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Abstract: This paper addresses the problem of data centers’ cost efficiency considering the potential
of reusing the generated heat in district heating networks. We started by analyzing the requirements
and heat reuse potential of a high performance computing data center and then we had defined a
heat reuse model which simulates the thermodynamic processes from the server room. This allows
estimating by means of Computational Fluid Dynamics simulations the temperature of the hot
air recovered by the heat pumps from the server room allowing them to operate more efficiently.
To address the time and space complexity at run-time we have defined a Multi-Layer Perceptron
neural network infrastructure to predict the hot air temperature distribution in the server room
from the training data generated by means of simulations. For testing purposes, we have modeled
a virtual server room having a volume of 48 m3 and two typical 42U racks. The results show that
using our model the heat distribution in the server room can be predicted with an error less than 1 ◦C
allowing data centers to accurately estimate in advance the amount of waste heat to be reused and
the efficiency of heat pump operation.

Keywords: data center; heat reuse; Computational Fluid Dynamics; prediction algorithm; neural
networks

1. Introduction

Nowadays data centers (DCs) are subjected to significant pressure to perform more efficiently
from an environmental perspective towards generating carbon-neutral benefits. The DC industry
is investing in finding effective ways to improve energy efficiency. The challenge is how to turn
the environmental focus into a long-term business opportunity by finding new revenue streams.
The electricity consumed by the IT infrastructure to implement the DCs’ core mission, which is to
reliably execute their clients’ workload, is almost completely converted into heat. Additionally, even in
well designed DCs, the cooling system consumes almost 37% of the total energy demand to maintain
the temperature set points for the servers’ safety [1]. The H2020 CATALYST project [2] vision is to
achieve cost and environmental efficiency by integrating DCs with the districting heating infrastructure
transforming them into active players in the thermal energy value chain.
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Naturally, in this context solutions for re-using the otherwise wasted heat of a DC in nearby
neighborhoods have been proposed, however, even though there is a big potential for DC heat reuse
there are still technological challenges that need to be addressed. The first challenge is the low quality
of waste heat extracted from DC, while the second one is the efficiency in the operation of the heat
pumps [3]. This is, in particular, true for air-cooled DCs using electrical cooling systems where the
heat extracted from the server rooms has a temperature below 40 ◦C [4]. To make heat usable and
marketable the DCs have to install heat pumps that are able to raise heat temperature to around 80 ◦C
which allows heat transportation over longer distances to nearby buildings [5]. In the latter case, the
heat pump consumes energy in the process of increasing heat quality [6]. The more efficient a heat
pump is, the less energy it will consume and it will be more cost-effective for a DC to operate it. One of
the factors influencing this is air temperature in the server room. The higher the temperature the
less energy the heat pump will consume. Thus, methods for increasing the server room temperature
set points have emerged allowing the temperature of the air extracted in the server room to increase.
However, this leads to the third issue related to the generation of server room hotspots, that can lead
to emergency stops or server failure. To avoid such hazardous situations, the server room and cooling
system settings and configurations need to be properly evaluated by simulations allowing the DC
operators to properly assess their impact in terms of heat distribution, prior of making them effective.
We address the above-presented issues by bringing the following novel contributions:

• Definition of a heat reuse model for DCs allowing them to estimate in advanced the amount of
generated waste heat and the impact on the efficiency of the heat pump operation;

• Definition of Computational Fluid Dynamics (CFD) models to simulate the thermodynamic
processes inside the server room and estimate the temperature of the hot air generated;

• Development of neural networks algorithm to predict the heat distribution in the server room
from training data generated using the CFD simulations, making our model feasible for near
real-time decision making;

By using the proposed approach, the DC operators will be able to accurately forecast the
temperature of the hot air recovered from the server room and the amount of waste heat that might be
reused. They will also be able to compare and contrast additional investment costs with incremental
revenues that can be achieved from valorizing forecasted waste heat.

The rest of the paper is organized as follows: Section 2 describes the relevant related work in
the area of DC heat grid integration focusing on the approaches for modeling the thermal processes
and predicting the heat distribution inside the server room. Section 3 presents an analysis of the heat
reuse potential of the Poznan Supercomputing and Networking Center (PSNC) Section 4 details our
proposed DC waste heat reuse model which combines the Computational Fluid Dynamics with neural
network based prediction infrastructure and Section 5 presents evaluation results for a virtual server
room with two racks. Section 6 concludes the paper and presents suggestions for relevant future work.

2. Related Work

Several solutions proposed in the literature tackle the reutilization of DCs’ waste heat for
heating-up closely located houses, apartments and offices [6–8]. District heating (DH) networks,
already identified as an important need the intelligent heat distribution process that must take
advantage of the third party-generated heat (DCs are candidates for this process) [9]. Other approaches
are aimed at providing heat-oriented ancillary services which involve forecasting methods to identify
heat demand patterns [10,11]. Modeling and simulation techniques are defined in [12,13] with the
objective of reusing and transporting thermal energy within DH networks. These can help to evaluate
limitations, benefits, and costs and serve as a preliminary feasibility study before actual solution
implementation. Another aspect to be considered is the reduction of emissions generated for peak
load production of thermal energy usually produced with fossil fuels [2].
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In the direction of DCs integration with heat networks, modeling thermal processes related to the
computing infrastructure and discovering their impact on the surrounding environment has recently
gained in popularity. A constant increase in spatial and thermal density of computing systems make
their evaluation more important but also more challenging. For now, Computational Fluid Dynamics
(CFD) simulations are seen as the most suitable solution. In contrast to experimental examinations,
CFD allows obtaining the volumetric field of many physical variables. It is also much more convenient
and cheaper to simulate varying scenarios than evaluate them in the real world. Numerous examples
of studies of airflow inside the server room with CFD analysis can be found in the literature. A detailed
CFD analysis of various air distribution systems and their cooling efficiency was described in [14],
while in [15] the impact of air conditioning failures and fluctuations of servers’ power were considered.
Other studies [16] were focused on the analysis of optimal airflow angle through supply tiles for server
rooms with raised floor cooling system. Nevertheless, the CFD-based solutions are effort-intensive
for model preparation and time consuming for gaining good results, which makes them inadequate
for complex system simulations and analysis of numerous configurations. As an alternative, the
Potential Flow Model [17] and orthogonal decomposition methodology [18] have been proposed to
reduce the complexity of the initial CFD model. Another approach is leveraging on analytical models
which are applied directly within the process of DC thermal evaluation or to the simulation toolkits.
The power and thermal models proposed in literature correspond to different levels in the hierarchy of
resources within DC. In [19] the authors discussed the power models of a server and its subcomponents,
while the thermal behavior of a server is analyzed in [20]. The models define the temperature of the
processing unit, as well as the changes in the temperature at the server’s outlet. Extension to these
models, including the power leakage phenomena is described in [21]. Moreover, in [20] also the power
models for the whole data center are proposed, together with the corresponding cooling models [22].
A simplified version of the cooling model was presented [23], while [24] introduced the concept of a
heat distribution matrix specifying the heat recirculation between the servers. It defines the impact
of hot air leaving the server to its inlet. Authors showed also how a combination of CFD simulation,
together with a heat flow model and analytical data can contribute to the overall thermal analysis of a
DC. An example of the complex simulation environment for the assessment of DC energy and thermal
efficiency is the SVD Toolkit being, the result of the CoolEmAll project [25]. The toolkit integrates
analytical simulations and the CFD modeling to the impact of different DC’s management policies,
hardware configurations and intensity of workloads. In this way, it enables energy-efficiency and
heat-efficiency optimization with respect to the common metrics.

However, to perform a complex evaluation of the DC, including analysis of the great number
of possible states and with plenty of parameters, another approach, which benefits from the
aforementioned solutions, is required. Thus, in this paper, we built upon the existing state of the art to
present a combination of CFD simulations with a neural network-based prediction infrastructure to
allow the forecast of temperature distributions in server rooms considering a high number of different
cases. Our approach is rolling in the black-box prediction methodologies which allow for learning a
prediction model at of training data without any information on the underlying physical processes.
The prediction model, once learned, features low computational and time overhead, and could be
integrated with a proactive DC management strategy to control workload allocation and cooling
system settings for adapting the DC heat generation in order to meet different heating goals [1].

Few learning-based approaches are described in the research literature. In [26,27] such algorithms
are trained to predict the behavior of the DC cooling system. In [27] data measured from a real DC
is used for training a feedforward and a dynamic recurrent artificial neural network and results are
compared against a CFD simulation. The proposed system has comparable accuracy with the CFD
simulation but a much faster convergence time and can be incorporated in real-time control strategies.
Similarly, in [28], a neural network solution is proposed for predicting DC temperatures. The neural
network approach has the advantage that it can learn the environment continuously by adapting its
parameters each time new environment data is taken from sensors. The neural network can be initially
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trained either with real environmental data or with data generated by a CFD simulation for the DC
model. In [29] a novel thermal forecasting method is developed which can predict server temperatures
using data streams acquired from sensors. Compared with CFD-based solutions the proposed one is
simpler and uses a gray-box model of the underlying physical systems to model the thermodynamic
processes and sensor data together with an algorithm that continuously adapts the models to new
monitored data. Evaluation results show better prediction accuracy than standard approaches driven
only by data and identifying risky situation 4 minutes before they appear. Similarly in [30] the authors
use the trained model as input to a thermal-aware scheduling algorithm and evaluated its performance
through simulations.

3. PSNC Data Centre Example

The DC IT infrastructure executes the clients’ workload and as result, heat is generated and
it accumulates in the server room. All consumed electricity of DC IT infrastructure is ultimately
converted into heat that needs to be dissipated by an electrical cooling system in order to maintain the
temperature inside the server room under pre-defined set points for safe operation of servers. As the
IT servers design is continuously improved for operating at higher temperatures and the server room
density continues to rise, the DCs will become important producers of waste heat.

One of such DC is the PSNC [31] which already uses part of the heat produced by its DC to provide
heating for offices (for around 300 people) located within the same building. PSNC is located nearby a
campus of the Poznan University of Technology (PUT) so further potential use of the remaining waste
heat was identified. Analysis of this case provides motivation and requirements for the models and
methods of heat reuse prediction and optimization proposed in this paper.

3.1. Heat Reuse Within the Building

PSNC’s DC covers an area of 1600 m2 with a maximum (possible) power capacity equal to 2 MW
(and with the possibility to extend the supplied power up to 16 MW). However, the usual, average
power drawn by DC is around 0.9 MW. IT infrastructure is both liquid and air-cooled (where the
liquid cooling is used for the HPC part of the DC) resulting in a Power Usage Effectiveness (PUE) of
1.3. Currently, around 400 kW is used by the system using a Direct Liquid Cooling (DLC) approach.
Shortly, the DC will be extended by another DLC system leading to an increase the mean power usage
(>1 MW). The average resource usage oscillates around 70%, however, the utilization of nodes of the
largest HPC system reaches often 90%. In the liquid cooling system, the inlet/outlet temperatures of
the coolant are up to 35/45◦C in the summer and 20/30 ◦C, respectively, in the rest (around 70%) of
the year. Figure 1 shows the amount of accumulated heat, generated in DC within the period of two
months between September and November.
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One should note that the total increase in the amount of heat within the evaluated period was
around 4200 GJ, which corresponds to the average power drawn by the DC. Currently, the heat from
DC is used for heating the whole PSNC building. PSNC’s facilities are equipped with a 300 kW heat
exchanger. The total heat reused is within 200–300 kW in the winter season. The heat is reused from
both low and high-temperature loops. The following chart (Figure 2) shows the heat supplied (from the
DC) to the PSNC building and the external temperature characteristics within the evaluated time slot.
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Also, the more rapid increases in the amount of heat exchanged correspond the drops in the
external temperatures. The total amount of heat exchanged in the analyzed period was around 40 GJ,
which is far below the capabilities of the current heat exchanger.

3.2. Heat Reuse in the Nearby Neighbourhood

In the neighborhood of the PSNC building, there is a PUT campus. The PSNC building is thus
located near three main buildings: the Faculties of Architecture and Engineering Management Building
(building C), Faculty of Chemical Technology Building (building B) and Library and Lecture Center
Building (building A), all only at most 400 meters away. This can be seen in Figure 3. Buildings A
and B are equipped with air cooled water chillers and coupled with heating substations connected
to the Poznan district heating network, with a contracted power demand of 1027 kW and 500 kW
respectively. Building B is also equipped with 360 kW heating power Ground Source Heat Pumps
(GSHPs). In building C, a nearly zero-energy one, cooling and space heating is provided by a low
temperature thermally activated building system and heat is generated only with the GSHPs.

Heating energy demand is covered with the use of GSHP by 100% for building C and by 80% for
building B. Heat generated with GSHPs costs 10 €/GJ, while heat from the district heating network
costs twice this price. 100% of the heating energy for building A (5430 GJ annually) and 20% for
building B (843 GJ annually) is provided by heating substations, resulting in a total of 6273 GJ annually.

A water loop of 250 kW and 5 ◦C supply/return temperature difference between buildings B and
C was designed, as both B heating station and water chillers are oversized. Two operating modes
are considered:

• Heat peak source for building C—building C heating system is assisted with heat from building B
during winter;

• Building C cooling—chilled water from building B chillers and heat pumps is supplied to building
C cooling system.
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period with water loop #2, (III)—winter period with #1, #2 and #3 loops, DHS—district heating
substation, ACWC—air cooled water chiller.

A detailed design for the water loop was prepared and it is to be built in the first half of 2019
when building C will be put into use.

As the heat production of PSNC exceeds its energy need subsequent considerations on capabilities
of heat transfer between PSNC and PUT buildings were conducted. It was assumed that 700 or up to
1000 kW heat could be transferred to buildings B and C. Two subsequent water loops between PSNC
and building C and between buildings A and B should be built together with local storage tanks and
pumping stations (Figure 4).
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Supply/return water temperature for building B heating system is 60/45 ◦C and 80/60 ◦C for
building A, built earlier with less thermal protection. Building C heating system with a thermally
activated building system is a very low-temperature one with temperatures of 35/30 ◦C.

PSNC utilizes DC waste heat with a local multi-split and variable refrigerant volume systems.
Water-to-water or air-to-water heat pump should be used in PSNC to increase the temperature of air or
chilled water returning from the DC to slightly above the building supply temperatures to thus cover
the heat losses in water loops and in the heat exchangers in each building. Exchangers are necessary to
separate the water systems. To obtain higher supply temperatures additional boilers or second heat
pump could be used in a particular building. The total length of the loop, made with pre-insulated
pipes, will be less than 500 m.

Taking into account the current heat demands of the PSNC building and the upcoming
enlargement of the DC’s computational capabilities, there are promising prospect to fulfill the PUT heat
demands at least partially by using the PSNC facilities. However, the heat demand of the neighborhood
may vary significantly depending on external temperatures. Additionally, DC heat generation and
outlet temperatures may differ depending on load, temperatures, and cooling system configuration.
Therefore, the optimal configuration of such a system requires accurate prediction of heat production
and the state of the system. Models and methods for such accurate prediction of the DC thermal
flexibility are studied in the following sections.

4. Optimizing DC Heat Reuse

4.1. Heat Energy Harvesting Efficieny

The potential value of residual heat is partially determined by applied cooling technology from
where the energy has been gathered. The heat produced by the servers has low temperature, due
to the low temperature range of their safe operation (THOTAIR ≤ 30 degrees Celsius) but at the same
time it is the simplest and most efficient method to recover the waste heat and reuse it for domestic
heating. However, district heating networks usually require temperatures above 60–70 degrees Celsius.
The thermal energy must either be harvested at a higher temperature; this being possible only for
liquid cooling systems (that can reach a temperature of 60 degrees Celsius) or passed through a heat
pump to increase its temperature (TDISTRICT) by using a refrigerant cycle that consumes electrical
energy. Consequently, DCs that rely mostly on air cooling systems are equipped with heat pumps to
raise the temperature of the reused heat.

The heat pump has two coefficients of performance indicators (COP): one defined for the cooling
process of the air to be fed back to the DC server room through the perforated floor and one defined
for the heating process to deliver in nearby neighborhoods:

COPCooling =
∆QCool

ECompressor
≤ TCOLDAIR

THOTAIR − TCOLDAIR
(1)

COPHeating =
DQHot

ECompressor
≤ TDISTRICT

TDISTRICT − THOTAIR
(2)

where ECompressor is the heat pump compressor energy consumption. In other words COPcooling
characterizes the process done by the pump to cool the server room, while COPHeating characterizes
the process done by the heat pump to increase temperature of supplied heat and to transfer it.

When an air-cooled DC uses heat pumps to dynamically generate thermal energy for heating
purposes, the server room is used as a thermal energy buffer that allows increasing or decreasing
the heat produced (see Figure 5). This is achieved by modifying the temperature set-points in the
server room and deploying and executing more workload on the IT servers to allow thermal energy to
accumulate. This will also improve the efficiency of the heat pump operation which operates better at
higher temperatures. As it can be seen in relations (1) and (2) minimizing the compressor’s dissipated
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work ECompressor leads to maximizing both COPHeating and COPCooling and this happens when the
temperature of the air extracted from the server room THOTAIR is high.
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However, increasing the server room temperature set points can lead to potentially disastrous
situations, such as equipment overheating and malfunctioning due to hotspot formation in certain
areas of the server room. To avoid these risks, before making any decisions a simulation should be
performed to validate the new temperature set-points and workload distribution of the IT servers,
eliminating the risks of hotspot formation and equipment malfunction. Thermal processes are highly
complex and need dedicated simulation tools to achieve accurate and realistic results. The most
used methods are based on Computational Fluid Dynamics (CFD) techniques that use numerical
simulations to compute the flow of fluids (liquids or gasses) in an area defined by boundary surfaces.
Applied in DC thermal distribution simulation, CFD tools report an error of about 1 degree Celsius
compared to the real environment, thus being suited for decision analysis regarding server room
temperature set-point.

At the same time, CFD-based simulation methods have their own limitations when applied to
thermal flexibility studies. Calculations related to a single scenario require a parallel environment
and a significant amount of time. Performing CFD for multiple scenarios for every server room in a
large-scale DC is costly and time-consuming, being an approach that cannot be considered as affordable
and effective in near real time. Thus, to overcome such limitations, in our study we propose to combine
CFD simulation with neural networks based methods to predict the temperature distribution in the
server room aiming to increase the amount of heat recovered. In this case, the simulations result of
numerous configurations of the single simplified setup will constitute the training data set for the
neural network based prediction process, which will be used at run time for decision making.

4.2. Server Room Thermal Model

CFD simulations of a virtual server room are used to model the input cold air in terms of pumped
airflow and temperature as well as the generated hot air and heat distribution in the server room
model for multiple setups. Both the model and the subsequent simulations are prepared with an
in-house tool dedicated to the server room CFD analysis, based on the open-source OpenFOAM
v4.1 software [32]. To obtain the dynamics of the server room airflow, unsteady Reynolds-averaged
Navier-Stokes (URANS) equations together with the two-equational k-ε turbulence model are resolved.

The utilized solver, buoyantBoussinesqPimpleFoam, allows capturing buoyancy effects, taking
into account pressure gradient along the vertical dimension, describing static pressure p as:

p = prgh + ρgh (3)
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where: prgh is the pseudo hydrostatic pressure, q is the air density, g the gravitational acceleration, h the
height in the opposite direction to gravity. The solver introduces also the Boussinesq approximation
which assumes linear dependency of density and temperature variations. It is applicable to the
server room airflow due to relatively slight density fluctuations expected. The approximation reduces
nonlinearity and simplifies solved problem. The effective density qk, present in the gravity term of
momentum equation, is expressed with the following equation:

ρk = 1− β
(

T − Tre f

)
(4)

where β is the thermal expansion coefficient, T the temperature, Tre f the reference temperature. Such
an approach makes the solver incompressible. The solver uses the PIMPLE pressure-velocity coupling
algorithm to obtain a transient solution, which is a combination of Pressure Implicit with Splitting of
Operator (PISO) and Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) schemes.

The server room is modelled considering its size (width × depth × height) as well as the racks
deployed in it. In general, the utilized CFD tool allows modelling a rack both as a set of separate
servers of any occupation pattern or as a simplified single device. Due to performance reasons,
we chose the second approach. The racks are considered as fully and homogeneously occupied with
servers, their geometry is simplified in a way that each of the racks is treated as single airflow and heat
source. They are provided with one inlet and one outlet each, allowing the use of less computationally
expensive mesh. Cold air is supplied into the room through the floor surface whereas the return air
stream leaves through the ceiling. The intention of such Computer Room Air Conditioning (CRAC)
modelling was to create a possibly generic case, independent from location and number of floor supply
tiles and return outlets. The virtual server room model used in this study is presented in Figure 6.
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To properly model each rack as heat sources and to keep the power of racks at a constant level
during every simulation execution, swak4Foam [33] library (Swiss Army Knife for Foam) was utilized.
It allows binding boundary conditions with functional dependency of one from another with groovyBC
utility. While at racks inlets the temperature was forming freely, at racks’ outlets, on the other hand,
the temperature boundary condition was characterized as a function of inlet temperature, to fulfil
below heat balance equation:

ρk = 1− β
(

T − Tre f

)
(5)

where Pr is the heat output of rack, ρre f is the reference density (1.1884 kg/m3 for reference prgh = 100
kPa and Tre f = 20 ◦C), Qr is the rack airflow volume (2.0 m3/s, ≈0.048 m3/s per U), Cp is the specific
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heat capacity (1003.98 J/kgK), THOTAIR is the rack outlet temperature and finally TCOLDAIR is the rack
inlet temperature. For this study, it is assumed, that 100% of racks power consumption is responsible
for heat generation. The final form of the outlet temperature equation is stated below:

THOTAIR = TCOLDAIR +
Pr

ρre f QrCp
(6)

4.3. Predicting the Heat Distribution

The CFD experiments described above compute the temperature of the hot air generated in
the server room (THOTAIR) considering M virtual probes, the simulation outputs TProbe[m]

HOTAIR[t] where
m ∈ {1 . . . M} and t is the time instance when the data was taken (see Figure 7). The probes are
deployed at the inlet and outlet of the K racks as well as at the outlet of the server room. The simulation
input is defined by the initial room temperature (TROOM−INITIAL), the temperature of the air pumped
by the cooling system in the server room (TCOLDAIR) and its flow (airFLOW) and the heat generation of
the K racks modelled (HeatRack[k], k ∈ {1 . . . K}).
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The CFD input parameters are varied to generate N different scenarios, each run over an interval
of T seconds to compute the temperatures for the M probes. The generated data are fed to a neural
network based infrastructure with the goal of predicting the heat distribution in the server room and
the temperature of the hot air generated. The forecasting infrastructure is based on neural networks
of type Multi-Layer Perceptron (MLP) featuring 4 fully-connected layers of neurons of type ReLU
(Rectified Linear Units). The input layer has K + 3 + M neurons, the other two hidden layers have
α(K + 3 + M) + β neurons, while the output layer has dt× M neurons, where dt is the number of
seconds for which each MLP will predict the probe temperatures.
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Because we need predictions for every second in the [0 . . . T] forecasting interval, the developed
infrastructure has MT = T

dt MLP modules trained with data filtered for a specific second (t in Figure 7)
to compute temperature predictions of the M probes for that time instance. Each of the T MLPs
has as input the K + 3 parameters (TROOM−INITIAL, TCOLDAIR, airFLOW , {HeatRack[i], i ∈ {1 . . . K}})
describing the initial situation of the simulation and additional M parameters describing the
temperature probe values at the beginning of the prediction window TProbe[m]

HOTAIR[t0]. Each MLP module
aims at predicting the temperature of the M key points representing the probes deployed in the server
room for every timestamp t in each time interval of the form MLPdomain(i) = [i× dt, (i + 1)× dt],
where i ∈ {0 . . . MT − 1}. Thus, for computing the all the hot air probe temperatures at second t in
the future, the index i of the interval MLPdomain(i) has to be computed as the integer part of the ratio
i = [ t

dt ], and the temperatures will be predicted by the ith MLP as its (t− i× dt) outputs:

TProbe[m]
HOTAIR(t0 + T) = MLPi

(
TROOM−INITIAL, TCOLDAIR, airFLOW , HeatRack[K], TProbe[M]

HOTAIR [t0]
)
[t− i× dt] (7)

For looking forward into the future and predicting the server temperature at deployed probes
over periods larger than the CFD simulations of T seconds, we proposed the iterative algorithm shown
below (Algorithm 1). The algorithm inputs are the initial parameters of a simulation and the time for
which the prediction has to be computed, while the outputs are the M simulation output parameters
after the simulation time Timeprediction.

Algorithm 1. Heat Prediction Algorithm for Long Time Periods

Input: TROOM−INITIAL, TCOLDAIR, airFLOW , HeatRack[k], Timeprediction

Output: TProbe[m]
HOTAIR

[
Timeprediction

]
, m ∈ M

Begin

IntervalsT =
Timeprediction

T // iterate over the interval
[
0 . . . Timeprediction

]
with time step of length T

IndexT = Timeprediction % T // compute time interval remaining that cannot be covered by time steps of length T
Iiterations
MLP = T

dt // compute MLP index within T interval
Outputiterations

MLP = T % dt // compute output index within the MLP
I f inal
MLP = IndexT

dt //compute MLP index within last IndexT interval
Output f inal

MLP = IndexT % dt //compute output index within last MLP
t0 = 0

For (time = 1 to IntervalsT) Do
For (m = 1 to M) Do

TProbe[m]
HOTAIR[t0 + T] = MLPIiterations

MLP

(
TROOM−INITIAL, TCOLDAIR, airFLOW , HeatRack [K], TProbe[m]

HOTAIR[t0]
)[

Outputiterations
MLP

]
t0 = t0 + T; m = m + 1
End For

TProbe[1...M]
HOTAIR

[
Timeprediction

]
= MLP

I f inal
MLP

(
TROOM−INITIAL, TCOLDAIR, airFLOW , HeatRack [K],

TProbe[M]
HOTAIR [IntervalsT × T]

)[
Output f inal

MLP

]
Return TProbe[1...M]

HOTAIR

[
Timeprediction

]
End

The algorithm starts by computing the number of T second intervals included in the prediction
period Timeprediction. Furthermore, it computes the index of the MLP used to predict T seconds in the
future, and the index of the output of the MLP corresponding to this prediction. It also computes
the length of the last interval that cannot be covered by intervals of length T, the index of the MLP
and the index of the MLPs output to compute the last prediction. Then, it performs iterations over
these intervals and for each interval it computes the average room temperature in the M probes, while
updating the time for the next prediction. Finally, it calls the MLP for the last time interval of length
I f inal
MLP to compute the final values of the probes.
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5. Evaluation Results

We had used the proposed DC heat reuse model to investigate the thermal energy flexibility
potential of a virtual server room from PSNC DC modeled with CFD aiming to predict the temperature
of the air inside which can be recovered using a heat pump and delivered to nearby neighborhoods.
The virtual server room modeled with CFD has the size of 4 m × 4 m × 3 m (width × depth ×
height) and is equipped with two typical 42U racks (0.8 m × 1.07 m × 2.05 m respectively). They are
provided with one inlet and one outlet (width: 0.45 m, height: 42U≈ 1.8669 m), allowing the use of less
computationally expensive mesh. Figure 8 reflects the virtual server room in OpenFoam environment.
It was assumed, that between all the scenarios, five key parameters are changed, according to Table 1.
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Figure 8. The CFD model of the server room implemented in OpenFoam.

Table 1. List of parameters variation for simulation scenarios.

Parameter Min Max Step

Initial room temperature: TINITIAL−ROOM [◦C] 18 26 2
Air conditioning volume flow rate: airFLOW [m3/s] 0.6 1.8 0.3
Air conditioning outlet temperature: TCOLDAIR [◦C] 10 18 2
Power consumption of rack no 1: P1 [kW] ∼= HEATRack−1 2 10 2
Power consumption of rack no 2: P2 [kW] ∼= HEATRack−2 2 10 2

From all received results, the temperature values at specific locations were extracted for every 1-s
time interval of total 600-s (10 min) time range of every run. Virtual temperature probes were located
at I/O surfaces in the domain, except CRAC supply outlet, where the temperature was fixed during
the execution. List of probes together with their count and location is placed in Table 2.

Table 2. List of temperature probes in virtual server room.

Probed I/O Surface Probe Count Probe Location

CRAC return duct inlet 4 (1,1,3), (1,3,3), (3,1,3), (3,3,3)

Racks outlets 1 (× 2) 1.025 m above floor surface (half of the rack
height, at outlet vertical symmetry axis)

Racks inlets 4 (× 2)
0.465 m, 0.838 m, 1.212 m, 1.585 m above floor

surface (evenly spaced along vertical inlet
dimension, at inlet vertical symmetry axis)

All possible CFD-based simulations (considering the Table 1 parameters) were executed and this
generated over 200 GB of output data, from which probe data were extracted. Taking into account the
number of probes Np = 14 and the number of collected time steps per execution Nt = 600, the total
number of temperature records per simulation is equal Nts = Np × Nt = 8400 and the sum for whole
described study Ntt = N × Np × Nt ≈ 26 M. The generated data will constitute the training data of
our prediction algorithm. Exemplary results for different air conditioning volume flow rate can be
seen in Figure 9.
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We had varied the five input parameters of the CFD simulation defined in Table 1 to generate
3125 different scenarios, each scenario being run over a period of 600 s to compute the temperatures
for the 14 probes defined in Table 3 at each second thus generating 8400 output values. Thus we had
chosen to split the main dataset into 60 sub-datasets, each used to train the neural networks based
algorithm to predict the 14 outputs of the simulation for every second of a 10 s time interval within the
600 s prediction interval. In total, we create 60 datasets for each scenario, that will be used to train
60 MLPs. Thus, for each second within each 10 s simulation interval we created 3125 training pairs,
associating the parameters of each simulation with the output to be predicted at a given timestamp in
the future. We train the MLP-based prediction infrastructure defined by splitting the data set in 90%
training data and 10% test data.

Table 3. MSE of simulation outputs for the tested scenarios.

Output Average MSE

Rack1
inlet−1 0.028

Rack1
inlet−2 0.029

Rack1
inlet−3 0.034

Rack1
inlet−4 0.046

Rack1
outlet 0.019

Rack2
inlet−1 0.025

Rack2
inlet−2 0.036

Rack2
inlet−3 0.040

Rack2
inlet−4 0.041

Rack2
outlet 0.035

Room1
outlet 0.091

Room2
outlet 0.087

Room3
outlet 0.032

Room4
outlet 0.038

The first evaluation aims at determining the temperature prediction performance over the test
scenarios. For each scenario, the Mean Square Error (MSE) was computed for each predicted output
defined in Table 3 over the 600 s simulation interval and it was compared against the reference
CFD scenario:

MSE(output) =
1

312
×

312

∑
i=1

1
600

(
600

∑
t=1

(output(t)−MLP i
60
[i%10])) (8)
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As it can be seen from the table above, the predictions exhibit an error of less than 0.1 that
corresponds to less than 1 degree Celsius, being suited for real time temperature evaluation to avoid
hot spots.

The temperature evolution prediction compared with the one generated by the CFD can be seen
in Figure 10 for one of the scenarios run. The red lines represent the predicted values while the blue
lines represent the real temperature values taken from the simulation. It can be seen for the sample
probes even for the worst MSE the predicted temperature profile follows closely the real temperature
profile, exhibiting errors of roughly 1 degree Celsius.
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Figure 11 show the impact of prediction errors onto amount of waste heat estimated to be delivered
to the heat grid in comparison with the actual ones. We have considered a heat pump featuring a
COPCooling = 3.8 and a COPHeating = 2.3 and the hot air temperatures in the server room reported in
Figure 10 (BOTTOM). As it can be seen the impact is almost negligible showing that our solution could
be successfully used by DC managers to accurately estimate the amount of available heat to be injected
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at future time frames. At the same time, the correlation between the amount of heat actually recovered
from the server room the one delivered and indirectly with the temperature of the hot THOTAIR at
server room outlet can be clearly seen. The higher the temperature of the hot air extracted is the higher
the temperature of the heat delivered to the heat grid (assuming a constant energy consumption of the
heat pump compressor) is too.
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In terms of the economics of heat reuse with respect to the requirements and example presented
in Section 3.1, we have estimated the potential cost and savings related to the installation of the heat
transfer system. The calculation was made on the following assumptions: (i) DC generated heat for
winter period (based on data presented in Figure 1, linear estimation of winter period heat production
is 7400 GJ annually) is much higher than total heat demand of PSNC buildings A and B (annual
heat demand, based on the metered average value is less than 7000 GJ) and (ii) the DC waste heat is
transferred to buildings A and B. Waste heat could be potentially be reused in building C, but detailed
calculations of heat cost produced by heat pumps in the building will be conducted within a year,
based on real exploitation, and then the final decision will be made. As the current design of buildings
B-C water loop assumes only 250 kW power the pipes diameters should be increased to obtain higher
power, about 1.75 MW.

District heating heat cost in PSNC, Poland is 20 €/GJ which gives 125,460 € annually since the
yearly heating demand is 6273 GJ. There are three options of the heat consumption from district
heating providers. In the first option the heat is still delivered by a district heating operator. For the
second option, even if no energy is consumed from a district heating, maintaining the current levels
of contracted power demand values, gives the annual heating station costs of 52,750 €. In the third
option the contracted power demand is left on the same level as in present but only for a short period
of time to make sure the system works properly. As the certainty of heat supply is important for PUT,
this is the best option. Renouncing at the heating stations in the third option will reset the annual
heating cost from the district heating to 0 €. The price of the heat from PSNC was assumed at 2 €/GJ
and the cost of energy appliances (pumps, heat pumps) as well as maintenance costs at the level of
11,628 € annually. These are examples of values based on the assumption that the investment in the
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required infrastructure is done by PUT (hence even low PSNC heat price is profitable). In the next
steps, other options will be considered, including separate ROI estimations for both PSNC DC and the
PUT campus. A cost summary of these three options is presented in Table 4.

Table 4. Operational costs analysis for the three heat reuse options considered.

Annual Cost Components

Option 1 Contracted
Power Demand 1.527

MW, DH Heat Demand
6273 GJ/year

Option 2 Contracted
Power Demand 1.527

MW, DH Heat Demand
0 GJ/year

Option 3 Contracted
Power Demand 0 MW,

DH Heat Demand 0
GJ/year

A+B buildings district heating cost 125,460 € 52,750 € 0 €
PSNC DC heat revenues (6273 GJ annually, 2€/GJ) N/A 12,546 € 12,546 €

Water loop running cost (pumps—electricity,
maintenance) N/A 11,628 € 11,628 €

Savings N/A 48,536 € 101,286 €

In the consideration of capital expenditures, we assume that the investment in the required
infrastructure is done by PUT. Water loop cost with heat pumps and pumping stations estimation
is 1,150,000 €. Operational cost estimation was based on current district heating and electricity cost,
whereas capital cost was based on real expenditures of the ongoing building C investment process.
For Option 2 presented above (and in Table 4) with annual savings of 101,286 €, Simple Pay Back
Time (SPBT) is 11.4 years, while Net Present Value (NPV) with 3% discount rate is 59,000 € in 15 years’
period. With 50% EU investment subsidy SPBT would be 5.7 years while NPV 56,000 € in 7 years’
period. Without subsidies and with district heating contracted power demand of 1.527 MW assurance
(option 2 above) the installation of the heat transfer system is unreasonable due to SPBT of 23.7 years.
Summary of these values is presented in Table 5 below. The potential use of existing pipes network of
Poznan district heating could significantly reduce project costs and will be further investigated during
future works.

Table 5. Capital expenditures analysis results for the three heat reuse options considered.

Option SPBT NPV (3% Rate)

No subsidies, DH contracted power demand
1.527 MW—Option 2 - 23.7 years N/A

No subsidies, No DH connection (contracted power
demand 0 MW)—Option 3 - 11.4 years 59,000 € (15 years)

50% subsidies, No DH connection (contracted power
demand 0 MW)—Option 3 - 5.7 years 56,000 € (7 years)

6. Conclusions

In this paper, we have defined models and techniques for predicting the temperature of the air
inside a server room which can be recovered and transferred by means of heat pumps to nearby
neighborhoods. We proposed CFD simulations to evaluate a large number of scenarios which impact
the temperature of the air. We defined a neural network-based prediction method which takes as
input a large amount of data generated by means of CFD simulations to forecast the server room
temperature overcoming the simulations’ time and computational overhead at run time. The prediction
process showed good performance having an error rate of less than 1% in predicting the server room
temperature which represents less the 1 degree Celsius.

For the next steps, we plan to extend our work to the entire Poznan Supercomputing and
Networking Center. This is in line with the current objectives of the collaboration between PSNC
and Poznan University of Technology to perform a feasibility study of the heat transfer system
between the PSNC DC to the PUT facilities. For now, we analyzed the current heat demands of PUT
facilities, described existing infrastructure and showed corresponding economic analysis. The analysis
has shown high potential. The return on investment time was initially estimated as 5.7–11.4 years
depending on concrete heat demand/supply and price of heat defined by PSNC. However, current
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PSNC heat production is not sufficient to cover the worst-case demand (around 1.5 MW when the
temperature falls to −18 ◦C) even if it fits the typical demands (0.5–0.75 MW for temperatures within
0–8 ◦C). For this reason, an approach with a connection to the heating network will be also considered,
and accurate prediction and control of thermal flexibility presented in this paper is needed to achieve
high efficiency and reliability.

Author Contributions: Conceptualization, T.C., M.A. and A.O.; Methodology, I.A., I.S. and R.G.; Software, M.A.,
C.P. and R.J.; Validation, M.A., W.P. and W.S.; Formal Analysis, T.C. and I.S.; Investigation, I.A. and C.P.; Resources
A.O. and I.A.; Data Curation, R.G. and R.J.; Writing-Original Draft Preparation, T.C. and A.O.; Writing-Review
& Editing, I.A. and W.P.; Visualization, C.P.; Supervision, I.S. and T.C.; Project Administration, T.C. and A.O.;
Funding Acquisition, I.A. and T.C.

Funding: This research was funded by European Union’s Horizon 2020 research and innovation programme
grant number 768739 and from Polish National Science Center grant number 2013/08/A/ST6/00296. The APC
was funded by the Technical University of Cluj-Napoca, Romania.

Acknowledgments: The results presented in this paper are partially funded from European Union’s Horizon 2020
research and innovation programme under grant agreement No 768739 (CATALYST) and from Polish National
Science Center under grant number 2013/08/A/ST6/00296.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to
publish the results.

References

1. Antal, M.; Cioara, T.; Anghel, I.; Pop, C.; Salomie, I. Transforming Data Centers in Active Thermal Energy
Players in Nearby Neighborhoods. Sustainability 2018, 10, 939. [CrossRef]

2. H2020 Catalyst Project. Available online: http://project-catalyst.eu/ (accessed on 20 January 2019).
3. Lind, J.; Rundgren, E. Industrial Symbiosis in Heat Recovery Collaborations between Data Centers and

District Heating and Cooling Companies. Available online: http://www.diva-portal.org/smash/record.jsf?
pid=diva2%3A1130513&dswid=3389 (accessed on 10 January 2019).

4. Wahlroos, M.; Pärssinen, M.; Manner, J.; Syri, S. Utilizing data center waste heat in district heating—Impacts
on energy efficiency and prospects for low-temperature district heating networks. Energy 2017, 140,
1228–1238. [CrossRef]

5. Antal, M.; Cioara, T.; Anghel, I.; Pop, C.; Salomie, I.; Bertoncini, M.; Arnone, D. DC Thermal Energy Flexibility
Model for Waste Heat Reuse in Nearby Neighborhoods. In Proceedings of the 8th International Conference
on Future Energy Systems (e-Energy ‘17), Hong Kong, China, 16–19 May 2017; pp. 278–283.

6. Davies, G.F.; Maidment, G.G.; Tozer, R.M. Using data centres for combined heating and cooling: An
investigation for London. Appl. Ther. Eng. 2016, 94, 296–304. [CrossRef]

7. Brenner, P.; Go, D.B.; Buccellato, A.P.C. Data Center Heat Recovery Models and Validation: Insights from
Environmentally Opportunistic Computing. In Proceedings of the ASHRAE Winter Conference Technical
Program, Dallas, TX, USA, 26–30 January 2013.

8. Sarkar, J.; Bhattacharyya, S.; Ramgopal, M. Performance of a transcritical CO2 heat pump for simultaneous
water cooling and heating. Int. J. Appl. Sci. Eng. Technol. 2010, 6, 57–64.

9. Gelažanskas, L.; Gamage, K.A.A. Forecasting hot water consumption in residential houses. Energies 2015, 8,
12702–12717. [CrossRef]

10. Measurement of Domestic Hot Water Consumption in Dwellings. Available online: https://www.gov.uk/
government/publications/measurement-of-domestic-hot-water-consumption-in-dwellings (accessed on 11
January 2019).

11. Parker, D.S.; Fairey, P.W. Estimating daily domestic hot-water use in North American homes. ASHRAE Trans.
2015, 121, 258.

12. Arce, I.H.; López, S.H.; Perez, S.L.; Rämä, M.; Klobut, K.; Febres, J.A. Models for fast modelling of district
heating and cooling networks. Renew. Sustain. Energy Rev. 2018, 82, 1863–1873. [CrossRef]

13. Goumba, A.; Chiche, S.; Guo, X.; Colombert, M.; Bonneau, P. Recov’Heat: An estimation tool of urban waste
heat recovery potential in sustainable cities. AIP Conf. Proc. 2017, 1814, 020038.

14. Cho, J.; Yang, J.; Park, W. Evaluation of air distribution system’s airflow performance for cooling energy
savings in high-density data centers. Energy Build. 2014, 68, 270–279. [CrossRef]

http://dx.doi.org/10.3390/su10040939
http://project-catalyst.eu/
http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1130513&dswid=3389
http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1130513&dswid=3389
http://dx.doi.org/10.1016/j.energy.2017.08.078
http://dx.doi.org/10.1016/j.applthermaleng.2015.09.111
http://dx.doi.org/10.3390/en81112336
https://www.gov.uk/government/publications/measurement-of-domestic-hot-water-consumption-in-dwellings
https://www.gov.uk/government/publications/measurement-of-domestic-hot-water-consumption-in-dwellings
http://dx.doi.org/10.1016/j.rser.2017.06.109
http://dx.doi.org/10.1016/j.enbuild.2013.09.013


Energies 2019, 12, 814 18 of 18

15. Alkharabsheh, S.; Sammakia, B.; Shrivastava, S.; Schmidt, R. Dynamic models for server rack and CRAH in a
room level CFD model of a data center. In Proceedings of the 2014 IEEE Intersociety Conference on Thermal
and Thermomechanical Phenomena in Electronic Systems (ITherm), Orlando, FL, USA, 27–30 May 2014.

16. Ni, J.; Jin, B.; Zhang, B.; Wang, X. Simulation of Thermal Distribution and Airflow for Efficient Energy
Consumption in a Small Data Centers. Sustainability 2017, 9, 664. [CrossRef]

17. VanGilder, J. Real-Time Data Center Cooling Analysis. Available online: http://www.electronics-cooling.
com/2011/09/real-time-data-center-cooling-analysis/ (accessed on 12 December 2018).

18. Ghosh, R.; Joshi, Y. Rapid Temperature Predictions in Data Centers using Multi-Parameter Proper Orthogonal
Decomposition. Numer. Heat Transf. Part A Appl. 2014, 66, 41–63. [CrossRef]

19. Oleksiak, A.; Da Costa, G.; Piatek, W. Energy and Thermal Models for Simulation of Workload and Resource
Management in Computing Systems. Simul. Model. Pract. Theory 2015, 58, 40–54.

20. Basmadjian, R.; Ali, N.; Niedermeier, F.; De Meer, H.; Giuliani, G. A methodology to predict the power
consumption of servers in data centres. In Proceedings of the ACM SIGCOMM 2nd International Conference
on Energy-Efficient Computing and Networking (e-Energy 2011), New York, NY, USA, 31 May–1 June 2011.

21. Piatek, W.; Oleksiak, A.; vor dem Berge, M. Modeling Impact of Power- and thermal-Aware Fans
Management on Data Center Energy Consumption. In Proceedings of the 2015 ACM Sixth International
Conference on Future Energy Systems, Bangalore, India, 14–17 July 2015.

22. Oleksiak, A.; Piatek, W.; Salom, J.; Siso, L.; Costa, G.D. Minimization of costs and energy consumption in a
data center by a workload-based capacity management. In Proceedings of the 3rd International Workshop
on Energy-Efficient Data Centres Co-Located with the ACM e-Energy, Cambridge, UK, 10 June 2014.

23. Chase, J.; Ranganathan, P.; Sharma, R.; Moore, J. Making scheduling “cool”: Temperature—Aware workload
placement in data centers. In Proceedings of the 2005 USENIX Annual Technical Conference, Anaheim, CA,
USA, 10–15 April 2005.

24. Tang, Q.; Mukherjee, T.; Gupta, S.K.S.; Cayton, P. Sensor-based fast thermal evaluation model for energy
efficient high-performance datacenters. In Proceedings of the Fourth International Conference on Intelligent
Sensing and Information Processing, Bangalore, India, 15–18 December 2006; pp. 203–208.

25. Cupertino, L.; Da Costa, G.; Oleksiak, A.; Piatek, W.; Pierson, J.-M.; Salom, J.; Sisó, L.; Stolf, P.; Sun, H.;
Zilio, T. Energy-efficient, thermal-aware modeling and simulation of data centers: The CoolEmAll approach
and evaluation results. Ad Hoc Netw. 2015, 25, 535–553. [CrossRef]

26. Blarke, M.B.; Yazawa, K.; Shakouri, A.; Carmo, C. Thermal battery with CO2 compression heat pump:
Techno-economic optimization of a high-efficiency Smart Grid option for buildings. Energy Build. 2012, 50,
128–138. [CrossRef]

27. Kumar, V.A. Real Time Temperature Prediction in a Data Center Environment Using an Adaptive Algorithm.
Master’s Thesis, University of Texas Arlington, Arlington, TX, USA, December 2013. Available online:
https://rc.library.uta.edu/uta-ir/handle/10106/24083 (accessed on 12 January 2019).

28. Kansara, N.; Katti, R.; Nemati, K.; Bowling, A.P.; Sammakia, B. Neural Network Modeling in Model-Based
Control of a Data Center. In Proceedings of the International Electronic Packaging Technical Conference and
Exhibition, San Francisco, CA, USA, 6–9 July 2015.

29. Li, L.; Liang, C.J.M.; Liu, J.; Nath, S.; Terzis, A.; Faloutsos, C. ThermoCast: A cyber-physical forecasting
model for datacenters. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, San Diego, CA, USA, 21–24 August 2011; pp. 1370–1378.

30. Wang, L.; Laszewsk, G. Task scheduling with ANN-based temperature prediction in a data center: A
simulation-based study. Eng. Comput. 2011, 27, 381–391. [CrossRef]

31. Poznan Supercomputing and Networking Center. Available online: http://www.man.poznan.pl/online/en/
(accessed on 12 December 2018).

32. OpenFOAM. Available online: https://www.openfoam.org (accessed on 12 December 2018).
33. Gschaider, B. swak4Foam. Available online: https://openfoamwiki.net/index.php/Contrib/swak4Foam

(accessed on 12 December 2018).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/su9040664
http://www.electronics-cooling.com/2011/09/real-time-data-center-cooling-analysis/
http://www.electronics-cooling.com/2011/09/real-time-data-center-cooling-analysis/
http://dx.doi.org/10.1080/10407782.2013.869090
http://dx.doi.org/10.1016/j.adhoc.2014.11.002
http://dx.doi.org/10.1016/j.enbuild.2012.03.029
https://rc.library.uta.edu/uta-ir/handle/10106/24083
http://dx.doi.org/10.1007/s00366-011-0211-4
http://www.man.poznan.pl/online/en/
https://www.openfoam.org
https://openfoamwiki.net/index.php/Contrib/swak4Foam
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Work 
	PSNC Data Centre Example 
	Heat Reuse Within the Building 
	Heat Reuse in the Nearby Neighbourhood 

	Optimizing DC Heat Reuse 
	Heat Energy Harvesting Efficieny 
	Server Room Thermal Model 
	Predicting the Heat Distribution 

	Evaluation Results 
	Conclusions 
	References

