
energies

Article

Implementation of Processing Functions for
Autonomous Power Quality Measurement
Equipment: A Performance Evaluation of CPU and
FPGA-Based Embedded System

María-Ángeles Cifredo-Chacón 1,* , Fernando Perez-Peña 2 , Ángel Quirós-Olozábal 3 and
Juan-José González-de-la-Rosa 4

1 Microelectronic Circuit Design Group, Escuela Superior de Ingeniería, University of Cádiz, Avda. de la
Universidad 10, E-11519 Puerto Real-Cádiz, Spain

2 Applied Robotics Lab, Escuela Superior de Ingeniería, University of Cádiz, Avda. de la Universidad 10,
E-11519 Puerto Real-Cádiz, Spain; fernandoperez.pena@uca.es

3 Microelectronic Circuit Design Group, Escuela Superior de Ingeniería, University of Cádiz, Avda. de la
Universidad 10, E-11519 Puerto Real-Cádiz, Spain; angel.quiros@uca.es

4 Computational Instrumentation and Industrial Electronics Group, Escuela Politécnica Superior, University
of Cádiz, Avda. Ramón Puyol S/N, E-11202 Algeciras-Cádiz, Spain; juanjose.delarosa@uca.es

* Correspondence: mangeles.cifredo@uca.es; Tel.: +34-956-483-315

Received: 6 February 2019; Accepted: 3 March 2019; Published: 9 March 2019
����������
�������

Abstract: Motivated by the effects of deregulation over power quality and the subsequent need of
new types of measurements, this paper assesses different implementations of an estimate for the
spectral kurtosis, considered as a low-level harmonic detection. Performance of a processor-based
system is compared with a field programmable gate array (FPGA)-based solution, in order to
evaluate the accuracy of this processing function for implementation in autonomous measurement
equipment. The fourth-order spectrum, with applications in different fields, needs advanced
digital signal processing, making it necessary to compare implementation alternatives. In order to
obtain reproducible results, the implementations have been developed using common design and
programming tools. Several characteristics of the implementations are compared, showing that the
increasing complexity and reduced cost of the current FPGA models make the implementation of
complex mathematical functions feasible. We show that FPGAs improve the processing capability
of the best processor using an operating frequency 33 times lower. This fact strongly supports its
implementation in hand-held instruments.

Keywords: reconfigurable computing; FPGA; power quality; spectral kurtosis; digital signal
processing; embedded system

1. Introduction

During the last fifteen years, we have been progressing to a large deployment of power electronics
with the goal of conducting non-linear loads in a frame of distributed energy resources at generation,
transmission, and distribution stages. This fact, along with utilities deregulation, elicits the need for a
new concept of power quality (PQ) that should affect standards and measurement equipment aligned
with an effective operation system [1,2].

Indeed, one of the new challenges of PQ analyzers resides in the fact of registering new PQ
events that have been arising in the smart grid (SG) and dramatically affect sensitive electronics. As a
consequence, there is a special need for PQ monitoring analysis techniques that account for new

Energies 2019, 12, 914; doi:10.3390/en12050914 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0002-9620-116X
https://orcid.org/0000-0003-3586-2930
https://orcid.org/0000-0001-6837-9289
https://orcid.org/0000-0003-0972-8375
http://www.mdpi.com/1996-1073/12/5/914?type=check_update&version=1
http://dx.doi.org/10.3390/en12050914
http://www.mdpi.com/journal/energies

Energies 2019, 12, 914 2 of 15

disturbance assessment techniques. These not only detect the presence of anomalous power, but also
allow adopting protection measures, which eventually enable the correct on/off load or mitigation
strategies. In particular, the focus of new class C instruments is on the quasi steady condition, more
specifically on waveform distortion (e.g., harmonic, inter-harmonic) [2–4].

Depending on the situation being considered (e.g., type of disturbances, measurement campaign),
different equipment can be used. In the frame of the current electrical network, harmonics are gaining
attention, mainly due to their proliferation as a consequence of the non-linear loads in distributed
energy resources (DERs). However, traditional harmonic and spectrum analyzers are mainly based
on fast Fourier transform (FFT) (e.g., power spectrum) and may not register low-level (but persistent)
harmonics or any other electrical disturbance. Certainly, a conventional disturbance monitor is useful
for initial tests at the point under study, but it is difficult to extract the characteristics of a disturbance
from the information available. Therefore, it is recommended to add new capabilities for a more
detailed or specific analysis of a power quality issue [4,5].

The selection of the most appropriate implementation for a given digital signal processing (DSP)
algorithm intending to build autonomous PQ measurement equipment is always an important decision,
in order to meet the design objectives.

In general terms, a processor-based implementation gives the greatest design flexibility with the
lowest design effort, but provides the lowest hardware exploitation and energy efficiency. On the other
hand, a specifically manufactured device obtains the best hardware exploitation and energy efficiency,
but requires a very high design effort with the lowest design flexibility.

Reconfigurable devices, and particularly field programmable gate arrays (FPGAs), have been
considered since their introduction as a trade-off solution for the implementation of DSP algorithms.
Consequently, many of the improvements in the technological capabilities and design tools have
been targeted for this task, extending the use of FPGAs to application fields previously reserved
to processors because of their required flexibility, or to specific hardware because of their high
demanding performance.

These improvements have meant that typical DSP functions, like digital filtering or FFT, have
an easy and straightforward implementation using FPGAs, with the provision of many adjustable
hardware cores that can be used in a similar way to software functions in a processor program. Thus,
the implementation of a complex DSP function in a FPGA can be considered as an affordable design
task in many situations, enabling its inclusion in a real-time digital processing system as small and
autonomous measurement equipment.

The spectral kurtosis (SK) is an example of a complex DSP function, of interest to the PQ field
and whose implementation in a FPGA can be advantageous over a processor-based alternative.
This function is a fourth order statistic estimator that can be considered as the frequency domain
version of the statistical variance named kurtosis. It is a useful tool to indicate the presence of transients
in a signal and their locations in the frequency domain. It also provides additional information with
respect to second order quantities given by the power spectrum density. This information can be used
to discriminate between constant amplitude harmonics, time-varying amplitude harmonics, and noise
(see Appendix A for more detailed information).

The SK has been used in several applications: (1) for detecting and removing radio frequency
interference in radio astronomy data [6], (2) for bearing fault detection in asynchronous machines [7],
and (3) for termite detection [8], and PQ analysis can be improved by the use of this function in the
diagnosis of presence of underlying electrical perturbations [9].

The SK is calculated in all these contributions by means of a processor-based system using a
specialized high-level language such as MATLABTM, Octave, SciPy Python’s library, etc., and involves
the use of a general-purpose desktop computer. A laptop computer may be required depending on the
location of the system under test.

This implementation is the most accurate when the objective is to demonstrate the capability of
the algorithm to perform the desired analysis or detection task. However, when real-time operation

Energies 2019, 12, 914 3 of 15

capability, energy efficiency, equipment size, and many other practical characteristics of autonomous
PQ measurement equipment are taken into account, an alternative implementation using FPGAs must
be considered. The viability of this solution for the implementation of the SK has been shown in
Reference [10], but it makes no assessment of different implementation alternatives.

Comparative studies between FPGA and processor-based implementation of different algorithms
can be found in many previous works. Specifically, it is quite common to find comparative
implementations using FPGAs, common desktop processors, and graphics processing units
(GPUs) [11–16]. These studies are oriented to show the advantages of using the so-called General
Purpose Computing on GPUs’ paradigm. This paradigm was first introduced by NVIDIA Corporation
in 2007 with its Compute Unified Device Architecture, an application programming interface that
allows the use of a GPU for general purpose computing, exploiting the highly parallelized GPU
hardware resources to implement non-graphic applications. These studies show that this is a very
attractive alternative (probably the best one) if we are considering the use of a conventional computer
equipped with a high-end graphics card. Although it could be a suitable implementation for easily
accessible systems with unlimited power, it is not an option for autonomous measuring equipment,
where power consumption and size are key aspects.

In this paper we present a performance evaluation of different implementations of the SK
algorithm. Processor-based and FPGA-based implementations are compared, focusing on the ultimate
goal of obtaining autonomous PQ measuring equipment.

2. Materials and Methods

In order to establish a consistent comparison between the different implementations of the SK,
explained in details in Appendix A, the same basic flowchart is followed to evaluate Equation (A2).
This flowchart is represented in Figure 1.

The comparison only takes into account the evaluation of the SK, and it is assumed that data are
available at the rate needed by the computational core (processor or FPGA). The relationship between
data sampling frequency and computation will be analyzed in section Results.

The values of M, N, and input data width have been selected in order to obtain results with
statistical validity, sufficient frequency, and amplitude resolution. Thus, values of M = 1000, N = 2048,
and 16 bits of data width have been chosen.

The FFT function has been represented in the flowchart as a single step because it is available as a
software function or as a hardware core.

The flowchart also includes two nested loops to evaluate the summation functions of the Equation
(A2). The outer one was repeated M times (index i), one for each data frame, while the inner one is
repeated N/2 times (index m), one for each frequency step (although data frames are N points length,
the negative and symmetric spectrum of FFT has not be considered, as usual). From the summation
of the functions evaluated for each frequency step, a final loop was executed N/2 times to evaluate
the SK.

Since input data are acquired by means of an analog to digital converter (ADC), an integer format
was applied to the input data. However, the mathematical treatment greatly increased the range of
the intermediate values. Consequently, a conversion to floating point was performed, but it was not
explicitly shown in the flowchart. Output data were obtained also in floating point format.

All the operations in the flowchart are represented sequentially, without taking into account that
some of them can be executed concurrently.

Energies 2019, 12, 914 4 of 15

Energies 2019, 12, x FOR PEER REVIEW 4 of 15

Figure 1. Spectral kurtosis algorithm flowchart.

All the operations in the flowchart are represented sequentially, without taking into account that
some of them can be executed concurrently.

2.1. FPGA Implementation

The FPGA version of the SK operator is built by means of the hardware description language
VHDL. Only the synthesis subset of VHDL’93 is used to design the circuit [17]. The hardware
description was synthesized using the Xilinx Synthesis Tool, XST, which was included in Integrated
Synthesis Environment, ISE 14.2 software suite provided by XilinxTM, which is the manufacturer of
the chosen devices.

As it is intended to make a comparison from a practical point of view, some Intellectual Property
(IP) cores from Xilinx were used in order to facilitate and speed up the design. This fact not only
decreases the FPGA design cycle, but also ensures accurate results, since IP cores were verified and
optimized.

The computation of the FFT was accomplished with one of these IP cores, and it was performed
using integer format to avoid losing resolution [18]. The output of this core was converted to floating-
point format (as has been previously indicated) and mathematically processed. Both format
conversion and mathematical process were implemented using floating point arithmetic IP cores [19].

Figure 1. Spectral kurtosis algorithm flowchart.

2.1. FPGA Implementation

The FPGA version of the SK operator is built by means of the hardware description language
VHDL. Only the synthesis subset of VHDL’93 is used to design the circuit [17]. The hardware
description was synthesized using the Xilinx Synthesis Tool, XST, which was included in Integrated
Synthesis Environment, ISE 14.2 software suite provided by XilinxTM, which is the manufacturer of
the chosen devices.

As it is intended to make a comparison from a practical point of view, some Intellectual Property
(IP) cores from Xilinx were used in order to facilitate and speed up the design. This fact not only
decreases the FPGA design cycle, but also ensures accurate results, since IP cores were verified
and optimized.

The computation of the FFT was accomplished with one of these IP cores, and it was performed
using integer format to avoid losing resolution [18]. The output of this core was converted to
floating-point format (as has been previously indicated) and mathematically processed. Both format
conversion and mathematical process were implemented using floating point arithmetic IP cores [19].
All IP cores were parameterized, requiring a previous setup process to adapt them to the SK algorithm

Energies 2019, 12, 914 5 of 15

design, allowing the specification of different design strategies and objectives. This feature is one of
the main advantages of a FPGA implementation.

Although the processing was designed and implemented using Xilinx software tools and devices,
the design was described in VHDL, and the logical resources and IP cores used in the implementation
are commonly available Therefore, it can be adapted to other similar devices from others companies.

The circuit is divided into two main modules:

• A datapath that computes the SK and is built from IP cores.
• A finite state machine that controls the whole circuit operation.

Making use of the previously mentioned adaptability of the IP cores, two versions of the SK FPGA
implementation were designed and tested in order to achieve the best results in either performance
or area. Additionally, both designs were implemented using two different FPGA series from Xilinx:
Spartan6 and Artix-7, which are the lowest end series of the manufacturer. Particularly, the devices used
are XC6LS16 and XC7A100T, housed in Digilent’s Nexys3 and Nexys4 evaluation boards, respectively.

To obtain the best results in terms of performance, the IP cores have to be setup for minimal
latency, implying the use of a pipelined structure for the FFT [18] that enables the use of a streaming
input/output, i.e., a new set of data which can be read at the input while the previous one is still
being processed.

Focusing on the use of resources, to obtain the best results in terms of using them, the IP cores
have to be setup for maximal latency, implying the use of a conventional radix-2 structure for the FFT
that needs the use of a burst input/output, i.e., it is necessary to completely process a set of data before
reading a new one.

For IP cores other than FFT, the latency can also be adjusted, but a pipeline structure is always
used [19].

By combining the two-implementation setup with the two target devices, we obtained four
different experiments, Table 1.

Table 1. Field programmable gate arrays (FPGAs) experiments.

Experiment FPGA Device FFT-Core Architecture/Latency

FPGA 1
XC7A100T

Radix-2 (Burst I/O)/Maximal
FPGA 2 Pipelined (Streaming I/O)/Minimal

FPGA 3
XC6LX16

Radix-2 (Burst I/O)/Maximal
FPGA 4 Pipelined (Streaming I/O)/Minimal

In order to test the implementations, some additional circuitry was added to the SK algorithm
circuit, as shown in Figure 2.

Energies 2019, 12, x FOR PEER REVIEW 5 of 15

All IP cores were parameterized, requiring a previous setup process to adapt them to the SK
algorithm design, allowing the specification of different design strategies and objectives. This feature
is one of the main advantages of a FPGA implementation.

Although the processing was designed and implemented using Xilinx software tools and
devices, the design was described in VHDL, and the logical resources and IP cores used in the
implementation are commonly available Therefore, it can be adapted to other similar devices from
others companies.

The circuit is divided into two main modules:

• A datapath that computes the SK and is built from IP cores.
• A finite state machine that controls the whole circuit operation.

Making use of the previously mentioned adaptability of the IP cores, two versions of the SK
FPGA implementation were designed and tested in order to achieve the best results in either
performance or area. Additionally, both designs were implemented using two different FPGA series
from Xilinx: Spartan6 and Artix-7, which are the lowest end series of the manufacturer. Particularly,
the devices used are XC6LS16 and XC7A100T, housed in Digilent’s Nexys3 and Nexys4 evaluation
boards, respectively.

To obtain the best results in terms of performance, the IP cores have to be setup for minimal
latency, implying the use of a pipelined structure for the FFT [18] that enables the use of a streaming
input/output, i.e., a new set of data which can be read at the input while the previous one is still being
processed.

Focusing on the use of resources, to obtain the best results in terms of using them, the IP cores
have to be setup for maximal latency, implying the use of a conventional radix-2 structure for the FFT
that needs the use of a burst input/output, i.e., it is necessary to completely process a set of data before
reading a new one.

For IP cores other than FFT, the latency can also be adjusted, but a pipeline structure is always
used [19].

By combining the two-implementation setup with the two target devices, we obtained four
different experiments, Table 1.

Table 1. Field programmable gate arrays (FPGAs) experiments.

Experiment FPGA Device FFT-Core Architecture/Latency
FPGA 1

XC7A100T
Radix-2 (Burst I/O)/Maximal

FPGA 2 Pipelined (Streaming I/O)/Minimal
FPGA 3

XC6LX16
Radix-2 (Burst I/O)/Maximal

FPGA 4 Pipelined (Streaming I/O)/Minimal

In order to test the implementations, some additional circuitry was added to the SK algorithm
circuit, as shown in Figure 2.

Figure 2. Experimental setup for FPGA implementations. Figure 2. Experimental setup for FPGA implementations.

Energies 2019, 12, 914 6 of 15

The FPGA takes its input from an external ADC that is connected to a function generator during
the test process. The output of the SK evaluator is sent using an UART through an USB port in order
to be analyzed and presented in a computer. The USB circuitry is part of the evaluation board.

To synchronize the ADC and the SK evaluator, an internal dual port memory stores the samples
until a set is complete (N samples have been acquired). Then the SK evaluator computes the sample
set without interrupting the sampling process.

From the M (1000) sets of N (2048) samples of input signal, the SK evaluator generates N/2 (1024)
values corresponding to the SK value for each frequency step. These values are stored in an internal
memory to synchronize the SK evaluator with the UART operation.

The SK evaluator receives the data in integer format and produces its results in floating point
format, specifically in single-precision IEEE-754 format.

2.2. Processor-Based Implementation

The processor-based implementation is written in the Python programming language for the
following reasons: (1) its scientific and numeric capabilities, which assure that the mathematical
functions needed to build Equation (A2), such as FFT or floating-point arithmetic are available; (2) its
portability, which guarantees that the code can be executed on platforms built around processors with
different architectures; and (3) accessibility, which makes the results easily reproducible.

As the comparison is oriented to the implementation of autonomous measurement equipment,
the processors used to execute and test the algorithm were selected from those that are typically used to
build embedded systems. Specifically, an ARM Cortex-A7, an Intel Atom N270, and an Intel i7-3517U
were selected. The first one is representative of the type of processors that can be found in systems
like a Raspberry Pi, while the devices from Intel are in the low and high end of the processors used in
industrial embedded computers from companies like Wordsworth. Table 2 contains a summary of the
characteristics of the processor-based implementations.

Table 2. Processor-based experiments.

Experiment Processor Operating Frequency RAM

Processor 1 Intel Atom N270 1.6 GHz 1 GB
Processor 2 ARM Cortex-A7 900 MHz 1 GB
Processor 3 Intel i7-3517U 1.9 GHz 1 GB

The experimental setup for the processor-based SK implementations was simpler than the
corresponding setup for the FPGA implementations. This is because we were only interested in
the evaluation of the SK algorithm. Therefore, the input test signal could be synthesized by the
software instead of being acquired, and consequently, the ADC was not needed. Additionally, the
results can also be represented using the same software that performs the SK algorithm.

2.3. Preliminary Test

Before any performance evaluation, all the implementations were tested to verify that their
behavior was correct. Several types of signals were tested and the resulting SK in each case was
the expected.

As a sample of this preliminary test, Figures 3 and 4 respectively represent the SK obtained from
experiments FPGA 1 and Processor 1. In both cases the input signal was a 100 Hz sine wave (the
amplitude was not significant because the SK shows the variability of the harmonic content).

In both figures, the expected single spectral line (SK = 1) corresponding to the harmonic content
at 100 Hz, can be seen. Also, the absence of harmonic content (SK = 2) for the rest of frequencies
was visible.

Energies 2019, 12, 914 7 of 15

Energies 2019, 12, x FOR PEER REVIEW 7 of 15

Figure 3. Spectral kurtosis (SK) from experiment FPGA 1. Sine wave signal, 100 Hz.

Figure 4. SK from experiment Processor 1. Sine wave signal, 100 Hz.

As can be seen in the figures, the results obtained from the two types of implementation are
exactly the same.

2.4. Performance Test

The main objective of this test was to compare the different implementations in terms of
processing time. To evaluate this characteristic, input data was fed to the SK processing unit at the
maximum possible rate. For the FPGA-based circuits, this condition was accomplished by passing
the ADC and directly feeding the digital input. For the processor-based implementations, datasets

Figure 3. Spectral kurtosis (SK) from experiment FPGA 1. Sine wave signal, 100 Hz.

Energies 2019, 12, x FOR PEER REVIEW 7 of 15

Figure 3. Spectral kurtosis (SK) from experiment FPGA 1. Sine wave signal, 100 Hz.

Figure 4. SK from experiment Processor 1. Sine wave signal, 100 Hz.

As can be seen in the figures, the results obtained from the two types of implementation are
exactly the same.

2.4. Performance Test

The main objective of this test was to compare the different implementations in terms of
processing time. To evaluate this characteristic, input data was fed to the SK processing unit at the
maximum possible rate. For the FPGA-based circuits, this condition was accomplished by passing
the ADC and directly feeding the digital input. For the processor-based implementations, datasets

Figure 4. SK from experiment Processor 1. Sine wave signal, 100 Hz.

As can be seen in the figures, the results obtained from the two types of implementation are
exactly the same.

2.4. Performance Test

The main objective of this test was to compare the different implementations in terms of processing
time. To evaluate this characteristic, input data was fed to the SK processing unit at the maximum
possible rate. For the FPGA-based circuits, this condition was accomplished by passing the ADC and
directly feeding the digital input. For the processor-based implementations, datasets were synthesized

Energies 2019, 12, 914 8 of 15

by software and stored in memory before the SK code was launched. This simulates the practical
situation where data was available to the SK processor on demand, enabling the evaluation of the SK
processing time.

One of the main differences that can be anticipated between FPGA and processor-based
implementations is that processing time is constant for FPGA circuits but not for processor-based
implementations. This is because the operating system is running onto the processor to arrange and
distribute the processor time among different processes. Therefore, since the total processing time for
the SK evaluator is essentially due to the repetition of the main loop in Figure 1 M times, the best way
to compare such different implementations is to divide the total time employed to complete the whole
algorithm by M, obtaining the averaged time needed to perform a single iteration.

For FPGA implementations, the measurement of this time was performed through the handshake
signals of the different IP cores. These signals allow a direct monitoring of the computational process
and are easily extracted from the FPGA.

For processor-based implementations, time measurement instructions have been included in the
code to measure the elapsed time dedicated to solve the SK equation.

3. Results

3.1. Implementation Results for FPGAs

Although the main objective of the study is to compare the processing time, it is also of interest to
show the cost in terms of used resources of the different FPGA implementations.

In general terms, to optimize timing results it is necessary to parallelize the implementation and,
consequently, use a greater amount of hardware resources. The results represented in Table 3 confirm
this general assertion and quantifies it, showing that the time optimal implementation uses around a
60% more hardware resources than the area optimal circuit. This implies that the fastest version cannot
be implemented in the smaller device.

Table 3. FPGA implementation results.

FPGA
Resource

XC7A100T XC6LX16

Time Optimal Area Optimal Time Optimal Area Optimal

Used Percentage Used Percentage Used Percentage Used Percentage

Slices 2937 18.5% 1763 11.1%

It does not fit

1696 74%

Block
RAM 13 9.6% 9 6.7% 17 53%

DSP Slices 34 14.2% 21 8.7% 31 97%

Frequency
(MHz) 225 225 N/A 163

The results of Table 3 are divided into three different categories: Slices (Xilinx’s denomination for
general purpose logic unit), block RAM, and DSP blocks. This is because the exhaustion of any of the
three categories implies the impossibility of implementing the circuit, even if there are free resources
in the other categories.

Table 3 also includes the maximum operating frequency for each implementation, a feature that
will be very important to determine the time behavior of the circuits.

3.2. Preliminary Time Evaluation for FPGA-Based Implementations

One of the advantages of FPGA-based implementations is that their time behavior is mostly
predictable. Their latency and maximum operating frequency can be evaluated from their structure,
and this fact is exploited by the design tools that can offer very accurate time information.

Energies 2019, 12, 914 9 of 15

While in this paper all the experimental results were measured, time predictions from design
tools were used to elaborate extrapolations of the circuit behavior for different operating frequencies
and implementation conditions. This is the reason this analysis was included.

Taking into account the flowchart of Figure 1, two main parts can be distinguished in the
evaluation of the SK. The first one performs the FFT and obtains the summations of Equation (A2),
while the second one computes the product and division of this equation.

The first part is clearly more complex, and implies M iterations that run N/2 samples each, while
the second part executes one single cycle that runs N/2 samples. Taking into account that M has to be
large to give statistical validity to the results, it has to be concluded that the total execution time was
expected to be almost proportional to M and completely dependent on the execution time of a single
iteration of the first part of the flowchart.

For an FPGA-based implementation the FFT operation can be divided into three stages: data
reading, processing, and result extraction. The first and the last stages use N clock cycles each, while
the processing stage has a variable duration depending on the implementation parameters.

In any case, the evaluation of the squared terms and summations can be executed concurrently
with FFT because this can be done as soon as data become available at the FFT module output, when
result extraction stage begins. Therefore, the time needed to perform this evaluation was not added to
the time required by the FFT, and only the longest one was used to determine the total execution time
of one iteration.

The evaluation of the square terms and summations, as well as product and division, were always
implemented by means of pipeline technique. Consequently, for each frame of data they used N/2
clock cycles.

For a pipelined structure the stages previously described for the FFT can be executed concurrently.
Thus, at the same time a new set of data was being read, the results of the previous set were extracted,
and different sets of data were processed simultaneously. The number of clock cycles to perform one
FFT was therefore equal to N.

Nevertheless, for a radix-2 structure, the FFT stages were not concurrent and the number of clock
cycles needed to complete the operation was greater than N. We have established experimentally a
relationship between N and the number of clock cycles needed to complete the FFT. This relationship
was obtained for 512 ≤ N ≤ 4096.

Table 4 shows the number of clock cycles needed to perform the different operations used in the
SK evaluation for the different implementations as a function of N.

Table 4. Number of clock cycles needed to perform each operation.

Operation Any Device XC7A100T XC6LX16

Time Optimal Area Optimal Area Optimal

FFT N 8.27 × N − 997 8.27 × N − 981
Squared and
summations N/2 N/2 N/2

Product and division N/2 N/2 N/2

The results in Table 4 are valid for the intermediate iterations of the main loop in Figure 1, which
was repeated M times. For the first and the last iteration the number of clock cycles can be greater
because of the latency of the different blocks.

The latency for the evaluation of squared terms and summations had no effect because it was
small (54 cycles max) compared to N/2, which was the number of cycles of the result extraction of the
FFT that was not used (corresponding to the negative frequency spectrum).

Latency for the product and the division had little effect because this operation was performed
only once at the end of the overall process.

Energies 2019, 12, 914 10 of 15

Finally, the latency for the FFT was significant for the time optimal implementation only, because
for the radix-2 implementation there was not concurrency. It was experimentally evaluated that the
latency for the time optimal implementation of FFT (LFFT) can be obtained from Equation (1).

LFFT = 2× N + 113 (1)

Taking into account all of this information, the total processing time (TSK) expressed in number
of clock cycles can be evaluated using Equation (2) for an area optimal implementation, and using
Equation (3) for a time optimal implementation, where LP&D is the latency of the product and division
operation, which is 40 cycles max.

TSK = M× (8.27× N − 997) + N/2 + LP&D (2)

TSK = M× N + LFFT +
N
2
+ LP&D = M× N + (2× N + 113) + N/2 + LP&D (3)

For the usual values of M and N, these equations can be approximated by Equations (4) and
(5), respectively.

TSK ≈ M× (8.27× N − 997) (4)

TSK ≈ (M + 2.5)× N (5)

3.3. Time Results

As it has been previously indicated, time results are presented in terms of the average time per
iteration, which can be obtained dividing the total SK calculation time by M. Assuming that the input
data buffer is big enough, this quantity provides a good representation of the data processing capacity
of the different implementations. Figures 5–7 show clearly the convenience of using this average
time to compare different implementations. They are graphical representations of the time taken by
each iteration of the main loop of the flowchart in Figure 1. The horizontal dotted line represents the
average time per iteration for each experiment.

Energies 2019, 12, x FOR PEER REVIEW 10 of 15

𝐿ிி் = 2 ൈ 𝑁 + 113 (1)

Taking into account all of this information, the total processing time (TSK) expressed in number
of clock cycles can be evaluated using Equation (2) for an area optimal implementation, and using
Equation (3) for a time optimal implementation, where LP&D is the latency of the product and division
operation, which is 40 cycles max. 𝑇ௌ௄ = 𝑀 ൈ (8.27𝑁 − 997) + 𝑁/2 + 𝐿௉&஽ (2)

𝑇ௌ௄ = 𝑀 ൈ 𝑁 + 𝐿ிி் + 𝑁2 + 𝐿௉&஽ = 𝑀 ൈ 𝑁 + (2𝑁 + 113) + 𝑁/2 + 𝐿௉&஽ (3)

For the usual values of M and N, these equations can be approximated by Equations (4) and (5),
respectively. 𝑇ௌ௄ ൎ 𝑀 ൈ (8.27𝑁 − 997) (4)𝑇ௌ௄ ൎ (𝑀 + 2.5) ൈ 𝑁 (5)

3.3. Time Results

As it has been previously indicated, time results are presented in terms of the average time per
iteration, which can be obtained dividing the total SK calculation time by M. Assuming that the input
data buffer is big enough, this quantity provides a good representation of the data processing capacity
of the different implementations. Figures 5–7 show clearly the convenience of using this average time
to compare different implementations. They are graphical representations of the time taken by each
iteration of the main loop of the flowchart in Figure 1. The horizontal dotted line represents the
average time per iteration for each experiment.

Figure 5. Elapsed time to calculate each iteration. ARMTM Cortex A7. Figure 5. Elapsed time to calculate each iteration. ARMTM Cortex A7.

Energies 2019, 12, 914 11 of 15
Energies 2019, 12, x FOR PEER REVIEW 11 of 15

Figure 6. Elapsed time to calculate each iteration. Atom N270.

Figure 7. Elapsed time to calculate each iteration. i7-3517U.

It is clear that the time used to perform the same computation in the same processor greatly
varies from one iteration to another, which advises the use of an average function to compare
different implementations.

Also taking into account that the evaluated implementations are targeted to obtain autonomous
PQ measurement equipment, it has to be assumed that input data to be processed are continuously
acquired with a fixed sampling frequency.

The minimum value for this frequency is fixed by the characteristics of the signal to be acquired
and it will be specific for each application. Consequently, it is not possible in a general study to select
a particular value for this parameter, but it can be determined for each implementation which is the
maximum value that can be reached. This value being a figure of merit that enables the comparison
between different implementations.

Figure 6. Elapsed time to calculate each iteration. Atom N270.

Energies 2019, 12, x FOR PEER REVIEW 11 of 15

Figure 6. Elapsed time to calculate each iteration. Atom N270.

Figure 7. Elapsed time to calculate each iteration. i7-3517U.

It is clear that the time used to perform the same computation in the same processor greatly
varies from one iteration to another, which advises the use of an average function to compare
different implementations.

Also taking into account that the evaluated implementations are targeted to obtain autonomous
PQ measurement equipment, it has to be assumed that input data to be processed are continuously
acquired with a fixed sampling frequency.

The minimum value for this frequency is fixed by the characteristics of the signal to be acquired
and it will be specific for each application. Consequently, it is not possible in a general study to select
a particular value for this parameter, but it can be determined for each implementation which is the
maximum value that can be reached. This value being a figure of merit that enables the comparison
between different implementations.

Figure 7. Elapsed time to calculate each iteration. i7-3517U.

It is clear that the time used to perform the same computation in the same processor greatly
varies from one iteration to another, which advises the use of an average function to compare
different implementations.

Also taking into account that the evaluated implementations are targeted to obtain autonomous
PQ measurement equipment, it has to be assumed that input data to be processed are continuously
acquired with a fixed sampling frequency.

The minimum value for this frequency is fixed by the characteristics of the signal to be acquired
and it will be specific for each application. Consequently, it is not possible in a general study to select
a particular value for this parameter, but it can be determined for each implementation which is the
maximum value that can be reached. This value being a figure of merit that enables the comparison
between different implementations.

Energies 2019, 12, 914 12 of 15

The evaluation of the maximum sampling frequency that is compatible with a continuous data
processing for each implementation, can be calculated by dividing the previously defined average
time per iteration (Tcy,avg) by the number of samples that has to be acquired in this time (N).

Table 5 summarizes the operating frequency (fOp) regarding to all the implementations, the
average time per iteration (TIt,avg), which is graphically represented in Figure 8, and the maximum data
sampling frequency (f S,max) that can be reached assuming a continuous data processing. In the last
column of the table, a new parameter was included: the frequency exploitation factor (FEP), defined
by de expression FEP = f S,max/fOp.

Table 5. Time results summary.

Implementation fOp (MHz) TIt,avg (µs) f S,max (MHz) FEP

XC7A100T Area optimal 200 79.71 25.6 0.128
XC7A100T Time optimal 200 10.27 199 0.995
XC6LX16 Area optimal 150 106.4 19.2 0.128

Atom N270 1600 2229 0.918 5.74 × 10−4

ARM Cortex-A7 900 3800 0.538 5.99 × 10−4

FEP = frequency exploitation factor.

Energies 2019, 12, x FOR PEER REVIEW 12 of 15

The evaluation of the maximum sampling frequency that is compatible with a continuous data

processing for each implementation, can be calculated by dividing the previously defined average

time per iteration (Tcy,avg) by the number of samples that has to be acquired in this time (N).

Table 5 summarizes the operating frequency (fOp) regarding to all the implementations, the

average time per iteration (TIt,avg), which is graphically represented in Figure 8, and the maximum

data sampling frequency (fS,max) that can be reached assuming a continuous data processing. In the

last column of the table, a new parameter was included: the frequency exploitation factor (FEP),

defined by de expression FEP = fs,max/fOp.

Table 5. Time results summary.

Implementation fOp (MHz) TIt,avg (µs) fS,max (MHz) FEP

XC7A100T Area optimal 200 79.71 25.6 0.128

XC7A100T Time optimal 200 10.27 199 0.995

XC6LX16 Area optimal 150 106.4 19.2 0.128

Atom N270 1600 2229 0.918 5.74 × 10−4

ARM Cortex-A7 900 3800 0.538 5.99 × 10−4

FEP = frequency exploitation factor.

Figure 8. Average time per iteration.

For instance, this factor shows that the worst FPGA implementation can reach the same

processing capability as the best processor implementation with an operating frequency 33 times

lower. It also shows that different FPGAs with the same implementation options are equivalent if

they operate at the same frequency, revealing very similar hardware architectures.

4. Discussion

The main conclusion of the work is that an FPGA can be between 34 and 1740 times more

frequency efficient than a processor for a typical SK function implementation. This implies that a

lowest-end FPGA implementing a minimal resource use hardware structure (XC6LX16 area optimal)

and with an operating frequency as relatively low as 60 MHz can reach a higher sampling frequency

for a continuous processing than a high-end processor (i7-3517U) running at 1.9 GHz.

Performance results are not only better for FPGAs but also much more predictable and stable.

This reduces the risk that the initial choice of an implementation does not fulfill the specifications

when materialized.

Additionally, FPGA-based implementations can be tailored to different requirements, enabling

the optimization of the solution to achieve diverse objectives. In this regard, it was shown that a time

Figure 8. Average time per iteration.

For instance, this factor shows that the worst FPGA implementation can reach the same processing
capability as the best processor implementation with an operating frequency 33 times lower. It also
shows that different FPGAs with the same implementation options are equivalent if they operate at
the same frequency, revealing very similar hardware architectures.

4. Discussion

The main conclusion of the work is that an FPGA can be between 34 and 1740 times more
frequency efficient than a processor for a typical SK function implementation. This implies that a
lowest-end FPGA implementing a minimal resource use hardware structure (XC6LX16 area optimal)
and with an operating frequency as relatively low as 60 MHz can reach a higher sampling frequency
for a continuous processing than a high-end processor (i7-3517U) running at 1.9 GHz.

Performance results are not only better for FPGAs but also much more predictable and stable.
This reduces the risk that the initial choice of an implementation does not fulfill the specifications
when materialized.

Energies 2019, 12, 914 13 of 15

Additionally, FPGA-based implementations can be tailored to different requirements, enabling
the optimization of the solution to achieve diverse objectives. In this regard, it was shown that a time
optimal implementation can reach a sampling frequency about eight times greater at the expense of an
increase of 60% in the hardware resources used.

Despite this overwhelming result, processor-based implementations are still a reasonable option
for low sampling frequencies, in the range of several hundred KHz for low-end processors, and up to
several MHz for high-end processors, because of their ease of use and availability.

The experimental outcomes show that the FPGA technology processes the spectral kurtosis in
a shorter time than general-purpose processors, even working at a lower frequency. This feature is
accomplished even when low-cost models are used.

Since FPGAs and processors are made using CMOS technology, it can be assumed that most of
the power consumption is dynamic and consequently, proportional to operation frequency.

The fact that two of the platforms used in this paper are laptop-based implies that we cannot
include a quantitative evaluation of the power consumption, since a laptop incorporates many
loads unrelated to processing. However, considering the proportional relationship between power
consumption and working frequency, it can be concluded that FPGAs provide the best results in
terms of power consumption. This is an additional advantage of using FPGA technology to develop
autonomous PQ measurement equipment.

Author Contributions: Conceptualization, M.-Á.C.-C.; methodology, M.-Á.C.-C., F.P.-P. and Á.Q.-O.; software,
M.-Á.C.-C., F.P.-P. and Á.Q.-O.; validation, M.-Á.C.-C., F.P.-P. and Á.Q.-O.; formal analysis, Á.Q.-O. and
J.-J.G.-d.-l.-R.; data curation M.-Á.C.-C., F.P.-P. and Á.Q.-O.; writing—original draft preparation, M.-Á.C.-C.;
writing—review and editing, F.P.-P. and Á.Q.-O.; visualization, M.-Á.C.-C. and F.P.-P.; funding acquisition,
J.-J.G.-d.-l.-R.

Funding: This research was funded by the University of Cádiz and by the Spanish Ministry of Economy and
Competitiveness through the project TEC2016-77632-C3-3-R.

Acknowledgments: This research is supported by the Spanish Ministry of Economy, Industry and
Competitiveness and the EU (AEI/FEDER/UE) in the workflow of the State Plan of Excellency and Challenges
for Research, via the project TEC2016-77632-C3-3-R-Control and Management of Isolable NanoGrids: Smart
Instruments for Solar Forecasting and Energy Monitoring (COMING-SISEM), which involves the development of
new measurement techniques applied to monitoring the PQ in micro-grids.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

Appendix A

The SK measures the variability of each frequency component of a signal that is assumed to be
periodic [20]. To perform this measurement, the signal is sampled for a period of time, the acquisition
window and its spectrum are obtained from that data frame using FFT. With the spectra obtained
repeating several times this process (acquisition plus FFT), a statistical kurtosis operator is computed
for each frequency component to evaluate if (and how) the spectrum of the signal has changed through
the time comprised by the successive acquisition windows.

In statistics, the kurtosis operator quantifies the shape of a data distribution, assigning a particular
and characteristic value to a Gaussian distribution, a lower value to flatter data distributions and
greater values to more peaked data distributions. The value assigned to the Gaussian distribution,
which can be considered as a reference, changes from one approach to another, but this is not significant
in order to discriminate the different distributions.

Consequently, in the frequency domain, the SK is a representation of the statistical kurtosis
associated to each spectral component of a signal through several acquisition windows. If for a
given frequency there are not harmonic content, the FFT values for that frequency will match a
Gaussian distribution basically due to noise, and consequently the SK will take the reference value for
that frequency.

Energies 2019, 12, 914 14 of 15

For a frequency with a constant harmonic content the distribution is ideally uniform and its SK
will be lower than the reference value, specifically the minimum value of the SK. This is very useful to
detect very low-level harmonics in a noisy environment [10], as usual in PQ measurements.

Finally, a frequency with a non-permanent harmonic content have a more peaked distribution
and its SK will be higher than the reference value. In this way a small transient can be detected and its
frequency located.

To formulate the SK, it is assumed that M data frames of signal x are sampled as input, each frame
containing N points. For data frame number i, the FFT is computed and its module is represented by
|Xi|. With these definitions the SK can be evaluated using Equation (A1).

SK(m) =
M

M− 1

 (M + 1)∑M
i=1|Xi(m)|4

(∑M
i=1|Xi(m)|2)

2 − 2

 (A1)

where SK(m) represents the SK value for frequency index m and |Xi(m)|represents the module of the
FFT for that frequency index and for the data frame number i.

It has to be considered that the SK is a statistic indicator, thus its value is significant for large
values of M, the number of data frames used to evaluate the estimator.

With this definition and consideration, a frequency without harmonic content will be assigned a
SK value of 0 (the previously considered as a reference value), a frequency with a permanent harmonic
content will be assigned a minimum value of −1, and a frequency with a variable amplitude harmonic
content will be assigned a value larger than 0.

Although this definition of SK is the most convenient from a mathematical point of view because
it is normalized and referenced to 0, it is possible to simplify Equation (A1) without losing any of its
significance and usefulness. This simplification is shown in Equation (A2).

SK(m) =
(M + 1)∑M

i=1|Xi(m)|4

(∑M
i=1|Xi(m)|2)

2 (A2)

With this definition, a frequency without harmonic content will be assigned a SK value of 2
(which is the new reference value), a frequency with a permanent harmonic content will be assigned a
minimum value of (M + 1)/M, that approximates to 1 for large values of M, and a frequency with a
variable amplitude harmonic content will be assigned a value larger than 2.

From a practical point of view, the task of distinguishing the different situations is equally difficult,
while the evaluation is slightly simpler. Consequently, the SK will be evaluated using Equation (A2).

References

1. Arrillaga, J.; Bollen, M.H.J.; Watson, N.R. Power quality following deregulation. Proc. IEEE 2000, 88, 246–261.
[CrossRef]

2. Arrillaga, J.; Watson, N.R. Power Quality. In Power System Restructuring and Deregulation; Lai, L.L., Ed.; John
Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2001; pp. 330–352.

3. Florencias-Oliveros, O.; Agüera-Pérez, A.; González-de-la-Rosa, J.J.; Palomares-Salas, J.C.;
Sierra-Fernández, J.M.; Jiménez-Montero, A. Cluster analysis for Power Quality monitoring. In Proceedings
of the 11th IEEE International Conference on Compatibility, Power Electronics and Power Engineering
(CPE-POWERENG), Cadiz, Spain, 4–6 April 2017; pp. 626–631.

4. González-de-la-Rosa, J.J.; Sierra-Fernández, J.M.; Palomares-Salas, J.C.; Agüera-Pérez, A.;
Jiménez-Montero, A. An Application of the Spectral Kurtosis to Separate Hybrid Power Quality
Events. Energies 2015, 8, 9777–9793. [CrossRef]

5. Bingham, R.P. Measurement instruments for power quality monitoring. In Proceedings of the 2008 IEEE/PES
Transmission and Distribution Conference and Exposition, Chicago, IL, USA, 21–24 April 2008; pp. 1–3.

http://dx.doi.org/10.1109/5.824002
http://dx.doi.org/10.3390/en8099777

Energies 2019, 12, 914 15 of 15

6. Abidin, Z.Z.; Ibrahim, Z.A.; Rosli, Z.; Hassan, S.R. Methods and applications of Radio Frequency Interference
surveys for radio astronomy in Malaysia. In Proceedings of the 2011 IEEE International Conference on Space
Science and Communication (IconSpace), Penang, Malaysia, 12–13 July 2011; pp. 178–181.

7. Sawalhi, N.; Randall, R.B. The application of spectral kurtosis to bearing diagnostics. In Proceedings of the
2004 Annual Conference of the Australian Acoustical Society, Gold Coast, Australia, 3–5 November 2004;
Volume 1, pp. 393–398.

8. de la Rosa, J.J.G.; Muñoz, A.M. Higher-order cumulants and spectral kurtosis for early detection of
subterranean termites. Mech. Syst. Signal Process. 2008, 22, 279–294. [CrossRef]

9. de la Rosa, J.J.G.; Sierra-Fernández, J.M.; Agüera-Pérez, A.; Salas, J.C.P.; Moreno-Muñoz, A. An application
of the spectral kurtosis to characterize power quality events. J. Electr. Power Energy Syst. 2013, 49, 386–398.
[CrossRef]

10. Quirós-Olozábal, A.; González-de-la-Rosa, J.J.; Cifredo-Chacón, M.A.; Sierra-Fernández, J.M. A novel
FPGA-based system for real-time calculation of the Spectral Kurtosis: A prospective application to harmonic
detection. Measurement 2016, 86, 101–113. [CrossRef]

11. Tian, X.; Benkrid, K. Mersenne Twister Random Number Generation on FPGA, CPU and GPU. In Proceedings
of the NASA/ESA Conference on Adaptive Hardware and Systems, San Francisco, CA, USA, 29 July–1
August 2009; pp. 460–464.

12. Kalarot, R.; Morris, J. Comparison of FPGA and GPU implementations of Real-time Stereo Vision.
In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
San Francisco, CA, USA, 13–18 June 2010; pp. 9–15.

13. Zou, D.; Dou, Y.; Xia, F. Optimization schemes and performance evaluation of Smith–Waterman algorithm on
CPU, GPU and FPGA. In Proceedings of the International Conference on Field-Programmable Technology,
New Delhi, India, 12–14 December 2011; pp. 1–6.

14. Duan, B.; Wang, W.; Li, X.; Zhang, C.; Zhang, P.; Sun, N. Floating-point Mixed-radix FFT Core Generation for
FPGA and Comparison with GPU and CPU. Concurr. Comput. Pract. Exp. 2012, 24, 1625–1644.

15. Drieseberg, J.; Siemers, C. C to Cellular Automata and Execution on CPU, GPU and FPGA. In Proceedings
of the International Conference on High Performance Computing and Simulation, Madrid, Spain, 2–6 July
2012; pp. 216–222.

16. Russo, L.M.; Pedrino, E.C.; Kato, E.; Roda, V.O. Image Convolution Processing: A GPU versus FPGA
Comparison. In Proceedings of the VIII Southern Conference on Programmable Logic, Bento Gonçalves,
Brazil, 20–23 March 2012; pp. 1–6.

17. 1076.6-2004—IEEE Standard for VHDL Register Transfer Level (RTL) Synthesis; IEEE Standard Association:
Piscataway, NJ, USA, 2004.

18. Xilinx, Inc. LogiCORE IP Fast Fourier Transform v7.1; Xilinx, Inc.: San Jose, CA, USA, 2011.
19. Xilinx, Inc. LogiCORE IP Floating-Point Operator v5.0; Xilinx, Inc.: San Jose, CA, USA, 2011.
20. Vrabie, V.; Granjon, P.; Serviere, C. Spectral kurtosis: From definition to application. In Proceedings of the

IEEE International Workshop on Nonlinear Signal and Image Processing, Grado-Trieste, Italy, 8–11 June
2003; Volume 1, pp. 1–5.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ymssp.2007.08.009
http://dx.doi.org/10.1016/j.ijepes.2013.02.002
http://dx.doi.org/10.1016/j.measurement.2016.02.031
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	FPGA Implementation
	Processor-Based Implementation
	Preliminary Test
	Performance Test

	Results
	Implementation Results for FPGAs
	Preliminary Time Evaluation for FPGA-Based Implementations
	Time Results

	Discussion
	
	References

