Sectoral Interactions as Carbon Dioxide Emissions Approach Zero in a Highly-Renewable European Energy System
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Total System Costs
3.2. Defossilisation of Sectors
3.3. Metrics for VRE Integration
4. Limitations of this Study
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
a | annum (year) |
BEV | Battery Electric Vehicle |
CCS | Carbon Capture and Sequestration |
CHP | Combined Heat and Power plant |
CO | Carbon dioxide |
ETS | Emissions Trading System |
EU | European Union |
FOM | Fixed Operation and Maintenance |
GHG | Greenhouse Gas |
H2 | Hydrogen gas |
HP | Heat Pump |
HVDC | High Voltage Direct Current |
INDC | Intended Nationally Determined Contribution for the Paris Agreement [32] |
KKT | Karush-Kuhn-Tucker |
MV | Market Value |
OCGT | Open Cycle Gas Turbine |
PV | Photovoltaic |
PyPSA | Python for Power System Analysis |
PyPSA-Eur-Sec-30 | 30-node sector-coupled PyPSA model for Europe |
VRE | Variable Renewable Energy |
References
- Czisch, G. Szenarien Zur Zukünftigen Stromversorgung. Ph.D. Thesis, Universität Kassel, Kassel, Germany, 2005. [Google Scholar]
- Scholz, Y. Renewable Energy Based Electricity Supply at Low Costs—Development of the REMix Model and Application for Europe. Ph.D. Thesis, Universität Stuttgart, Stuttgart, Germany, 2012. [Google Scholar]
- Gils, H.C.; Scholz, Y.; Pregger, T.; de Tena, D.L.; Heide, D. Integrated modelling of variable renewable energy-based power supply in Europe. Energy 2017, 123, 173–188. [Google Scholar] [CrossRef]
- Schlachtberger, D.; Brown, T.; Schramm, S.; Greiner, M. The benefits of cooperation in a highly renewable European electricity network. Energy 2017, 134, 469–481. [Google Scholar] [CrossRef]
- Reichenberg, L.; Hedenus, F.; Odenberger, M.; Johnsson, F. The marginal system LCOE of variable renewables—Evaluating high penetration levels of wind and solar in Europe. Energy 2018, 152, 914–924. [Google Scholar] [CrossRef]
- Child, M.; Kemfert, C.; Bogdanov, D.; Breyer, C. Flexible electricity generation, grid exchange and storage for the transition to a 100% renewable energy system in Europe. Renew. Energy 2019, 139, 80–101. [Google Scholar] [CrossRef]
- Brown, T.; Bischof-Niemz, T.; Blok, K.; Breyer, C.; Lund, H.; Mathiesen, B. Response to ‘Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems’. Renew. Sustain. Energy Rev. 2018, 92, 834–847. [Google Scholar] [CrossRef]
- Joskow, P.L. Comparing the costs of intermittent and dispatchable electricity generating technologies. Am. Econ. Rev. 2011, 101, 238–241. [Google Scholar] [CrossRef]
- Hirth, L. The market value of variable renewables: The effect of solar wind power variability on their relative price. Energy Econ. 2013, 38, 218–236. [Google Scholar] [CrossRef]
- Henning, H.M.; Palzer, A. A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies—Part I: Methodology. Renew. Sustain. Energy Rev. 2014, 30, 1003–1018. [Google Scholar] [CrossRef]
- Palzer, A.; Henning, H.M. A comprehensive model for the German electricity and heat sector in a future energy system with a dominant contribution from renewable energy technologies—Part II: Results. Renew. Sustain. Energy Rev. 2014, 30, 1019–1034. [Google Scholar] [CrossRef]
- Gerhardt, N.; Scholz, A.; Sandau, F.; Hahn, H. Interaktion EE-Strom, Wärme und Verkehr; Technical Report; Fraunhofer IWES: Kassel, Germany, 2015. [Google Scholar]
- Quaschning, V. Sektorkopplung Durch die Energiewende; Technical Report; HTW Berlin: Berlin, Germany, 2016. [Google Scholar]
- Lund, H.; Mathiesen, B. Energy system analysis of 100% renewable energy systems—The case of Denmark in years 2030 and 2050. Energy 2009, 34, 524–531. [Google Scholar] [CrossRef]
- Mathiesen, B.V.; Lund, H.; Conolly, D.; Wenzel, H.; Østergaard, P.; Möller, B.; Nielsen, S.; Ridjan, I.; Karnøe, P.; Sperling, K.; et al. Smart Energy Systems for coherent 100% renewable energy and transport solutions. Appl. Energy 2015, 145, 139–154. [Google Scholar] [CrossRef]
- Lund, H.; Andersen, A.N.; Østergaard, P.A.; Mathiesen, B.V.; Connolly, D. From electricity smart grids to smart energy systems—A market operation based approach and understanding. Energy 2012, 42, 96–102. [Google Scholar] [CrossRef]
- Connolly, D.; Lund, H.; Mathiesen, B.; Leahy, M. The first step towards a 100% renewable energy-system for Ireland. Appl. Energy 2011, 88, 502–507. [Google Scholar] [CrossRef]
- Deane, J.; Chiodi, A.; Gargiulo, M.; Gallachoir, B.P.O. Soft-linking of a power systems model to an energy systems model. Energy 2012, 42, 303–312. [Google Scholar] [CrossRef]
- Connolly, D.; Lund, H.; Mathiesen, B. Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union. Renew. Sustain. Energy Rev. 2016, 60, 1634–1653. [Google Scholar] [CrossRef]
- The PRIMES Model; Technical Report; NTUA: Athens, Greece, 2009.
- Leimbach, M.; Bauer, N.; Baumstark, L.; Luken, M.; Edenhofer, O. Technological change and international trade—Insights from REMIND-R. Energy J. 2010, 31. [Google Scholar] [CrossRef]
- Capros, P.; Paroussos, L.; Fragkos, P.; Tsani, S.; Boitier, B.; Wagner, F.; Busch, S.; Resch, G.; Blesl, M.; Bollen, J. European decarbonisation pathways under alternative technological and policy choices: A multi-model analysis. Energy Strategy Rev. 2014, 2, 231–245. [Google Scholar] [CrossRef]
- Hagspiel, S.; Jägemann, C.; Lindenburger, D.; Brown, T.; Cherevatskiy, S.; Tröster, E. Cost-optimal power system extension under flow-based market coupling. Energy 2014, 66, 654–666. [Google Scholar] [CrossRef]
- Simoes, S.; Nijs, W.; Ruiz, P.; Sgobbi, A.; Thiel, C. Comparing policy routes for low-carbon power technology deployment in EU—An energy system analysis. Energy Policy 2017, 101, 353–365. [Google Scholar] [CrossRef]
- Löffler, K.; Hainsch, K.; Burandt, T.; Oei, P.Y.; Kemfert, C.; von Hirschhausen, C. Designing a model for the global energy system—GENeSYS-MOD: An application of the open-source energy modeling system (OSeMOSYS). Energies 2017, 10, 1468. [Google Scholar] [CrossRef]
- Blanco, H.; Nijs, W.; Ruf, J.; Faaij, A. Potential for hydrogen and power-to-liquid in a low-carbon EU energy system using cost optimization. Appl. Energy 2018, 232, 617–639. [Google Scholar] [CrossRef]
- Ludig, S.; Haller, M.; Schmid, E.; Bauer, N. Fluctuating renewables in a long-term climate change mitigation strategy. Energy 2011, 36, 6674–6685. [Google Scholar] [CrossRef]
- Kotzur, L.; Markewitz, P.; Robinius, M.; Stolten, D. Impact of different time series aggregation methods on optimal energy system design. Renew. Energy 2018, 117, 474–487. [Google Scholar] [CrossRef]
- Brown, T.; Schlachtberger, D.; Kies, A.; Greiner, M. Synergies of sector coupling and transmission extension in a cost-optimised, highly renewable European energy system. Energy 2018, 160, 720–730. [Google Scholar] [CrossRef]
- Millar, R.J.; Fuglestvedt, J.S.; Friedlingstein, P.; Rogelj, J.; Grubb, M.J.; Matthews, H.D.; Skeie, R.B.; Forster, P.M.; Frame, D.J.; Allen, M.R. Emission budgets and pathways consistent with limiting warming to 1.5 °C. Nat. Geosci. 2017, 10, 741. [Google Scholar] [CrossRef]
- European Commission. Energy Roadmap 2050—COM(2011) 885/2; European Commission: Brussel, Belgium, 2011. [Google Scholar]
- UNFCCC. Adoption of the Paris Agreement. Report No. FCCC/CP/2015/L.9/Rev.1. 2015. Available online: http://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf (accessed on 21 January 2019).
- European Council. Presidency Conclusions—Brussels, 29/30 October 2009; Council of thr European Union: Brussels, Belgium, 2009. [Google Scholar]
- European Commission. A Clean Planet for All—COM(2018) 773; European Commission: Brussel, Belgium, 2018. [Google Scholar]
- National Emissions Reported to the UNFCCC and to the EU Greenhouse Gas Monitoring Mechanism; Technical report; European Environmental Agency: Copenhagen, Denmark, 2018.
- Rogelj, J.; Popp, A.; Calvin, K.V.; Luderer, G.; Emmerling, J.; Gernaat, D.; Fujimori, S.; Strefler, J.; Hasegawa, T.; Marangoni, G.; et al. Scenarios towards limiting global mean temperature increase below 1.5 °C. Nat. Clim. Chang. 2018, 8, 325–332. [Google Scholar] [CrossRef]
- Persson, U.; Werner, S. Heat distribution and the future competitiveness of district heating. Appl. Energy 2011, 88, 568–576. [Google Scholar] [CrossRef]
- Electric Vehicle Outlook 2017; Technical report; Bloomberg New Energy Finance: New York City, NY, USA, 2017.
- ODYSSEE Database on Energy Efficiency Data & Indicators; Technical report; Enerdata: Grenoble, France, 2016.
- Brown, T.; Hörsch, J.; Schlachtberger, D. PyPSA: Python for power system analysis. J. Open Res. Softw. 2018, 6. [Google Scholar] [CrossRef]
- Brown, T.; Schlachtberger, D. Supplementary Data: Code, Input Data and Result Summaries: Synergies of sector coupling and transmission extension in a cost-optimised, highly renewable European energy system (Version v0.1.0) [Data set]. Zenodo 2018. [Google Scholar] [CrossRef]
- Brown, T.; Schlachtberger, D. Supplementary Data: Full Results: Synergies of sector coupling and transmission extension in a cost-optimised, highly renewable European energy system (Version v0.1.0) [Data set]. Zenodo 2018. [Google Scholar] [CrossRef]
- Bahn, O.; Haurie, A.; Kypreos, S.; Vial, J. Advanced mathematical programming modeling to assess the benefits from international CO2 abatement cooperation. Environ. Model. Assess. 1998, 3, 107–115. [Google Scholar] [CrossRef]
- Unger, T.; Ekvall, T. Benefits from increased cooperation and energy trade under CO2 commitments— The Nordic case. Clim. Policy 2003, 3, 279–294. [Google Scholar] [CrossRef]
- Czisch, G. Szenarien zur Zukünftigen Stromversorgung: Kostenoptimierte Variationen zur Versorgung Europas und Seiner Nachbarn mit Strom aus Erneuerbaren Energien. Ph.D. Thesis, Universität Kassel, Kassel, Germany, 2005. [Google Scholar]
- Schaber, K.; Steinke, F.; Hamacher, T. Transmission grid extensions for the integration of variable renewable energies in Europe: Who benefits where? Energy Policy 2012, 43, 123–135. [Google Scholar] [CrossRef]
- Schaber, K.; Steinke, F.; Mühlich, P.; Hamacher, T. Parametric study of variable renewable energy integration in Europe: Advantages and costs of transmission grid extensions. Energy Policy 2012, 42, 498–508. [Google Scholar] [CrossRef]
- Rodriguez, R.; Becker, S.; Andresen, G.; Heide, D.; Greiner, M. Transmission needs across a fully renewable European power system. Renew. Energy 2014, 63, 467–476. [Google Scholar] [CrossRef]
- MacDonald, A.E.; Clack, C.T.M.; Alexander, A.; Dunbar, A.; Wilczak, J.; Xie, Y. Future cost-competitive electricity systems and their impact on US CO2 emissions. Nat. Clim. Chang. 2017, 6, 526–531. [Google Scholar] [CrossRef]
- Eriksen, E.H.; Schwenk-Nebbe, L.J.; Tranberg, B.; Brown, T.; Greiner, M. Optimal heterogeneity in a simplified highly renewable European electricity system. Energy 2017, 133, 913–928. [Google Scholar] [CrossRef]
- Galán-Martín, A.; Pozo, C.; Azapagic, A.; Grossmann, I.E.; Mac Dowell, N.; Guillén-Gosálbez, G. Time for global action: An optimised cooperative approach towards effective climate change mitigation. Energy Environ. Sci. 2018, 11, 572–581. [Google Scholar] [CrossRef]
- Energy Balances 1900–2014; Technical Report; Eurostat: Luxembourg, 2016.
- Kiss, P.; Jánosi, I.M. Limitations of wind power availability over Europe: A conceptual study. Nonlinear Process. Geophys. 2008, 15, 803–813. [Google Scholar] [CrossRef]
- Zhu, K.; Victoria, M.; Brown, T.; Andresen, G.; Greiner, M. Impact of CO2 prices on the design of a highly decarbonised coupled electricity and heating system in Europe. Appl. Energy 2019, 236, 622–634. [Google Scholar] [CrossRef]
- Schlachtberger, D.; Brown, T.; Schäfer, M.; Schramm, S.; Greiner, M. Cost optimal scenarios of a future highly renewable European electricity system: Exploring the influence of weather data, cost parameters and policy constraints. Energy 2018, 163, 100–114. [Google Scholar] [CrossRef]
- Creutzig, F.; Ravindranath, N.H.; Berndes, G.; Bolwig, S.; Bright, R.; Cherubini, F.; Chum, H.; Corbera, E.; Delucchi, M.; Faaij, A.; et al. Bioenergy and climate change mitigation: An assessment. GCB Bioenergy 2015, 7, 916–944. [Google Scholar] [CrossRef]
- Connolly, D.; Mathiesen, B.; Ridjan, I. A comparison between renewable transport fuels that can supplement or replace biofuels in a 100% renewable energy system. Energy 2014, 73, 110–125. [Google Scholar] [CrossRef]
- Fuss, S.; Canadell, J.G.; Peters, G.P.; Tavoni, M.; Andrew, R.M.; Ciais, P.; Jackson, R.B.; Jones, C.D.; Kraxner, F.; Nakicenovic, N.; et al. Betting on negative emissions. Nat. Clim. Chang. 2014, 4, 850–853. [Google Scholar] [CrossRef]
- Smith, P.; Davis, S.J.; Creutzig, F.; Fuss, S.; Minx, J.; Gabrielle, B.; Kato, E.; Jackson, R.B.; Cowie, A.; Kriegler, E.; et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Chang. 2015, 6. [Google Scholar] [CrossRef]
- Anderson, K.; Peters, G. The trouble with negative emissions. Science 2016, 354, 182–183. [Google Scholar] [CrossRef]
- Vaughan, N.E.; Gough, C. Expert assessment concludes negative emissions scenarios may not deliver. Environ. Res. Lett. 2016, 11, 095003. [Google Scholar] [CrossRef]
- Ruiz, P.; Sgobbi, A.; Nijs, W.; Thiel, C.; Longa, F.; Kober, T. The JRC-EU-TIMES Model: Bioenergy Potentials; Technical Report; JRC: Petten, The Netherlands, 2015. [Google Scholar] [CrossRef]
Quantity | Overnight Cost [] | Unit | FOM [%/a] | Lifetime [a] |
---|---|---|---|---|
Wind onshore | 1182 | kW | 3 | 25 |
Wind offshore | 2506 | kW | 3 | 25 |
Solar PV rooftop | 725 | kW | 3 | 25 |
Solar PV utility | 425 | kW | 3 | 25 |
Battery power | 310 | kW | 3 | 20 |
Battery energy | 144.6 | kWh | 0 | 15 |
H electrolysis | 350 | kW | 4 | 18 |
H fuel cell | 339 | kW | 3 | 20 |
H steel tank storage | 8.4 | kWh | 0 | 20 |
Methanation | 1000 | kW | 2.5 | 25 |
Ground-sourced HP | 1400 | kW | 3.5 | 20 |
Air-sourced HP | 1050 | kW | 3.5 | 20 |
Large CHP | 600 | kW | 3 | 25 |
Large hot water tank | 30 | m | 1 | 40 |
Transmission line | 400 | MWkm | 2 | 40 |
HVDC converter pair | 150 | kW | 2 | 40 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brown, T.; Schäfer, M.; Greiner, M. Sectoral Interactions as Carbon Dioxide Emissions Approach Zero in a Highly-Renewable European Energy System. Energies 2019, 12, 1032. https://doi.org/10.3390/en12061032
Brown T, Schäfer M, Greiner M. Sectoral Interactions as Carbon Dioxide Emissions Approach Zero in a Highly-Renewable European Energy System. Energies. 2019; 12(6):1032. https://doi.org/10.3390/en12061032
Chicago/Turabian StyleBrown, Tom, Mirko Schäfer, and Martin Greiner. 2019. "Sectoral Interactions as Carbon Dioxide Emissions Approach Zero in a Highly-Renewable European Energy System" Energies 12, no. 6: 1032. https://doi.org/10.3390/en12061032
APA StyleBrown, T., Schäfer, M., & Greiner, M. (2019). Sectoral Interactions as Carbon Dioxide Emissions Approach Zero in a Highly-Renewable European Energy System. Energies, 12(6), 1032. https://doi.org/10.3390/en12061032