Solid-State NaBH4/Co Composite as Hydrogen Storage Material: Effect of the Pressing Pressure on Hydrogen Generation Rate
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Matos, C.R.; Carneiro, J.F.; Silva, P.P. Overview of Large-Scale Underground Energy Storage Technologies for Integration of Renewable Energies and Criteria for Reservoir Identification. J. Energy Storage 2019, 21, 241–258. [Google Scholar] [CrossRef]
- Jung, E.S.; Kim, H.; Kwon, S.; Oh, T.H. Fuel cell system with sodium borohydride hydrogen generator for small unmanned aerial vehicles. Int. J. Green Energy 2018, 15, 385–392. [Google Scholar] [CrossRef]
- Gong, A.; Verstraete, D. Fuel cell propulsion in small fixed-wing unmanned aerial vehicles: Current status and research needs. Int. J. Hydrogen Energy 2017, 42, 21311–21333. [Google Scholar] [CrossRef]
- Kim, K.; Kim, T.; Lee, K.; Kwon, S. Fuel cell system with sodium borohydride as hydrogen source for unmanned aerial vehicles. J. Power Sources 2011, 196, 9069–9075. [Google Scholar] [CrossRef]
- Kim, T.; Kwon, S. Design and development of a fuel cell-powered small unmanned aircraft. Int. J. Hydrogen Energy 2012, 37, 615–622. [Google Scholar] [CrossRef]
- Salvi, B.L.; Subramanian, K.A. Sustainable development of road transportation sector using hydrogen energy system. Renew. Sustain. Energy Rev. 2015, 51, 1132–1155. [Google Scholar] [CrossRef]
- Hwang, H.T.; Varma, A. Hydrogen storage for fuel cell vehicles. Curr. Opin. Chem. Eng. 2014, 5, 42–48. [Google Scholar] [CrossRef]
- Vasu, G.; Tangirala, A.K.; Viswanathan, B.; Dhathathreyan, K.S. Continous bubble humidification and control of relative humidity of H2 for a PEMFC system. Int. J. Hydrogen Energy 2008, 33, 4640–4648. [Google Scholar] [CrossRef]
- Jiang, H.-L.; Singh, S.K.; Yan, J.-M.; Zhang, X.-B.; Xu, Q. Liquid-Phase chemical hydrogen storage: Catalytic hydrogen generation under ambient conditions. ChemSusChem 2010, 3, 541–549. [Google Scholar] [CrossRef]
- Liu, B.H.; Li, Z.P. A review: Hydrogen generation from borohydride hydrolysis reaction. J. Power Sources 2009, 187, 527–534. [Google Scholar] [CrossRef]
- Demirci, U.B.; Akdim, O.; Hannauer, J.; Chamoun, R.; Miele, P. Cobalt, a reactive metal in releasing hydrogen from sodium borohydride by hydrolysis: A short review and a research perspective. Sci. China Chem. 2010, 53, 1870–1879. [Google Scholar] [CrossRef]
- Sun, H.; Meng, J.; Jiao, L.; Cheng, F.; Chen, J. A review of transition-metal boride/phosphide-based materials for catalytic hydrogen generation from hydrolysis of boron-hydrides. Inorg. Chem. Front. 2018, 5, 760–772. [Google Scholar] [CrossRef]
- Demirci, U.B.; Akdim, O.; Andrieux, J.; Hannauer, J.; Chamoun, R.; Miele, P. Sodium borohydride hydrolysis as hydrogen generator: Issues, state of the art and applicability upstream from a fuel cell. Fuel Cells 2010, 10, 335–350. [Google Scholar] [CrossRef]
- Brack, P.; Dann, S.E.; Upul Wijayantha, K.G. Heterogeneous and homogenous catalysts for hydrogen generation by hydrolysis of aqueous sodium borohydride (NaBH4) solutions. Energy Sci. Eng. 2015, 3, 174–188. [Google Scholar] [CrossRef]
- Simagina, V.I.; Netskina, O.V.; Komova, O.V.; Odegova, G.V.; Kochubei, D.I.; Ishchenko, A.V. Activity of Rh/TiO2 catalysts in NaBH4 hydrolysis: The effect of the interaction between RhCl3 and the anatase surface during heat treatment. Kinet. Catal. 2008, 49, 568–573. [Google Scholar] [CrossRef]
- Netskina, O.V.; Komova, O.V.; Prosvirin, I.P.; Pochtar’, A.A.; Ozerova, A.M.; Simagina, V.I. Solid-State Hydrogen-Generating Composites Based on Sodium Borohydride: Effect of the Heat Treatment of Boron–Cobalt Catalysts on the Hydrogen Generation Rate. Russ. J. Appl. Chem. 2017, 90, 1666–1673. [Google Scholar] [CrossRef]
- Liu, B.H.; Li, Z.P.; Suda, S. Solid sodium borohydride as a hydrogen source for fuel cells. J. Alloys Compd. 2009, 468, 493–498. [Google Scholar] [CrossRef]
- Liu, C.-H.; Kuo, Y.-C.; Chen, B.-H.; Hsueh, C.-L.; Hwang, K.-J.; Ku, J.-R.; Tsau, F.; Jeng, M.-S. Synthesis of solid-state NaBH4/Co-based catalyst composite for hydrogen storage through a high-energy ball-milling. Int. J. Hydrogen Energy 2010, 35, 4027–4040. [Google Scholar] [CrossRef]
- Minkina, V.G.; Shabunya, S.I.; Kalinin, V.I.; Martynenko, V.V. Stability of aqueous-alkaline sodium borohydride formulations. Russ. J. Appl. Chem. 2008, 81, 380–385. [Google Scholar] [CrossRef]
- Minkina, V.G.; Shabunya, S.I.; Kalinin, V.I.; Martynenko, V.V.; Smirnova, A.L. Stability of Alkaline Aqueous Solutions of Sodium Borohydride. Int. J. Hydrogen Energy 2012, 37, 3313–3318. [Google Scholar] [CrossRef]
- Netskina, O.V.; Komova, O.V.; Mukha, S.A.; Simagina, V.I. Aqueous-alkaline NaBH4 solutions: The influence of hydride decomposition on catalytic properties of Co3O4. Catal. Commun. 2016, 85, 9–12. [Google Scholar] [CrossRef]
- Netskina, O.V.; Komova, O.V.; Simagina, V.I.; Odegova, G.V.; Prosvirin, I.P.; Bulavchenko, O.A. Aqueous-alkaline NaBH4 solution: The influence of storage duration of solutions on reduction and activity of cobalt catalysts. Renew. Energy 2016, 99, 1073–1081. [Google Scholar] [CrossRef]
- Netskina, O.V.; Ozerova, A.M.; Komova, O.V.; Odegova, G.V.; Simagina, V.I. Hydrogen storage systems based on solid-state NaBH4/CoxB composite: Influence of catalyst properties on hydrogen generation rate. Catal. Today 2015, 245, 86–92. [Google Scholar] [CrossRef]
- Simagina, V.I.; Ozerova, A.M.; Komova, O.V.; Odegova, G.V.; Kellerman, D.G.; Fursenko, R.V.; Odintsov, E.S.; Netskina, O.V. Cobalt boride catalysts for small-scale energy application. Catal. Today 2015, 242, 221–229. [Google Scholar] [CrossRef]
- Glavee, G.N.; Klabunde, K.J.; Sorensen, C.M.; Hadjapanayis, G.C. Borohydride reductions of metal ions. A new understanding of the chemistry leading to nanoscale particles of metals, borides, and metal borates. Langmuir 1992, 8, 771–773. [Google Scholar] [CrossRef]
- Demirci, U.B.; Miele, P. Cobalt in NaBH4 hydrolysis. Phys. Chem. Chem. Phys. 2010, 12, 14651–14665. [Google Scholar] [CrossRef] [PubMed]
- Paladini, M.; Godinho, V.; Arzac, G.M.; Jiménez De Haro, M.C.; Beltrán, A.M.; Fernández, A. Tailor-made preparation of Co-C, Co-B, and Co catalytic thin films using magnetron sputtering: Insights into structure-composition and activation effects for catalyzed NaBH4 hydrolysis. RSC Adv. 2016, 6, 108611–108620. [Google Scholar] [CrossRef]
- Barreca, D.; Gasparotto, A.; Lebedev, O.I.; MacCato, C.; Pozza, A.; Tondello, E.; Turner, S.; Van Tendeloo, G. Controlled vapor-phase synthesis of cobalt oxide nanomaterials with tuned composition and spatial organization. CrystEngComm 2010, 12, 2185–2197. [Google Scholar] [CrossRef]
- Kim, M.H. Surface Chemical Structures of CoOx/TiO2 Catalysts for Continuous Wet Trichloroethylene Oxidation. Korean, J. Chem. Eng. 2005, 22, 839–843. [Google Scholar] [CrossRef]
- Chang, J.-K.; Wu, C.-M.; Sun, I.-W. Nano-architectured Co(OH)2 electrodes constructed using an easily-manipulated electrochemical protocol for high-performance energy storage applications. J. Mater. Chem. 2010, 20, 3729–3735. [Google Scholar] [CrossRef]
- Xue, T.; Lee, J.-M. Capacitive behavior of mesoporous Co(OH)2 nanowires. J. Power Sources 2014, 245, 194–202. [Google Scholar] [CrossRef]
- Netskina, O.V.; Kochubey, D.I.; Prosvirin, I.P.; Malykhin, S.E.; Komova, O.V.; Kanazhevskiy, V.V.; Chukalkin, Y.G.; Bobrovskii, V.I.; Kellerman, D.G.; Ishchenko, A.V.; et al. Cobalt-boron catalyst for NaBH4 hydrolysis: The state of the active component forming from cobalt chloride in a reaction medium. Mol. Catal. 2017, 441, 100–108. [Google Scholar] [CrossRef]
- Scofield, J.H. Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. J. Electron Spectrosc. Relat. Phenom. 1976, 8, 129–137. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Netskina, O.V.; Tayban, E.S.; Ozerova, A.M.; Komova, O.V.; Simagina, V.I. Solid-State NaBH4/Co Composite as Hydrogen Storage Material: Effect of the Pressing Pressure on Hydrogen Generation Rate. Energies 2019, 12, 1184. https://doi.org/10.3390/en12071184
Netskina OV, Tayban ES, Ozerova AM, Komova OV, Simagina VI. Solid-State NaBH4/Co Composite as Hydrogen Storage Material: Effect of the Pressing Pressure on Hydrogen Generation Rate. Energies. 2019; 12(7):1184. https://doi.org/10.3390/en12071184
Chicago/Turabian StyleNetskina, Olga V., Elena S. Tayban, Anna M. Ozerova, Oxana V. Komova, and Valentina I. Simagina. 2019. "Solid-State NaBH4/Co Composite as Hydrogen Storage Material: Effect of the Pressing Pressure on Hydrogen Generation Rate" Energies 12, no. 7: 1184. https://doi.org/10.3390/en12071184
APA StyleNetskina, O. V., Tayban, E. S., Ozerova, A. M., Komova, O. V., & Simagina, V. I. (2019). Solid-State NaBH4/Co Composite as Hydrogen Storage Material: Effect of the Pressing Pressure on Hydrogen Generation Rate. Energies, 12(7), 1184. https://doi.org/10.3390/en12071184