Comparative Evaluation of Coated and Non-Coated Carbon Electrodes in a Microbial Fuel Cell for Treatment of Municipal Sludge
Abstract
:1. Introduction
2. Materials and Methods
2.1. MFC Construction and Operation
2.2. Preparation of Electrode Materials
2.3. Electrochemical Measurements and Analyses
2.4. Microbial Inoculum Preparation
2.5. Microbial Community Analysis
2.6. Scanning Electron Microscopic (SEM) Analysis
3. Results and Discussion
3.1. Performance of MFCs
3.2. COD Removal Efficiency
3.3. Cyclic Voltammetry
3.4. EIS Analysis
3.5. Microbial Community Analysis
3.6. Morphological Analysis (SEM)
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Logan, B.E.; Hamelers, B.; Rozendal, R.; Schroder, U.; Keller, J.; Freguia, S.; Aelterman, P.; Verstraete, W.; Rabaey, K. Microbial fuel cells: Methodology and technology. Environ. Sci. Technol. 2006, 40, 5181–5192. [Google Scholar] [CrossRef] [PubMed]
- Bajracharya, S.; Sharma, M.; Mohanakrishna, G.; Benneton, X.D.; Strik, D.P.; Sarma, P.M.; Pant, D. An overview on emerging bioelectrochemical systems (BESs): Technology for sustainable electricity, waste remediation, resource recovery, chemical production and beyond. Renew Energy 2016, 98, 153–170. [Google Scholar] [CrossRef]
- Waller, M.G.; Trabold, T.A. Review of Microbial Fuel cells for wastewater treatment: Large-Scale Applications, future Needs and current Research gaps. In Proceedings of the ASME 2013 7th International Conference on Energy Sustainability & 11th Fuel Cell Science, Minneapolis, MN, USA, 14–19 July 2013. [Google Scholar]
- Nandy, A.; Kumar, V.; Mondal, S.; Dutta, K.; Salah, M.; Kundu, P.P. Performance evaluation of microbial fuel cells: Effect of varying electrode configuration and presence of a membrane electrode assembly. New Biotechnol. 2015, 32, 272–281. [Google Scholar] [CrossRef] [PubMed]
- Nandy, A.; Kundu, P.P. Configurations of Microbial Fuel Cells. In Progress and Recent Trends in Microbial Fuel Cells, 1st ed.; Dutta, K., Kundu, P.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; p. 464. ISBN 9780444640185. [Google Scholar]
- Li, X.; Hu, B.; Suib, S.; Lei, Y.; Li, B. Manganese dioxide as a new cathode catalyst in microbial fuel cells. J. Power Source 2010, 195, 2586–2591. [Google Scholar] [CrossRef]
- Zuo, Y.; Cheng, S.; Logan, B.E. Ion exchange membrane cathodes for scalable microbial fuel cells. Environ. Sci. Technol. 2008, 42, 6967–6972. [Google Scholar] [CrossRef]
- Aelterman, P.; Versichele, M.; Marzorati, M.; Boon, N.; Verstraete, W. Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes. Bioresour. Technol. 2008, 99, 8895–8902. [Google Scholar] [CrossRef]
- Sharma, M.; Sarma, P.M. Microbially Mediated Electrosynthesis Processes. In Microbial Fuel Cell, 1st ed.; Das, D., Ed.; Springer: Berlin, Germany, 2018; pp. 421–442. ISBN 978-3-319-66793-5. [Google Scholar]
- Schröder, U. Anodic electron transfer mechanisms in microbial fuel cells and their energy efficiency. Phys. Chem. Chem. Phys. 2007, 9, 2619–2629. [Google Scholar] [CrossRef]
- Jang, J.K.; Pham, T.H.; Chang, I.S.; Kang, K.H.; Moon, H.; Kim, B.H. Construction and operation of a novel mediator- and membrane-less microbial fuel cell. Process Biochem. 2004, 39, 1007–1012. [Google Scholar] [CrossRef] [Green Version]
- Pham, T.H.; Jang, J.K.; Chang, I.S.; Kim, B.H. Improvement of cathode reaction of a mediatorless microbial fuel cell. Microbiol. Biotechnol. 2004, 14, 324–334. [Google Scholar]
- Mohamed, H.O.; Obaid, M.; Poo, K.M.; Abdelkareem, M.A.; Talas, S.A.; Fadali, O.A.; Kim, H.Y.; Chae, K.J. Fe/Fe2O3 nanoparticles as anode catalyst for exclusive power generation and degradation of organic compounds using microbial fuel cell. Chem. Eng. J. 2018, 349, 800–807. [Google Scholar] [CrossRef]
- Xu, H.; Quan, X.; Xiao, Z.; Chen, L. Effect of anodes decoration with metal and metal oxides nanoparticles on pharmaceutically active compounds removal and power generation in microbial fuel cells. Chem. Eng. J. 2018, 335, 539–547. [Google Scholar] [CrossRef]
- Wei, J.; Liang, P.; Huang, X. Recent progress in electrodes for microbial fuel cells. Bioresour. Technol. 2011, 102, 9335–9344. [Google Scholar] [CrossRef]
- Zhisheng, L.; Daohai, X.; Xianjun, Y.; Chunhua, F.; Chaohai, W. Ruthenium oxide-coated carbon felt electrode: A highly active anode for microbial fuel cell applications. J. Power Source 2012, 210, 26–31. [Google Scholar] [CrossRef]
- Feng, C.; Ma, L.; Li, F.; Mai, H.; Lang, X.; Fan, S. A polypyrrole/anthraquinone-2, 6-disulphonic disodium salt (PPy/AQDS)-modified anode to improve performance of microbial fuel cells. Biosens. Bioelectron. 2010, 25, 1516–1520. [Google Scholar] [CrossRef]
- Adachi, M.; Shmomura, T.; Komatsu, M.; Yakuwa, H.; Miya, A. A novel mediator–polymer-modified anode for microbial fuel cells. Chem. Commun. 2008, 7, 2055–2057. [Google Scholar] [CrossRef]
- Park, D.H.; Zeikus, J.G. Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens. Appl. Microbiol. Biotechnol. 2002, 59, 58–61. [Google Scholar] [CrossRef]
- Wang, K.; Liu, Y.; Chen, S. Improved microbial electrocatalysis with neutral red immobilized electrode. J. Power Source 2011, 196, 164–168. [Google Scholar] [CrossRef]
- Peng, L.; You, S.; Wang, J. Carbon nanotubes as electrode modifier promoting direct electron transfer from Shewanella oneidensis. Biosens. Bioelectron. 2010, 25, 1248–1251. [Google Scholar] [CrossRef]
- Xie, X.; Hu, L.; Pasta, M.; Wells, G.F.; Kong, D.; Criddle, C.S.; Cui, Y. Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells. Nano Lett. 2011, 11, 291–296. [Google Scholar] [CrossRef]
- Lu, Z.; Chang, D.; Ma, J.; Huang, G.; Cai, L.; Zhang, L. Behavior of metal ions in bioelectrochemical systems: A review. J. Power Sources 2015, 275, 243–260. [Google Scholar] [CrossRef]
- Sun, M.; Zhang, F.; Tong, Z.H.; Sheng, G.P.; Chen, Y.Z.; Zhao, Y.; Chen, Y.P.; Zhou, S.Y.; Liu, G.; Tian, Y.C. A gold-sputtered carbon paper as an anode for improved electricity generation from a microbial fuel cell inoculated with Shewanella oneidensis MR-1. Biosens. Bioelectron. 2010, 26, 338–343. [Google Scholar] [CrossRef] [PubMed]
- Michaelidou, U.; Heijne, A.T.; Euverink, G.J.W.; Hamelers, H.V.M.; Alfons, J.M.; Stams, A.J.M.; Geelhoed, J.S. Microbial communities and electrochemical performance of titanium-based anodic electrodes in a microbial fuel cell. Appl. Environ. Microbiol. 2011, 77, 1069–1075. [Google Scholar] [CrossRef]
- Hubenova, Y.; Rashkov, R.; Buchvarov, V.; Babanova, S.; Mitov, M. Nanomodified NiFe- and NiFeP-carbon felt as anode electrocatalysts in yeast-biofuel cell. J. Mater. Sci. 2011, 46, 7074–7081. [Google Scholar] [CrossRef]
- Liu, H.; Logan, B.E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol. 2004, 38, 4040–4046. [Google Scholar] [CrossRef] [PubMed]
- Martin, E.; Tartakovsky, B.; Savadogo, O. Cathode materials evaluation in microbial fuel cells: A comparison of carbon, Mn2O3, Fe2O3 and platinum materials. Electrochim. Acta 2011, 58, 58–66. [Google Scholar] [CrossRef]
- Clauwaert, P.; Aelterman, P.; Pham, T.H.; Schamphelaire, L.D.; Carballa, M.; Rabaey, K. Minimizing losses in bio-electrochemical systems: The road to applications. Appl. Microbiol. Biotechnol. 2008, 79, 901–913. [Google Scholar] [CrossRef]
- Tran, H.T.; Ryu, J.H.; Jia, Y.H.; Oh, S.J.; Choi, J.Y.; Park, D.H. Continuous bioelectricity production and sustainable wastewater treatment in a microbial fuel cell constructed with non-catalyzed granular graphite electrodes and permeable membrane. Water Sci. Technol. 2010, 61, 1819–1827. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Jain, P.; Varanasi, J.L.; Lal, B.; Rodríguez, J.; Lema, J.M.; Sarma, P.M. Enhanced performance of sulfate reducing bacteria based biocathode using stainless steel mesh on activated carbon fabric electrode. Bioresour. Technol. 2013, 150, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Harnisch, F.; Schröder, U.; Scholz, F.; Bogdanoff, P.; Herrmann, I. Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochem. Commun. 2005, 7, 1405–1410. [Google Scholar] [CrossRef]
- Yu, E.H.; Cheng, S.; Scott, K.; Logan, B.E. Microbial fuel cell performance with non-Pt cathode catalysts. J. Power Source 2007, 171, 275–281. [Google Scholar] [CrossRef]
- Surowieca, Z.; Gac, W.; Wiertela, M. The synthesis and properties of high surface area Fe2O3 materials. Acta Phys. Pol. A 2011, 119, 18–20. [Google Scholar] [CrossRef]
- Choi, J.D.R.; Chang, H.N.; Han, J.I. Performance of microbial fuel cell with volatile fatty acids from food wastes. Biotechnol. Lett. 2011, 33, 705–714. [Google Scholar] [CrossRef] [PubMed]
- Callbeck, C.M.; Agrawal, A.; Voordouw, G. Acetate production from oil under sulfate-reducing conditions in bioreactors injected with sulfate and nitrate. Appl. Environ. Microbiol. 2013, 9, 5059–5068. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; An, D.; Liu, T.; Pinnock, T.; Cheng, F.; Voordouw, G. Biocide-mediated corrosion of coiled tubing. PLoS ONE 2017, 12, e0181934. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Menon, P.; Voordouw, J.; Shen, Y.; Voordouw, G. Effect of long term application of tetrakis(hydroxymethyl)phosphonium sulfate (THPS) in a light oil-producing oilfield. Biofouling 2018, 34, 605–617. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Kleiner, M.; Sharp, C.E.; Thorson, E.; Li, C.; Liu, D.; Strous, M. Fast and simple analysis of MiSeq amplicon sequencing data with MetaAmp. Front. Microbiol. 2017, 8, 1–8. [Google Scholar] [CrossRef]
- Zhang, J.; Kobert, K.; Flouri, T.; Stamatakis, A. PEAR: A fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 2014, 30, 614–620. [Google Scholar] [CrossRef]
- Xu, S.; Liu, H. New exoelectrogen Citrobacter sp. SX-1 isolated from a microbial fuel cell. J. Appl. Microbiol. 2011, 111, 1108–1115. [Google Scholar] [CrossRef]
- Sharma, M.; Sarma, P.M.; Pant, D.; Dominguez-Benetton, X. Optimization of electrochemical parameters for sulfate-reducing bacteria (SRB) based biocathode. RSC Adv. 2015, 5, 39601–39611. [Google Scholar] [CrossRef]
- Fan, Y.; Xu, S.; Schaller, R.; Jiao, J.; Chaplen, F.; Liu, H. Nanoparticle decorated anodes for enhanced current generation in microbial electrochemical cells. Biosens. Bioelectron. 2011, 26, 1908–1912. [Google Scholar] [CrossRef]
- Borole, A.P.; Aaron, D.; Hamilton, C.Y.; Tsouris, C. Understanding long-term changes in microbial fuel cell performance using electrochemical impedance spectroscopy. Env. Sci. Technol. 2010, 44, 2740–2745. [Google Scholar] [CrossRef]
- He, Z.; Mansfeld, F. Exploring the use of electrochemical impedance spectroscopy (EIS) in microbial fuel cell studies. Energy Environ. Sci. 2009, 2, 215–219. [Google Scholar] [CrossRef]
- Li, Q.; Thangadurai, V. Synthesis, structure and electrical properties of Mo-doped CeO2–materials for SOFCs. Fuel Cells 2009, 5, 684–698. [Google Scholar] [CrossRef]
- Li, Q.; Xia, T.; Liu, X.D.; Ma, X.F.; Meng, J.; Cao, X.Q. Fast densification and electrical conductivity of yttria-stabilized zirconia nanoceramics. Mater. Sci. Eng. B 2007, 138, 78–83. [Google Scholar] [CrossRef]
- Marrero-López, D.; Ruiz-Morales, J.C.; Núñez, P.; Abrantes, J.C.C.; Frade, J.R. Synthesis and characterization of La2Mo2O9 obtained from freeze-dried precursors. J. Solid State Chem. 2004, 177, 2378–2386. [Google Scholar] [CrossRef]
- Chinarro, E.; Jurado, J.R.; Figueiredo, F.M.; Frad, J.R. Bulk and grain boundary conductivity of Ca0.97Ti1−xFexO3−δ materials. Solid State Ion. 2003, 160, 161–168. [Google Scholar] [CrossRef]
- Sinclair, D.C. Characterization of electro-materials using AC impedance spectroscopy. Bol. Soc. Esp. Cerám. Vidr. 1995, 34, 55–65. [Google Scholar]
- Khilyas, I.V.; Sorokin, A.A.; Kiseleva, L.; Simpson, D.J.W.; Fedorovich, V.; Sharipova, M.R.; Kainuma, M.; Cohen, M.F.; Goryanin, I. Comparative metagenomic analysis of electrogenic microbial communities in differentially inoculated swine wastewater-fed microbial fuel cells. Scientifica 2017, 2017, 7616359. [Google Scholar] [CrossRef]
- Lino, T.; Sakamoto, M.; Ohkuma, M. Prolixibacter denitrificans sp. nov., an iron-corroding, facultatively aerobic, nitrate-reducing bacterium isolated from crude oil, and emended descriptions of the genus Prolixibacter and Prolixibacter bellariivorans. Int. J. Syst. Evol. Microbiol. 2015, 65, 2865–2869. [Google Scholar] [CrossRef]
Cell | Cycle Number | R1(Ω) | R2(Ω) | Q2 [Fs(n−1)] | N | C2(F) | R3(Ω) | Q3 [Fs(n−1)] | N | C3(F) |
---|---|---|---|---|---|---|---|---|---|---|
A | 1 | 193 | 151,061 | 1.6 × 10−6 | 0.9 | 1.3 × 10−6 | - | - | - | - |
2 | 199 | 156 | 3 × 10−6 | 0.7 | 1.1 × 10−7 | 49,302 | 7.4 × 10−4 | 0.8 | 1.8 × 10−3 | |
3 | 197 | 1279 | 7.3 × 10−6 | 0.7 | 9.9 × 10−7 | 53,336 | 5.6 × 10−4 | 0.7 | 2.4 × 10−3 | |
B | 1 | 128 | 2864 | 4.2 × 10−6 | 0.9 | 2.5 × 10−6 | - | - | - | - |
2 | 156 | 25 | 1.3 × 10−6 | 0.97 | 9.3 × 10−7 | 81 | 3 × 10−4 | 0.91 | 2.1 × 10−4 | |
3 | 153 | 130 | 2 × 10−5 | 0.7 | 1.6 × 10−6 | 53 | 4.7 × 10−4 | 0.8 | 1.9 × 10−4 | |
C | 1 | 153 | 2921 | 4.6 × 10−6 | 0.96 | 3.8 × 10−6 | - | - | - | - |
2 | 137 | 66 | 4.9 × 10−5 | 0.6 | 1.1 × 10−6 | - | - | - | - | |
3 | 156 | 927 | 8.5 × 10−6 | 0.85 | 3.6 × 10−6 | - | - | - | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nandy, A.; Sharma, M.; Venkatesan, S.V.; Taylor, N.; Gieg, L.; Thangadurai, V. Comparative Evaluation of Coated and Non-Coated Carbon Electrodes in a Microbial Fuel Cell for Treatment of Municipal Sludge. Energies 2019, 12, 1034. https://doi.org/10.3390/en12061034
Nandy A, Sharma M, Venkatesan SV, Taylor N, Gieg L, Thangadurai V. Comparative Evaluation of Coated and Non-Coated Carbon Electrodes in a Microbial Fuel Cell for Treatment of Municipal Sludge. Energies. 2019; 12(6):1034. https://doi.org/10.3390/en12061034
Chicago/Turabian StyleNandy, Arpita, Mohita Sharma, Senthil Velan Venkatesan, Nicole Taylor, Lisa Gieg, and Venkataraman Thangadurai. 2019. "Comparative Evaluation of Coated and Non-Coated Carbon Electrodes in a Microbial Fuel Cell for Treatment of Municipal Sludge" Energies 12, no. 6: 1034. https://doi.org/10.3390/en12061034
APA StyleNandy, A., Sharma, M., Venkatesan, S. V., Taylor, N., Gieg, L., & Thangadurai, V. (2019). Comparative Evaluation of Coated and Non-Coated Carbon Electrodes in a Microbial Fuel Cell for Treatment of Municipal Sludge. Energies, 12(6), 1034. https://doi.org/10.3390/en12061034