar] [CrossRef]
- De Bonis, M.V.; Ruocco, G. An experimental study of the local evolution of moist substrates under jet impingement drying. Int. J. Therm. Sci. 2011, 50, 81–87. [Google Scholar] [CrossRef]
- Parida, P.R.; Ekkad, S.V.; Ngo, K. Experimental and numerical investigation of confined oblique impingement configurations for high heat flux applications. Int. J. Therm. Sci. 2011, 50, 1037–1050. [Google Scholar] [CrossRef]
- Na-pompet, K.; Boonsupthip, W. Effect of a narrow channel on heat transfer enhancement of a slot-jet impingement system. J. Food Eng. 2011, 103, 366–376. [Google Scholar] [CrossRef]
- Alenezi, A.; Almutairi, A.; Alhajeri, H.; Addali, A.; Gamil, A. Flow Structure and Heat Transfer of Jet Impingement on a Rib-Roughened Flat Plate. Energies 2018, 11, 1550. [Google Scholar] [CrossRef]
- Sriromreun, P.K.; Sriromreun, P.N. Experimental and Numerical Studies of Heat Transfer Characteristics for Impinging Jet on Dimple Surfaces. Chem. Eng. Trans. 2018, 70, 1273–1278. [Google Scholar] [CrossRef]
- ANSI/ASME. Test Uncertainty. Available online: http://gost-snip.su/download/asme_ptc_19_1, 2005_test_uncertainty (accessed on 28 February 2019).
- Patankar, S.V. Numerical Heat Transfer and Fluid Flow; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Versteeg, H.K.; Malalasekera, W. An Introductionto ComputationalFluid Dynamics, The Finite Volume Method, 2nd ed.; PEARSON Prentice Hall: London, UK, 2007. [Google Scholar]
- Incropera, F.P.; Dewitt, D.B. Introduction to Heat Transfer, 5th ed.; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2007. [Google Scholar]
Working Fluid | Air |
---|---|
Reynolds number (Re) | 1500 to 14,600 |
Jet diameter (Dj) | 1 cm |
Plate diameter (D) | 30 cm |
Depth of dimple | 0.5 cm |
Dimple diameter (d) | Dj and 2 Dj |
Dimple distance in the radius (Er) | 2 d, 3 d |
Dimple distance in the circumference (Eθ) | 1.5 d, 3 d |
The distance between test plates and jet (B) | 2 Dj, 4 Dj and 6 Dj |
Dimple Diameter/Plate Diameter (d/D) | Dimple Distance in the Radius (Er) | Dimple Distance in the Circumference (Eθ) | The Distance between Test Plates and Jet (B) | Case Study Name (d/D-Er-Eθ-B) |
---|---|---|---|---|
Flat | - | - | 2 | Flat-2 |
Flat | - | - | 4 | Flat-4 [24] |
Flat | - | - | 6 | Flat-6 |
1/5 | 3 d | 3 d | 2 | 1/15-3 d-3 d-2 |
1/5 | 3 d | 3 d | 4 | 1/15-3 d-3 d-4 |
1/5 | 3 d | 3 d | 6 | 1/15-3 d-3 d-6 |
1/5 | 2 d | 1.5 d | 2 | 1/15-2 d-1.5 d-2 |
1/5 | 2 d | 1.5 d | 4 | 1/15-2 d-1.5 d-4 [24] |
1/5 | 2 d | 1.5 d | 6 | 1/15-2 d-1.5 d-6 |
1/30 | 3 d | 3 d | 2 | 1/30-3 d-3 d-2 |
1/30 | 3 d | 3 d | 4 | 1/30-3 d-3 d-4 |
1/30 | 3 d | 3 d | 6 | 1/30-3 d-3 d-6 |
1/30 | 2 d | 1.5 d | 2 | 1/30-2 d-1.5 d-2 [24] |
1/30 | 2 d | 1.5 d | 4 | 1/30-2 d-1.5 d-4 [24] |
1/30 | 2 d | 1.5 d | 6 | 1/30-2 d-1.5 d-6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sriromreun, P.; Sriromreun, P. A Numerical and Experimental Investigation of Dimple Effects on Heat Transfer Enhancement with Impinging Jets. Energies 2019, 12, 813. https://doi.org/10.3390/en12050813
Sriromreun P, Sriromreun P. A Numerical and Experimental Investigation of Dimple Effects on Heat Transfer Enhancement with Impinging Jets. Energies. 2019; 12(5):813. https://doi.org/10.3390/en12050813
Chicago/Turabian StyleSriromreun, Parkpoom, and Paranee Sriromreun. 2019. "A Numerical and Experimental Investigation of Dimple Effects on Heat Transfer Enhancement with Impinging Jets" Energies 12, no. 5: 813. https://doi.org/10.3390/en12050813
APA StyleSriromreun, P., & Sriromreun, P. (2019). A Numerical and Experimental Investigation of Dimple Effects on Heat Transfer Enhancement with Impinging Jets. Energies, 12(5), 813. https://doi.org/10.3390/en12050813