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Abstract: Hybrid sorption-compression systems are gaining interest for heating/cooling/
refrigeration purposes in different applications, since they allow exploiting the benefits of both
technologies and a better utilization of renewable sources. However, design of such components
is still difficult, due to the intrinsic complexity of the systems and the lack of reliable models.
In particular, the combination of adsorption-compression cascade unit has not been widely explored
yet and there are no simulations or sizing tools reported in the literature. In this context, the present
paper describes a model of a hybrid adsorption-compression system, realised in Modelica language
using the commercial software Dymola. The models of the main components of the sorption and
vapour compression unit are described in details and their validation presented. In addition, the
integrated model is used for proving the feasibility of the system under dynamic realistic conditions
and an example of the technical sizing that the model is able to accomplish is given.
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1. Introduction

The building energy consumption across European Union accounts for about 40% of the overall
primary energy consumption and, in this sector, the share of heating and cooling demand (also
comprising domestic hot water) is about 55% [1]. For this reason, several national and international
regulations have been issued to promote the energy efficiency in buildings, deriving from the Energy
Performance of Buildings Directive (EPBD) issued by the EU [1]. Different approaches can be followed
to increase the energy efficiency, which can be generally distinguished between passive and active
methodologies. Among the passive ones, improvement of building insulation is considered as the
most effective solution to meet the regulatory requirements [2]. Concerning the active methodologies,
the main route is to improve the heating and cooling systems, by enhancing the efficiency of the
heating and cooling devices [3], implementing smart control strategies [4–6] and integrating innovative
solutions at system level [7,8]. In this context, one of the main focus is on increasing the share of
renewables in the heating and cooling sector. Indeed, as already reported [9], the renewable heating
and cooling sector is considered as a “sleeping giant” that, if properly promoted, could further support
the diffusion of renewable sources especially in the residential and commercial sector. The heat pump
technology is by definition able to exploit renewables, e.g., directly from ambient air [10] or from
geothermal heat sources [11]. Nevertheless, the share of renewables guaranteed by standard heat
pumps is limited, since they are usually driven by electrical energy. For this reason, in the last years,
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the exploitation of thermally-driven systems, able to make use of solar thermal energy as driving
renewable source, was proposed, mainly for cooling applications, thus developing the so-called solar
cooling technology [12]. The concept looks quite attractive, since it allows synchronizing the peak
of solar radiation with the peak of cooling demand year-round. Some detailed reviews on this topic
can be found elsewhere [13–15]. Nevertheless, some issues are still open to make it more attractive
also for a future widespread diffusion on the market. One of the main critical tasks is represented by
the needs of installing backup appliances (e.g., gas boiler, vapour compression chiller), to cover the
periods during which solar energy is not available to drive the system. In order to overcome this issue,
recently, integrated hybrid adsorption/ compression chiller solution was proposed in the literature [16].
This integration makes the operation more flexible, since the system can be efficiently driven by solar
energy, when available, reducing the electric consumption to drive the vapour compression chiller,
while can be directly switched to the standard chiller operation, when no thermal energy is provided
by the solar thermal collectors. In this way, the overall solar fraction is maximized, guarantying the
continuous operation of the system.

Despite the interesting approach, there is still a lack of dynamic models, which can be exploited to
properly design and optimize the operation of this innovative hybrid solution. In particular, to the best
of the authors knowledge, no models are available in the literature on the adsorption/compression
hybrid technology. For this reason, in order to develop a consistent and reliable model, a careful
analysis of existing models for adsorption and vapour compression machine components was
performed. Generally, the models of components and energy systems can be distinguished as [17]:

• thermophysical models, making use of the constitutive equations of the system, that can be solved
through a numerical or iterative approach;

• black box models, that are based on a completely empirical approach;
• grey box models, combining a semi-empirical approach with the physical models for one or

more components.

A further distinction can be made according to the treatment of model variables with time, thus
dividing the models into static, quasi-static and dynamic models. In the simulation of a wide variety of
components it is common to use a black-box approach, using experimental data or performance data
provided by suppliers to model complex energy systems with a low computational effort. Common
simulation environments used are TRNSYS, Energy Plus and IDA-ICE, that were applied to a wide
variety of systems, such as biomass-fed systems [18], fuel cells [19,20], solar systems with different types
of heat pumps and chillers [21–25], fossil fuels and renewables-based cogenerators [26,27]. However,
such a methodology can be too simplistic, especially when dealing with innovative components,
whose response to a wide variety of external conditions is not yet known or fully characterised. As a
result, some models were built integrating detailed physical equations and semi-empirical or lumped
parameters models, i.e., by co-simulation in MATLAB-SIMULINK and TRNSYS environments [28–30].
The main drawback of such combined models is the low robustness and high computational effort,
since two simulations engines running at the same time are needed. To overcome such issues, a
tool often used to simulate complex multi-domain systems is the Modelica language, thanks to its
low computational demand and a vast number of libraries including components for several energy
systems, comprising heat pumps and chillers for commercial and residential applications [31–35].

A list of relevant and recent models for the components examined in the present study, i.e., an
adsorption module for cold-water production and a vapour compression heat pumps is presented in
Table 1.

Regarding hybrid sorption-compression systems, instead, only a few studies can be found
in literature, as detailed in [16] and most of them refer to liquid absorption-vapour compression
systems. Moreover, the vast majority of proposed models are based on steady-state thermodynamic
evaluations [36], thus disregarding the discontinuous operation typical of adsorption systems.
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Table 1. Models of adsorption components and vapour compression heat pumps published in literature.

Reference Components/Systems
Modelled Type of Model Simulation Tool Validation

[37] Adsorption chiller

Grey-box (coupled heat
and mass transfer model

of the adsorber and
lumped parameters model
for the other components)

COMSOL/MATLAB Yes

[38,39] Adsorber, Adsorption
chiller Physical dynamic Modelica Yes

[34] Adsorption chiller Physical dynamic Modelica Yes

[40] Adsorption material Physical dynamic COMSOL Yes

[41] Adsorption reactor Physical dynamic FEMLAB No

[42] System for adsorption
refrigeration-desalination Physical dynamic Simulink No

[43] Coated adsorber
Physical–governing

equations simplified to an
ODE system

Not specified
Yes, with a

numerical model of
a 2-bed chiller

[21,44–47] Adsorption chiller Black box TRNSYS
Models based on

experimental data
or datasheets

[48] Adsorption-sensible
storage Grey box TRNSYS/MATLAB No

[49] Air-water heat pump with
R410a

Physical steady-state and
dynamic Modelica Yes

[50] Air-air heat pump with
R134a Physical dynamic Modelica Yes

[32] CO2 heat pump Physical dynamic Modelica No

[31] Ground-source heat pump Physical dynamic Modelica Yes

[35] Variable speed heat pump Grey box Modelica/Dymola Yes

[51] Air-water heat pump Grey box MATLAB/Simulink No

[52] Water-water and air-water
heat pumps Exergy modelling - Yes

[24,44] Air-water heat pumps Black box TRNSYS No

[25,53] Air-water heat pumps Black box IDA-ICE No

In this context, the main aim of the paper is to develop the first simulation model able to
dynamically represent the operation of a hybrid cascading adsorption/compression chiller. The model
is based on a detailed description of each component, validated through experimental data published
in the literature. It is implemented in Modelica/Dymola, to easily integrate the different sub-models.
These were validated against experimental data for the adsorber and a complete performance map,
for the compression chiller. In addition, the operation under realistic conditions was evaluated. To
this aim, the cooling demand of a building in Agltanzia (Cyprus) was used. Indeed, the proposed
hybrid system will be manufactured and tested within the H2020 HYBUILD project [34]. Indeed, the
complete simulation tool was then used to perform a sensitivity analysis to provide possible hints for
the optimization of the hybrid chiller design towards its real application.

2. System Description

The sorption-compression system proposed is mainly meant for integrating different renewable
sources at the building scale (e.g., solar thermal and PV). It is especially meant for operation in warm
(e.g., Mediterranean) climates, to provide cooling energy at high efficiency. The overall system is
depicted in Figure 1.
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Figure 1. The hybrid system proposed: (1) solar thermal collectors field. (2) photovoltaic panels. (3)
adsorbers of the adsorption chiller. (4) adsorption chiller condenser. (5) adsorption chiller evaporator.
(6) vapour compression chiller condenser. (7) vapour compression chiller evaporator. (8) compressor.
(9) dry cooler for heat rejection to the ambient.

The core sub-system is composed by the cascading integration of an adsorption chiller (topping
cycle) with a vapour compression chiller (bottoming cycle). When the solar energy is available, thermal
energy, (1) in Figure 1, is used to drive the adsorber (3) of the adsorption chiller. The chiller comprises
two adsorbers working in counter-phase, to continuously provide cooling on the evaporator (5) side,
which cools down the condenser of the bottoming vapour compression chiller (6). The cooling effect to
the end-user is provided by the evaporator on the vapour compression side (7). In this way, the heat
from the vapour compression chiller is “pumped” to the adsorption chiller, which then discharges it to
the ambient by condensing the refrigerant in (4) and dissipating it to the ambient (9). Thanks to this
operation, the condensation of the vapour compression chiller is reduced compared to the ambient
temperature. This allows reducing the pressure difference between evaporator (7) and condenser
(6), limiting the energy consumption to drive the compressor (8). In this way, the cold is produced
at high electric efficiency and it can be either directly delivered to the used or stored in a separated
tank, for providing energy upon request. The flexibility of the system allows foreseeing different
operating scenarios:

• if solar energy is not available, cold energy is produced directly from the vapour compression
chiller, that can be directly connected to the dry cooler.

• If there is a mismatch between the solar availability and user demand, in order to exploit the
renewable source, cold energy can be produced using the cascade system and stored in a sensible
or latent cold storage.

• During winter, the heating demand of the building can be satisfied by direct connection to the
solar collectors (if solar energy is available) or by the heat pump.

• Domestic hot water can be supplied by the solar collectors, coupled to a small water buffer or a
back-up system (i.e., existing gas boiler in case of retrofitting).

To further enhance the share of renewables, electricity needed to drive the compression chiller
can be supplied by PV panels when solar energy is available. It is then clear that the sizing and
management of such a system are complex issues that require a model-based support.
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3. Model Description: Adsorption Module

3.1. Generalities and Assumptions

For the case under study, a dynamic physical approach was chosen, which allows to describe
the behaviour of a complex and innovative system under variable conditions, corresponding to
the operation in a real environment. The open-source language Modelica was chosen [54]. It is a
multi-domain, object-oriented and non-causal language, which guarantees a high reusability of the
models created and gives the possibility of examining at the same time mechanical, thermal and
electric systems. The model was implemented and post-processed within the Dymola software [55].
All the components models were realised using self-developed components as well as components
from Thermocycle [56] and CoolProp libraries [57].

The layout of the model for the adsorption module is shown in Figure 2. It is based on the typical
structure of a two-bed adsorption chillers, where two adsorbers, employing SAPO 34 as adsorbent
material and water as refrigerant, are alternatively connected to a condenser and an evaporator
by means of vacuum valves. Refrigerant flow from the condenser to the evaporator is guaranteed
by an auxiliary expansion valve. All the components make use of fin-and-tube heat exchangers
hydraulically connected to the heat sources and sinks providing the thermal energy for the operation
of the components. Hence, the model developed for each component is made up of two sub-models:
an equilibrium model and a heat exchange model. The equilibrium model is the vapour-liquid
equilibrium (VLE) for the condenser and the evaporator and the adsorption equilibrium model in the
adsorbers, i.e., the model linking the refrigerant uptake to the pressure and temperature distribution.
Such an approach is similar to the one proposed in [34,58], that was validated against experimental
data and proved to be a reliable tool to analyse adsorption systems.
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Figure 2. Layout of the model of the adsorption module with the indication of fluid ports and thermal
ports as in the model implementation in Dymola.

The following assumptions were made:

• all components are lumped models with uniform properties;
• the heat transfer fluid inside the heat exchangers is incompressible;
• pressure drops inside the heat exchangers are constant;
• gravity is neglected;
• the thermal masses of vacuum vessels are neglected;
• there are no heat losses to the environment;
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• there is no direct heat exchanger due to conduction between the components;
• there are no inert gases inside the closed volume.

3.2. Heat Exchange Model

The heat exchange model is common to all the components in the adsorption model and is
based on the 1D finite volume heat exchanger model present in the Thermocycle library. Indeed,
a comparative analysis of the finite volume and moving boundary model implemented in the
Thermocycle library for the simulation of heat exchangers was carried out in [59], proving that
both approaches are reliable and allow for accurate simulations of different types of heat exchangers
commonly used in energy systems. The model is based on mass, energy and momentum balance
equations:

.
mHTFin +

.
mHTFout = 0 (1)

pHTFin − pHTFout = ∆p (2)

dU
dt

=
.

HHTFin −
.

HHTFout +
.

Q (3)

where: .
HHTF =

.
mHTFhHTF (4)

Heat transfer between the fluid inside the heat exchanger and the external environment is
calculated using the following equation, where the heat transfer coefficient and heat transfer area are
known parameters:

.
Q = αS

(
Tf luid − Tmetal

)
(5)

The enthalpy and the properties of the fluid are calculated from the CoolProp library as a function
of local temperature/pressure conditions inside the heat exchanger.

3.3. Adsorption Model

The model for adsorption includes mass and energy conservation equations:

.
mre fin

+
.

mre fout =
.

mre f (6)

(
msorbcpsorb + w·msorbcpre f

)dTsorb
dt

=
.

Qads +
.

mre f hads − msorbcpsorb Tsorb
dw
dt

(7)

In Equation (7), the terms on the left-hand side represent the sensible heat stored in the adsorbent,
whereas the terms on the right-hand side represent the heat transferred through conduction and the
mass exchange.

Different models are available to describe adsorption equilibrium, i.e., the uptake, w [kg/kg] (the
amount of water adsorbed onto the material) as a function of temperature Tsorb, pressure pads in the
adsorber, as well as the heat of adsorption [60]. Among them, for the SAPO-34 sorbent considered, the
Dubinin-Ashtakov (DA) correlation was selected [61]:

w = w0 exp
[
−
(

A
E

)n]
(8)

where w0 and n are empirical constants and A is the adsorption potential:

A = −RTsorb log
pads
psat

(9)
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The flow rate of refrigerant adsorbed is a function of the uptake variation in time:

.
mre f = msorb

dw
dt

(10)

Uptake derivative depends on adsorption kinetics. A common approach to define is through the
Linear Driving Force (LDF) [37,60,62]:

dw
dt

= β
(
weq − w

)
(11)

where the constant β is calculated as a function of the geometric characteristics of the adsorbent and of
the diffusion coefficient D [63]:

β =
15

r2
sorb

D (12)

A schematic representation of the adsorber model, including the energy flows, the input and
output parameters and variables is shown in Figure 3.
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3.4. VLE Model

The two-phase refrigerant inside the evaporator and the condenser, which is exchanged with
the adsorbers, is described by a vapour liquid equilibrium model including mass and energy balance
equations in the form:

dm
dt

=
.

mre fv +
.

mre fl
(13)

dU
dt

=
.

Hv +
.

Hl +
.

Q (14)

In the case of the condenser, the incoming fluid is vapour at the temperature of the adsorber and
the outlet fluid is liquid having saturation enthalpy. Conversely, in the case of the evaporator, the
incoming fluid is liquid at the temperature of the condenser and the outlet fluid is vapour having
saturation enthalpy.

The term
.

Q [W] represents the heat flow between the saturated refrigerant the surface of the
heat exchanger:

.
Q = αS

(
Tre f − Tmetal

)
(15)
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All the properties of the refrigerant in the liquid and vapour state are calculated from
CoolProp library.

A schematic representation of the evaporator/condenser models, including the energy flows, the
input and output parameters and variables are shown in Figure 4.
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The equations for the auxiliary components and the parameters used in the modelling are
described in Appendix A.

4. Model Description: Compression Chiller

4.1. Assumptions

The model for the compression chiller is based on a commercial water to water vapour
compression chiller, using R410A as working fluid. It basically consists of four components, namely
the two heat exchangers (evaporator and condenser), the compressor and the expansion valve. Fully
dynamic models have been developed for the heat exchangers, whereas off-design steady state models
were used for the compressor and the valve, which is a common practice in literature [17,56]. The
operation of the Thermostatic Expansion Valve (TEXV), which ensures a degree of superheating at the
inlet of the compressor by adjusting the refrigerant flow rate, was modelled by means of a PI controller.
For validation and sizing purposes, only the operation in cooling mode (i.e., as a chiller) is considered,
but the model already allows for switching also to heating mode. Since there is not a 4-way valve
included in the refrigerant loop of the heat pump, heating or cooling operation can be selected by
swapping the hydraulic circuits of the evaporator and the condenser, using four 3-way valves. The
general assumptions made for the development of the components are:

• All components are lumped, with constant properties.
• One dimensional flow in each component with uniform velocity profile.
• No pressure loss inside the heat exchangers. Instead, lumped pressure loss models in both

refrigerant and water pipelines were employed.
• Heat losses to the ambient are neglected for every component.
• Neglected dynamics for the compressor.
• Constant electromechanical efficiency of the compressor motor.
• Existence of subcooling and superheating at the outlet of the condenser and the

evaporator respectively.
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• Heat transfer coefficients vary with their nominal values according to the mass flow rate to
nominal mass flow rate ratio.

All the models make use of self-developed components, based on the version 2.1 of the
ThermoCycle library and the CoolProp thermodynamic properties software, together with standard
ThermoCycle components.

4.2. Heat Exchangers Models

The modeling approach followed for the heat exchangers is the Moving Boundaries technique.
Moving boundaries models are generally faster compared to finite volume implementations, without
losses in modelling accuracy [64]. The main drawback of the Moving Boundaries approach is the
definition of start-up and shut-down procedures: using the classical Moving Boundary formulation,
the possible phase zones of the refrigerant and the associated control volumes—i.e., superheated (SH),
two phase (TP) and subcooled (SB)—have to be predefined during the model development. As a
result, the simulation of the start-up process of the heat pump, which for example starts with the
evaporator being totally in the two phase mode and ends with the creation of a superheating zone, is
not possible. Switching between various Moving Boundaries implementations, leading to a Switching
Moving Boundary model, seems to allow the examination of the heat pump operation during start up
and shutdown procedures [65–67], but since in this work attention was given mainly to the continuous
operation of the cascading hybrid system under varying conditions, the classical but simpler moving
boundary models described in [68] by Willatzen et al. was employed. In the next section, a general
overview of the methodology is presented, while the complete set of equations is included in the
Appendices A and B. For a detailed description of the methodology, the reader is referred to [68].

Each of the heat exchangers was divided in control volumes (CVs) according to the expected
refrigerant phases (TP-SH for the evaporator and SH-TP-SB for the condenser—see Figure 5). In each
control volume the heat and mass balances are expressed with regards to the control volume’s length,
by means of the Leibnitz’s rule. For each control volume, enthalpy and pressure are selected as state
variables, by expressing the time derivative of each thermodynamic property to dp

dt and dh
dt using the

chain rule. As an example, the following equation gives the derivative of the density in the SH control
volume:

dρSH
dt

=

[(
∂ρSH

∂p

)
h
+

1
2

(
∂ρSH

∂h

)
p

dhv

dp

]
dp
dt

+
1
2

(
∂ρSH

∂h

)
p

dhin
dt

(16)
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The mean void fraction, used to calculate the average node properties in the two phase control
volume, was considered constant for both heat exchangers, to a value close to its nominal one, which
was calculated according to the homogeneous definition [69]:

γ =
∫ xL

x0

x
ρv

x
ρv

+ 1−x
ρl

dx (17)

This simplification is widely used in this kind of models, without loss of accuracy [68], though an
analytical expression for the mean void fraction and its time derivative is needed in switching moving
boundaries implementations.

As an enhancement to the original equations proposed by Willatzen- and similarly to the standard
moving boundary implementation in ThermoCycle- the heat transfer between the primary and the
secondary fluid is calculated by means of ε-NTU method, instead of calculating it using the temperature
difference between the corresponding cells. The method was applied twice in each volume, once for
the water and once for the refrigerant stream, utilizing the wall temperatures.

For example, the heat flow in the superheated CV of the refrigerant can be expressed using the
mean wall temperature by means of the following equation:

.
QSH = cp,SH

.
mA +

.
min

2
ε(TwallSH − Tin) (18)

For the complete set of equations used in the models of the components, the reader is referred to
Appendix B.
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4.3. Compressor Model

The chiller modeled makes use of a hermetic scroll compressor, which was modeled using a
steady state approach, since the dynamic phenomena of the compressor can be considered as negligible
compared to the ones imposed by the heat exchangers. The hermetic compressor includes both the
open drive scroll compressor and the electric motor. The open drive scroll compressor model is derived
from the standard compressor model included in ThermoCycle library, while the motor model is a
modified version of the standard ElectricDrive of the library.

The isentropic and volumetric efficiencies were expressed as polynomials of the evaporation
and condensation pressures, similar to the ones proposed in the EN12900 [70]. Hence, the isentropic
efficiency eis and the volumetric efficiency of the compressor evol can be derived from an equation of
the type:

eis = eis,n·(C0 + C1·Tev + C2·Tcond + C3·T2
ev + C4·Tev·Tcond + C5·T2

cond + C6·T3
ev

+C7·Tcond ∗ T2
ev + C8·Tev·T2

cond + C9·T3
cond)

(19)

The coefficients were calculated using the performance data of a typical commercial compressor
of the same power range and with the same working fluid, while the nominal values for both the
volumetric (ev,n) and isentropic (eis,n) efficiencies were used to adapt this equation to the specific
compressor and were defined using the chiller’s manufacturer data.

As a result, the mass flow rate transferred by the compressor is calculated using the
following equation:

.
mre f = evol

rpm·Vs·ρSU
60

(20)

where
.

Vs the swept volume of the compressor.
The enthalpy at the outlet of the compressor is calculated using the definition of the

isentropic efficiency:

hout = hin +
(hout,is − hin)

eis
(21)

The shaft power needed for the compression is calculated as:

Wsha f t =
.

mre f (hout − hin) (22)

The motor model, being coupled with the scroll compressor, is used for the calculation of the
electric power consumption of the machine, by means of a constant value for the efficiency, considered
equal to 0.93. Besides, the model was modified in order to take into account the electromechanical slip
of an induction motor, defined as:

slip =
rpmsync − rpm

rpmsync
(23)

where rpms is the synchronous speed. Since the motor has 2 magnetic poles, the synchronous speed in
a common 50 Hz grid is rpms = 3000 RPM, while the value of the slip was assumed as constant and
equal to the nominal one.

4.4. Thermostatic Expansion Valve model (TEXV)

The thermostatic expansion valve model is based on the standard Valve component of the
ThermoCycle library, controlled by a PI controller which maintains the superheating at a desired value
and models the valves dynamics, caused by the spring action.

The mass flow rate through the valve is calculated form the pressure drop using the
following expression:

.
mre f = S·

√
2·ρin·∆p (24)
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where S is the area of the orifice inside the valve. S is changing linearly with the control signal, so:

S = y·S f ull (25)

The fluid flow through the valve is assumed adiabatic, so the expansion is isenthalpic. The
superheating of the fluid exiting the evaporator is calculated in real time during simulations as the
different between the evaporation temperature and the refrigerant’s outlet temperature. The gains of
the PI controller were set in order to achieve a fast but smooth operation and avoid oscillations

The simulation of the compression chiller is completed by lumped pressure drops elements and
the models of the valves, that are described in Appendix B. All the parameters used in the simulations
are also listed in the Appendices A and B, while the schematic layout of the compression chiller is
shown in Figure 6.

1 
 

 
Figure 6. Compression chiller model layout representing the Dymola implementation.

5. Model Validation

5.1. Adsorption Module

In order to validate and calibrate the model of the adsorption chiller, similarly to what described
in [71], the results of a simulation for the adsorber were compared to the results of a test made with
a gravimetric Large Temperature Jump apparatus, that allows to record the variation in the weight
(and hence the uptake) of a small-scale adsorber when subjected to a sudden change of temperature.
Indeed, such kind of tests are of the uttermost importance in the selection of the adsorber, in terms of
layout of the heat exchanger and grain size of the adsorbent [72,73] and therefore represent an essential
benchmark for the model developed, guaranteeing that the model can be used for optimization and
sizing of a complete hybrid system.

For validation purposes, results with AQSOA FAM Z02® (by Mitsubishi Chemical Corporation,
Tokyo, Japan), with grain size 0.710–0.800 mm, published in [74], were used. The results are shown in
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Figure 7, where the temporal evolution of the dimensionless uptake for simulation and experiments
are compared. The dimensionless uptake represents the ratio between the uptake at each instant and
the uptake at equilibrium in the temperature-pressure conditions tested. Commonly, the value of time
needed to complete 63% of the adsorption reaction and the time needed to reach 80% of maximum
uptake are used for sizing and evaluation analysis on dynamic properties of sorbents. It is possible
to conclude that the model can actually reproduce with good accuracy such conditions, thus being a
useful tool. The maximum deviation with experiments is around 7.5%, which is within uncertainty of
measurement and is concentrated in the part of the curve with low loading, where the experimental
conditions are affected by several external factors, such as vibrations due to the switching of the
hydraulic circuits and so on.
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5.2. Compression Chiller

The free parameters of the compression chiller model were tuned based on the values specified
by the chiller and heat exchangers manufacturers around their nominal operating point: A constant
correction factor was multiplied with the constant terms of the heat transfer correlations of each heat
exchanger, thus defining one free parameter per heat exchanger, which was calculated iteratively in
order to minimize the deviation between the model output and the heat exchanger manufacturer data
in nominal conditions. Next, the nominal values for the isentropic and volumetric efficiencies, eis,n and
ev,n respectively, were identified iteratively in order to achieve the best fitting to the data provided by
the chiller manufacturer around its nominal operating point. In each case, the iterative procedure was
implemented in Dymola, utilizing the Model Calibration Toolbox. The whole procedure is depicted in
Figure 8:
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Once being calibrated on the nominal conditions, the model was validated by using a data set
of 24 operating points provided by the chiller manufacturer, including the inlet water temperatures
and heat capacities of the evaporator and the condenser as well as the compressor electric power
consumption. The evaporator inlet water temperatures of the dataset range from 10 ◦C to 20 ◦C while
the condenser inlet water temperatures from 20 ◦C to 40 ◦C. A fixed ∆T equal to 5K is considered for
the water streams in both heat exchangers, which is the common reference for the Eurovent certification
programme [75].

The results of the comparison of the model to the performance data are summarized in Figure 9,
where the relative errors on the evaporator cooling capacity and the EER are presented for different
evaporator and condenser water inlet temperatures. The conditions simulated and compared with
performance data are marked with black dots. The relative error is calculated as:

Relative Error(%) =
ξmodel − ξdataset

ξdataset
·100 (26)

The EER of the chiller is defined as the ratio between the cooling power at the evaporator
.

Qev and
the electricity consumption of the compressor:

EER =

.
Qev

Pcomp
(27)

Figure 9 shows that the model predicts fairly well the performance data of the compression chiller:
while the maximum deviation is around 3% for the evaporator capacity and around 5.5% for the EER.
Moreover, it is clear that in the operating range that is of particular importance for the cascaded system
simulation (cooling mode with low condensing temperatures due to the operation of the sorption
chiller), the model has its best accuracy.
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6. Hybrid System Integrated Model: Results

The models previously described were integrated, in order to reproduce the system configuration,
as described in Section 4. The layout of the integrated model, as taken from the simulation software, is
shown in Figure 10, where the main components are highlighted.
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Figure 10. Dymola layout of the hybrid integrated model. 1: sorption module; 2: compression chiller; 3:
control unit; 4: 3-way valve for switching between heating and cooling mode of the compression chiller;
5: 3-way valves to switch between the hydraulic connections of the units and the direct connection of
the compression chiller to the heat rejection (medium temperature) circuit.



Energies 2019, 12, 1161 16 of 28

In addition to the main components previously presented, the model includes a control unit,
where the basic controls for the correct operation of the system under dynamic conditions are codified,
and 3-way hydraulic valves, used to control the operating mode of the hybrid system. Indeed, under
some conditions, even under the presence of cooling load, the combined cascade operation of the two
cycles is not possible or not convenient. Under these circumstances, the compression chiller is directly
connected to the heat rejection circuit. The following main conditions were applied as basic rules to
run the adsorption module:

• the temperature of the heat source is higher than a user-defined value (in the present case, 75 ◦C);
• the temperature in the chilled water circuit (evaporator secondary circuit) of the adsorption unit

is lower than Tamb − 5 ◦C, the condition under which direct connection of the compression unit
with the external sinks becomes more favorable.

The integrated model developed was then used to verify the operation of the system under
realistic dynamic conditions and as starting point for a technical analysis, useful for design purposes.
All the simulations carried out were solved using the Radau solver in Dymola with 0.001 tolerance
and a time step of 1 s.

6.1. Results in Dynamic Conditions

The operation of the system in dynamic conditions was simulated considering the installation in
a residential building in Aglantzia (Cyprus) that will be one of the pilot sites for the HYBUILD concept.
To this aim, a reference day was selected, corresponding to ASHRAE design conditions for Cyprus
(month of August, peak temperature of 35 ◦C). The cooling demand and ambient temperature for the
reference day are shown in Figure 11. Such data were fed into the model as a text file instead than
by coupling the developed model with a building model, since the main scope of the analysis was to
define the feasibility in the application of the integrated model developed under dynamic conditions.
Further evaluations by direct connection of the hybrid system to a simplified building models will be
carried out in the future, to assess the performance of the system. The cooling demand of the reference
building was calculated by the pilot plant owner and used as a benchmark of the robustness of the
model developed.

Energies 2019, 12, x FOR PEER REVIEW 16 of 28 

 

In addition to the main components previously presented, the model includes a control unit, 
where the basic controls for the correct operation of the system under dynamic conditions are 
codified, and 3-way hydraulic valves, used to control the operating mode of the hybrid system. 
Indeed, under some conditions, even under the presence of cooling load, the combined cascade 
operation of the two cycles is not possible or not convenient. Under these circumstances, the 
compression chiller is directly connected to the heat rejection circuit. The following main conditions 
were applied as basic rules to run the adsorption module: 

• the temperature of the heat source is higher than a user-defined value (in the present 
case, 75 °C); 

• the temperature in the chilled water circuit (evaporator secondary circuit) of the 
adsorption unit is lower than Tamb − 5 °C, the condition under which direct connection of 
the compression unit with the external sinks becomes more favorable. 

The integrated model developed was then used to verify the operation of the system under 
realistic dynamic conditions and as starting point for a technical analysis, useful for design purposes. 
All the simulations carried out were solved using the Radau solver in Dymola with 0.001 tolerance 
and a time step of 1 s. 

6.1. Results in Dynamic Conditions 

The operation of the system in dynamic conditions was simulated considering the installation 
in a residential building in Aglantzia (Cyprus) that will be one of the pilot sites for the HYBUILD 
concept. To this aim, a reference day was selected, corresponding to ASHRAE design conditions for 
Cyprus (month of August, peak temperature of 35 °C). The cooling demand and ambient temperature 
for the reference day are shown in Figure 11. Such data were fed into the model as a text file instead 
than by coupling the developed model with a building model, since the main scope of the analysis 
was to define the feasibility in the application of the integrated model developed under dynamic 
conditions. Further evaluations by direct connection of the hybrid system to a simplified building 
models will be carried out in the future, to assess the performance of the system. The cooling demand 
of the reference building was calculated by the pilot plant owner and used as a benchmark of the 
robustness of the model developed. 

 

Figure 11. Boundary conditions for the dynamic simulation of the hybrid system - temperature and 
cooling demands for a reference day in Aglantzia (CY). 

The results of the simulations run from 9 am to 15 pm are shown in Figures 12 and 13. It is 
possible to notice the typical discontinuous behaviour of the adsorption chiller in all circuits, with the 

Figure 11. Boundary conditions for the dynamic simulation of the hybrid system - temperature and
cooling demands for a reference day in Aglantzia (CY).

The results of the simulations run from 9 am to 15 pm are shown in Figures 12 and 13. It is
possible to notice the typical discontinuous behaviour of the adsorption chiller in all circuits, with
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the most marked variability on the evaporator circuit of the sorption module (light and dark green
lights in Figure 11). This evolution is due to the combined effect of the cyclic operation of the chiller
and the increase in the temperature of the circuit due to the condensation heat coming from the
vapour compression chiller. What can be noticed is the sensible reduction in the inlet temperature
to the condenser of the vapour compression chiller (light green line): despite the periodic rising, the
average is below 20 ◦C, thus reducing the temperature lift of the unit more than 10 K compared to the
ambient temperature.
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Figure 12. Temperatures in the circuits of the sorption module and heat pump for the reference
conditions. The outlet of the evaporator of the adsorption unit (light green) also represents the inlet of
the condenser in the vapour compression chiller; the inlet of the of the evaporator of the adsorption
unit (dark green) also represents the outlet of the condenser in the vapour compression chiller.
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Figure 13. Thermal powers in the components of the sorption module and the vapour compression
chiller for the reference conditions.
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Instead, Figure 13 shows the powers in the different components of the adsorption module and
the vapour compression chiller. It is possible to notice that the power in the condenser of the vapour
compression chiller corresponds to the average power from the evaporator of the adsorption module.
Moreover, at each phase change there is a peak in the power absorbed/released from the adsorbers,
due to the sensible heat and sorption heat of the material. Finally, it is worth mentioning that the power
from the compression chiller evaporator remains constant and thus unaffected from the discontinuities
in the condenser side, proving the stable operation of the cascading system from the end user point
of view.

6.2. Sensitivity Analysis

After evaluation under realistic operation, the model developed was used for a sensitivity analysis,
suitable to define some of the design and sizing parameters of the components. One of the parameters
evaluated is the relative size of the adsorption and compression units:

RS =

.
Qnom,ads

.
Qnom,chiller

(28)

The nominal power of the adsorption chiller is defined as the power that the unit can deliver
when not working in cascade, in the following conditions: 90 ◦C heat source temperature, 30 ◦C
condensation temperature and 18 ◦C evaporation temperature. Instead, the nominal power of the
vapour compression chiller is the cooling power declared by the producer. For the present case, since
the application considered is the residential one, a nominal power of 13 kW of the vapour compression
chiller was selected, which is the minimum one that the producer can supply.

The parameter used as benchmark for the sensitivity analysis is the ratio between the operating
pressure of the condenser in the vapour compression chiller when in hybrid configuration and the
operating pressure of the condenser in the vapour compression chiller when in working as a single unit:

κ =
phyb

pchiller
(29)

The results of the analysis are reported in Figure 14. The external conditions for the operation of
the hybrid and the compression chiller alone were: 90 ◦C constant heat source inlet to the adsorption
unit, 30 ◦C constant inlet to the condenser (in the adsorption unit for a hybrid configuration, or of
the compression chiller for stand-alone operation) and 12 ◦C constant inlet to the evaporator of the
compression chiller. Nominal flow rates were considered in all the circuits.
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The results are averaged over 3 h of operation. The results show that undersizing the adsorption
unit (i.e., 0.5 < RS < 1.2) is detrimental to the operation of the compression chiller: indeed, since
the power supplied by the adsorption unit is not enough to dissipate the condensation heat of the
compression chiller, the operating pressure of the condenser in this latter unit is up to 30% higher than
in stand-alone operation. On the other hand, oversizing the adsorption unit (i.e., RS > 2), does not give
a significant advantage in terms of operating pressure (and therefore electric savings), and can even
lead to problematic operation due to the risk of reducing too much the operating pressure during the
first seconds of each adsorption phase, when the evaporation power is maximum.

6.3. Applications of the Model

The results reported above demonstrate that the model developed is capable of describing the
system analysed under dynamic conditions. However, as demonstrated in Section 6.2, it is also useful
for a technical evaluation on the system and its sub-components. One of the main advantages of the
approach proposed is the possibility of easily calculate the performance of the overall hybrid system
under several defined boundaries (i.e., part load ratio and external temperatures). The data collected
in such a way can be used to derive:

(a) lookup tables, useful for example as input data in a TRNSYS or Energy Plus model for annual
energy evaluation or to test different control strategies at system level;

(b) analytical equations, correlating the EER/COP to the operating conditions. Such equations can
be re-used in a simplified model to be applied for optimization of control strategies.

Indeed, in literature, several model-based approaches are described for the definition of smart
control strategies of air conditioning systems. They make use of simplified correlations between
operating parameters and system performance indicators [76], thermodynamic models of the
components [77], equivalent thermal parameters [78] or more advanced couplings of dynamic models
and optimization methods, i.e., by means of genetic algorithms [79]. The proposed model can,
with limited effort, be used to derive the simplified correlations needed for such applications or,
exploiting the a-causality of the language and the possibility to exchange the model through FMUs,
thus configuring as a useful tool also for the evaluation of control strategies.

7. Conclusions

In the present paper, the model of a hybrid adsorption-compression system, comprising a topping
adsorption cycle and a bottoming vapour compression cycle is described. The system modelled allows
efficient production of cooling the dynamic model of the system was realised in the Modelica language
using the commercial software Dymola and open source libraries, i.e., the Thermocycle library and
the Cool Prop library. Self-developed components for the adsorbers, condenser and evaporator in the
adsorption and compression chiller unit were integrated with existing models, in order to replicate
the layout of the real hybrid system. The model was validated against experimental data of the
adsorber and performance data of the compression chiller, showing deviations lower than 5% and
therefore demonstrating to be a reliable tool. It was subsequently used to verify the operation of the
system under realistic dynamic conditions and as starting point for a technical analysis, useful for
design purposes. A sensitivity analysis was carried out to identify the optimal relative size of the
two units, with respect to nominal value: it was found out that, for properly exploiting the benefits
of the proposed cascade configuration, the adsorption unit should have a nominal cooling power at
least 50% higher than the nominal cooling power of the compression chiller. The results obtained
indicate that the model developed is suitable for evaluation, without excessive computational effort, of
the performance of the system, as well as a valid mean for technical analysis. The peculiarity of the
language adopted and the open source libraries chosen allow also for a high reusability of the models,
that can be easily adapted to different configurations and hybrid systems.
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Nomenclature

A Adsorption potential, kJ
b Equilibrium constant, kg/J
cp Specific heat, kJ/kg K
D Diffusion coefficient, m2/ s
e efficiency
E Adsorption equilibrium coefficient, kJ/kg
h Specific enthalpy, kJ/kg
H Enthalpy, kJ
K Flow coefficient, bar-1/2 kg/s
L Length, m
m Mass, kg
.

m Mass flow, kg/s
N Adsorption equilibrium exponent
p Pressure, Pa
P Electric power, kW
Q Energy, kJ
.

Q Thermal Power, kW
r Radius, m
R Universal gas constant, kJ/(kg K)
rpm Rotations, 1/min
RS Relative size, kW/kW
S Surface, m2

slip Motor slip factor
t Time, s
T Temperature, ◦C
U Internal energy, kJ
V Volume, m3

w Uptake, kg/kg
W Work, kW
w0 Equilibrium constant, kg/kg
x Vapour quality
y Control signal
Greek letters
α Heat transfer coefficient, W/(m2K)
β Adsorption rate constant, 1/s
ε Heat Exchanger effectiveness
κ Hybrid/compression chiller pressure ratio, bar/bar
ρ Density, kg/m3

γ Mean Void Fraction
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Subscripts
ads adsorption
amb ambient
c channel
comp compressor
cond condenser
ev evaporator
el electric
eq equilibrium
hyb hybrid
in inlet
is isentropic
l liquid
mot motor
nom nominal
out outlet
ref refrigerant
s swept
sat saturation
sf secondary fluid
sorb adsorbent
sync synchronous
th thermal
v vapour
vol volumetric
Abbreviations
CV Control Volume
EER Energy Efficiency Ratio, kW/kW
HEX Heat EXchanger
HTF Heat Transfer Fluid
NTU Number of Heat Transfer Units
SB SubCooled
SH SuperHeated
TEXV Thermostatic EXpansion Valve
TP Two Phase

Appendix A

In this appendix, the auxiliary equations used in the model for the adsorption module are given, together
with the parameters used in the simulation.

The vacuum valves in the adsorption module are modelled using existing components from the Thermocycle
library, i.e., valves with a linear correlation for pressure drop as a function of the flow rate of the refrigerant:

.
mre f = fv∆p (A1)

The expansion valve was modelled using the approach described in the SorpLib library, a library for
components of adsorption systems presented in [58]: the flow rate of the liquid refrigerant passing through the
valve depends linearly from the difference between the level of liquid refrigerant in the condenser l and the
desired level lset: .

mre f = fp(level − levelset) (A2)

A list of the parameters of the Dubinin-Ashtakov equation for adsorption equilibrium (Equation (8)) is
reported in Table A1, and the list of the other parameters used in the model is reported in Table A2.
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Table A1. Parameters of equilibrium equation [11].

Phase A [kJ/kg] w0
[kg/kg] E [kJ/kg] n

Adsorption <450
0.31

388.8 3

>450 265 0.8

Desorption

<200

0.3

400 3.5

>200 < 305 810 1.8

>305 < 410 410 6

>410 410 1.2

Table A2. Parameters used in the model of the adsorption module.

Parameter Value Source

αads 120 W m−2 K−1 [40,63]

cpsorb 103 J kg−1 [80]

D 3.3 ·10−10 m2 s−1 Experimental data fitting parameter

hads 2.6 ·106 J kg−1 [61]

fv 10−5 m s [34]

fp 0.1 kg s−1 [34]

msorb 20 kg Provided by the component manufacturer

mmetal,ads 24.5 kg Provided by the component manufacturer

VHTF,ads 10.5 l Provided by the component manufacturer
.

mads 0.5 kg s−1 Provided by the component manufacturer

mref 6 l Provided by the component manufacturer

αHTF,cond 3000 W m−2 K−1 Calculated from experimental data reported in [16]

αHTF,evap 1500 W m−2 K−1 Calculated from experimental data reported in [16]

αref,cond 1000 W m−2 K−1 Calculated from experimental data reported in [16]

αref,evap 500 W m−2 K−1 Calculated from experimental data reported in [16]

mmetal,cond 25 kg Provided by the component manufacturer

mmetal,evap 25 kg Provided by the component manufacturer

VHTF,cond 3.8 l Provided by the component manufacturer

VHTF,evap 3.8 l Provided by the component manufacturer
.

mcond 1.8 kg s−1 Provided by the component manufacturer
.

mevap 0.5 kg s−1 Provided by the component manufacturer

Appendix B

The appendix includes the complete set of equation for modelling the condenser and evaporator, as well as
the main equations for the models of the auxiliary components (valves and pressure drops) and the parameters
used in the simulations.

The heat exchangers for the condenser and evaporator are described by a set of 9 equations (mass and
energy balances in each CV plus the energy balance in the metal wall), following the models described in [68].
These equations, combined with the heat transfer equations using the ε−NTU complete the whole heat exchanger
model. The 2 CV evaporator model can be easily derived from the more general 3 CV implementation by simply
neglecting all the terms associated with the SB control volume. The annotation in the following set of equations
follows the symbols used in the HEX models description schematic (Figure 5):

N
2
·Sc

[
dLSH

dt
(ρSH − ρv) + LSH

dρSH
dt

]
+

.
mA − .

min = 0 (A3)
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N
2

AcLSH

(
ρSH

dhSH
dt

+ hSH
dρSH

dt
− dp

dt
+

dLSH
dt

(ρSHhSH − ρvhv)

)
= QSH + minhin − mhA (A4)

cwall Mwall
L

(
dTwallSH

dt
LA + (TwallSH − TA)

dLSH
dt

)
=

.
Qs f ,SH −

.
QSH (A5)

N
2

ScLTP

[
dρv

dP
γ +

dρl
dP

(1 − γ)

]
dP
dt

+
N
2

Sc

[
dLTP

dt
(ρTP − ρl) +

dLSH
dt

(ρv − ρl)

]
=

.
mA − .

mB (A6)

N
2 Sc

[
LTP

[
γ
(

dρv
dp hv + ρv

dhv
dp

)
+ (1 − γ)

(
dρl
dp hl + ρl

dhl
dp

)]
+ (ρTPhTP − ρlhl)

dLTP
dt +(ρvhv − ρlhl)

dLSH
dt − LTP

dp
dt

]
=

.
mAhv −

.
mBhl + QTP

(A7)

cw Mw

L

[
LTP

dTwTP
dt

+ (TwallA − TwallB)
dLSH

dt
+ (TwallTP − TwallB)

dLTP
dt

]
=

.
Qs f ,TP −

.
QTP (A8)

N
2
·Sc

[(
dLTP

dt
+

dLSH
dt

)
(ρl − ρSB) + LSB

dρSH
dt

]
+

.
mout −

.
mB = 0 (A9)

N
2 ScLSB

[
ρSB

dhSB
dt + hSB

dρSB
dt − dp

dt +
(

dLTP
dt + dLSH

dt

)
(ρlhl − ρSBhSB)

]
= QSB + mBhl − mouthout (A10)

cwall Mwall
L

[
dTwallSB

dt
LSB + (TwallB − TwallSB)

(
dLSH

dt
+

dLTP
dt

)]
=

.
Qs f ,SB −

.
QSB (A11)

As explained in Section 4.2, heat transfer is calculated by means of ε−NTU method. The effectiveness of the
heat exchanger is calculated by the simplified expression derived for isothermal or infinite heat capacity working
fluid (thus avoiding increased model complexity):

ε = 1 − e−NTUSH (A12)

and thus:
NTUSH =

aSHSSH

cp,SH
.

mA+
.

min
2

(A13)

In addition, the heat transfer coefficients were not deemed as constant, but mass flow dependence (a common
practice in ThermoCycle) was considered, by using the general expression:

a = anom

( .
m

.
mnom

)0.8

(A14)

where the subscript “nom” refers to nominal conditions.
The parameters used in both heat exchangers models are summarized in Table A3. The geometrical data are

based on the manufacturer’s datasheet and on estimations using the provided plate weight and dimensions. The
nominal heat transfer coefficient values were calculated using the Dittus−Boelter correlation for single phase flow,
Yan and Lin correlation for evaporation and the Kuo, Lie, Hsieh and Lin correlation for condensation [81], while
the constant terms in each correlation were modified in order to be in line with the manufacturer’s specifications
for the nominal point operation.

Pressure losses in the refrigerant high pressure and low pressure lines as well as in the water loops were
considered using lumped models. The losses follow a quadratic dependence on the mass flow rate based on the
following formula:

.
mre f = K

√
∆p (A15)

where K has been calculated with regards to the nominal conditions.
As explained in the general overview of the model, a 3-way valve model was implemented that allows the

swapping of the hydraulic circuits for switching between cooling and heating modes due to the lack of a 4-way
valve in the refrigerant circuit. This model consists of two standard 2-way Valve components from ThermoCycle.
When the first 2-way valve is fully opened, the second is fully closed, so if the signal controlling the first valve is y,
the signal for the second valve is 1 − y. All the parameters used in the models are summarised in Table A3.
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Table A3. Parameters used in the model of the compression chiller.

Parameter Description Value Source

Heat Exchanger Models

Evaporator Condenser

N Number of plates 24 30 HEX Manufacturer

Sc
(
m2) Cross sectional area of a channel 2.08·10−4 2.08·10−4 HEX Manufacturer

S
(
m2) Heat transfer area 1.32 1.68 HEX Manufacturer

Mwall (kg) Total wall mass 12 16 HEX Manufacturer

cwall (J/kgK) Wall specific heat capacity 490 490 HEX Manufacturer

.
mnom (kg/s)

Refrigerant nominal flow rate for the
refrigerant 0.078 0.078 Chiller Manufacturer

.
ms f ,nom (kg/s) Water nominal flow rate 0.63 0.78 Chiller Manufacturer

aSH,nom(
W/m2K

) Nominal heat transfer coef. SH CV 450 500 Calculated

aTP,nom(
W/m2K

) Nominal heat transfer coef. TP CV 5000 3400 Calculated

aSB,nom
(
W/m2K

)
Nominal heat transfer coef. in SB CV − 500 Calculated

as f ,nom
(
W/m2K

)
Nominal heat transfer coef. for water 7100 8400 Calculated

γ Mean Void Fraction 0.96 0.8 Calculated

∆pnom (bar)
Nominal lumped pressure drop for

the whole refrigerant line 0.2 0.2 Chiller Manufacturer

∆ps f ,nom (bar) Nominal lumped pressure drop on
the water side 0.196 0.12 Chiller Manufacturer

Compressor Model

Vs (cm3/rev) Compressor Swept Volume 51 Chiller Manufacturer

Np Magnetic poles of compressor motor 2 Chiller Manufacturer

slip Slip factor of compressor motor 0.029 Chiller Manufacturer

ev,n
Volumetric efficiency on nominal

conditions 0.945 Calculated

eis,n Isentropic on nominal conditions 0.683 Calculated

TEXV Model

S f ull (mm2) TEXV full open cross sectional area 2.25 Calculated

T(set)
SH (◦C) TEXV Set point 4.2 Standard Value
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