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Abstract: Reducing both the energy consumption and CO2 emissions of buildings is nowadays one
of the main objectives of society. The use of heating and cooling equipment is among the main
causes of energy consumption. Therefore, reducing their consumption guarantees such a goal. In this
context, the use of adaptive setpoint temperatures allows such energy consumption to be significantly
decreased. However, having reliable data from an external temperature probe is not always possible
due to various factors. This research studies the estimation of such temperatures without using
external temperature probes. For this purpose, a methodology which consists of collecting data from
10 weather stations of Galicia is carried out, and prediction models (multivariable linear regression
(MLR) and multilayer perceptron (MLP)) are applied based on two approaches: (1) using both the
setpoint temperature and the mean daily external temperature from the previous day; and (2) using
the mean daily external temperature from the previous 7 days. Both prediction models provide
adequate performances for approach 1, obtaining accurate results between 1 month (MLR) and
5 months (MLP). However, for approach 2, only the MLP obtained accurate results from the 6th
month. This research ensures the continuity of using adaptive setpoint temperatures even in case of
possible measurement errors or failures of the external temperature probes.

Keywords: adaptive setpoint temperature; weather station; multivariable linear regression;
multilayer perceptron

1. Introduction

1.1. Energy Consumption of Residential Buildings

Global warming, resource depletion, extinction of species, and melting of glaciers constitute
the main concerns faced by current society [1]. One of the main causes of such situations is the
greenhouse gases emitted to the atmosphere due to the energy consumption from the most important
industries and sectors. In this way, building sector is among those most contributing to this situation.
Approximately, buildings are responsible for between 30% and 40% of the total energy consumption [2],
emitting 40% of the total greenhouse gas emissions [3,4]. Also, social and health aspects, such as
energy poverty [5] or the increase of the death rate because of high temperatures [6,7], also constitute
worrying aspects to be solved. Consequently, institutions promote more and more the improvement
of efficient energy of the existing buildings. The European Union has established goals to reduce
the energy consumption and CO2 emissions by 2020, although such goals are proving difficult to
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achieve because both the measures adopted and the proximity of the deadline are not quite effective.
Under this circumstance, the European Union has set a greater goal by 2050, with the aim of having
a low-carbon economy [8].

The improvement of the energy performance has been traditionally focused on improving the
envelope by reducing the thermal transmittance of its elements. However, the improvement of the
performance and the use of HVAC systems have been scarcely studied, despite their high effect
on the energy consumption of a building [9]. Likewise, the large number of buildings with HVAC
systems is relevant to establish energy conservation measures. In Spain [10], more than 50% of
buildings have envelopes with values of thermal transmittance meeting the state regulations [11].
Thus, the improvement of active systems in buildings with not enough effective systems or the
improvement of their use can constitute possible energy conservation measures. In this research, given
the influence of users on energy consumption [12], the decrease of such consumption is suggested
by providing more adequate guidelines of using such systems, that is, by modifying the setpoint
temperatures [13].

1.2. Adaptive Setpoint Temperatures

The influence of setpoint temperatures on the energy consumption has been analysed in many
research studies: (i) Sánchez-García et al. [14] studied the use of a configuration of thermal comfort,
which was different from that used by the regulation in Spain, as an energy conservation measure
in office buildings. The results allowed the heating and cooling energy consumption to be reduced
between 50% and 61%; (ii) in a later study, Sánchez-García et al. [13] analysed the potential of using
mixed modes with adaptive setpoint temperatures in office buildings. The results allowed both
the energy demand and energy consumption to be reduced by 74.6% and 59.7%, respectively, with
respect to the reference model; (iii) Sánchez-Guevara Sánchez et al. [15] applied monthly variations of
setpoint temperatures to a social housing, reducing the energy requirement between 20% and 80%;
(iv) Spyropoulos and Balaras [16] evaluated the possibility of reducing the energy consumption in
39 bank branches in Greece by modifying the setpoint temperatures. A temperature of 26 ◦C for
the upper limit and 20 ◦C for the lower limit resulted in a saving of 45% in the energy consumption;
(v) Yun et al. [17] studied the improvement of using an adaptive comfort model in setpoint temperatures
of office buildings. The energy consumption was decreased by 22%, and 87% of users had acceptable
thermal comfort conditions; and (vi) Hoyt et al. [18] conducted a similar study in office buildings.
The use of a setpoint temperature of 27.87 ◦C for cooling and 18.3 ◦C for heating reduced the energy
consumption between 32% and 73%, according to the climate zone.

Residential buildings are characterized by combining the use of HVAC systems with natural
ventilation (particularly in buildings located in warm regions). Natural ventilation is used when the
external temperature values are acceptable. The HVAC system is used when external conditions exceed
the limits of acceptability. Therefore, an energy saving can be achieved by using models of adaptive
thermal comfort [14]. Such models are based on the natural tendency of people to adapt their clothing,
metabolic rate, and psychological conditions to external climate variations under conditions of natural
ventilation [19], thereby implying thermal comfort limits to be wider than those of the static models
traditionally used [20].

One of the most developed models of adaptive thermal comfort is that included in EN 15251 [21].
This model can be used in those rooms occupied by users with a clothing level between 0.5 and 1
clo (1 clo = 0.155 (m2K)/W) and with a metabolic activity between 1 and 1.3 (1 met = 58 W/m2).
The possibility of implementing such model is by modifying the setpoint temperatures of HVAC
systems [14]. To do this, setpoint temperatures are adapted to the limits of the internal operative
temperature (upper and lower) considered by EN 15251. This new setpoint temperature is known
as adaptive setpoint temperature [14]. When the internal operative temperature is within the limits
of EN 15251, active systems are not used, thus reducing the energy consumption. The use of such
setpoint temperatures allows significant decreases to be obtained depending on the case study and the
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climate zone [14,15,22]. The results show a decrease between 10% and 18% in the cooling consumption
by using adaptive comfort models. To determine the limit values of EN 15251, the equations used are
as follows:

Trm = 0.2·
n

∑
i=1

(
0.8i−1·Text,i

)
(1)

Ti,max = 0.33·Trm + 18.8 + γ (2)

Ti,min = 0.33·Trm + 18.8− γ (3)

where Trm is the running mean temperature (◦C), Text,i is the external temperature from the previous
day i of the day when the running mean temperature (◦C) is calculated, Ti,max is the upper limit value
of the internal operative temperature (◦C), Ti,max is the lower limit value of the internal operative
temperature (◦C), and γ is the value of the level of expectation (◦C). The value of the acceptability level
is determined according to the category of intervention distinguished by EN 15251 (see Table 1).

Table 1. Categories of EN 15251 and acceptability levels.

Categories Description γ

I High level of expectation. The standard recommends its use in buildings occupied by weak and
sensitive people, with special requirements (e.g., sick people, children or elderly). 2

II Normal level of expectation. The standard recommends its use in new and renovated buildings. 3

III Moderate level of expectation. The standard recommends its use in existing buildings. 4

It is worth noting that adaptive setpoint temperatures are determined by using external
temperature values. For their application to real cases, external temperature probes are required [14].

However, measuring the external temperature correctly can be a challenge. As it is known, any
sensor installed in the exterior is at the mercy of being influenced by the external weather. The main
causes for measurement errors in external temperature probes are the solar radiation and the wind [23].
The effect of the solar radiation is quite significant in probes because of the warming generated in
the sensor [24–26]. Therefore, the error generated in the sensor increases as the solar radiation is
higher [27]. Thus, the sensors installed in façades with a high solar radiation (e.g., façades facing
east or west) can present distortions in measurements. Also, reflected radiation sources, such as the
albedo of surfaces covered by snow [28,29] and the zenith angle of the sun [30,31], can also distort
temperature measurements. Such measurement errors can be of several degrees [29,32,33].

The lack of radiant elements does not mean the lack of distortions in measurements. Even when
there are robust instruments and no radiant elements affecting the probe, the measurement of the
air temperature can be influenced by the wind action over the surface of the sensor, the existing
vegetation, and close buildings [31,34]. Likewise, performing accurate measurements of the external
air temperature is something of a challenge when there is a thermal gradient in a short distance, such
as the existing area under the awning [35].

Thus, the implementation of adaptive setpoint temperatures in buildings can be limited if the
external temperature probes are not installed under adequate conditions, or even if the probe gets
damaged due to the lack of a good maintenance plan. This could result in a mistaken estimation of the
adaptive setpoint temperatures. For this reason, new methodologies to determine the adaptive setpoint
temperatures are suggested in this research. Data from weather stations of official meteorological
agencies were used, thereby guaranteeing that data from installations do not present errors because
of environmental aspects as well as that equipment is correctly installed thanks to the maintenance
plans of such agencies. Also, adaptive setpoint temperatures are used without having external
probes, thus ensuring both the economic saving in the investment and a greater implementation
rate. To determine the adaptive setpoint temperatures, two different approaches were used, and two
different regression algorithms (multivariable linear regression and multilayer perceptron) were in
turn used in each approach.
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This article is divided as follows: Section 2 describes the methodology, that is, characteristics of
the equipment used, the approaches to determine the adaptive setpoint temperatures, the regression
algorithms, and the procedures of training and validation of models. Section 3 discusses the results
obtained. Finally, Section 4 summarizes the main conclusions.

2. Methodology

2.1. Case Study

Galicia is the autonomous community located in the northwest region of Spain (Figure 1). This
region covers an area of 29,575 km2, with a population of 2,701,743 people in 2018 [36,37]. In this area,
the climate is oceanic Mediterranean (Csb) according to the Köppen-Geiger climate classification [38].
This climate typology is found in various other geographical points of the planet, such as Chile or
the United States [38]. However, the climate in Galicia is influenced by the topography of the region.
The topography significantly influences climate because precipitation pattern, relative humidity,
temperatures, and solar radiation will vary according to the altitude [39–42]. Thus, in Galicia, where
the altitude varies from 0 to more than 1000 m above sea level, there are various microclimates [43].
In this way, the Spanish Building Technical Code distinguishes six different climate zones according to
the climate severity of winter and summer [11].
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Figure 1. Location of the case study and the weather stations used. Further information of the weather
stations can be found in Table 3.

The case study is located in San Vicente de Elviña (Figure 1), at a latitude of 43.33001 and
a longitude of −8.41179 (WGS84 coordinate system). It is at an altitude of 55 m. The temperature
and the relative humidity were monitored using a CR1000 datalogger (Campbell Scientific, Logan,
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UT, USA) with a HC2S3 sensor (Figure 2). The technical specifications of the probe are indicated in
Table 2. The measurement interval was 30 min throughout almost 3 years (from 12 February 2016
to 17 December 2018). Each instance of the dataset was the average of 1800 measures. The sensor
was placed in a pole closed to the wall of the case study, at a distance of 20 cm from the façade and
150 cm from the slab. The sensor was located facing north to avoid the effects of solar radiation [44].
Also, the sensor had a Campbell RAD10 multi-plate radiation shield. By obtaining the measurements
of the external temperature, the adaptive setpoint temperatures (upper and lower limits) could be
determined for categories I, II, and III from EN 15251.
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Table 2. Technical specifications of the external temperature probe used.

Technical Specification Values

Measurement Range −50 to 100 ◦C (default −40 to 60 ◦C)
Output Signal Range 0 to 1 V

Accuracy ±0.1 ◦C with standard configuration settings (at 23 ◦C)
Long-Term Stability <0.1 ◦C/year

2.2. Weather Stations

As mentioned in Section 1, the objective of this research was determining adaptive setpoint
temperatures without using external temperature probes. For this purpose, data from weather stations
of an official meteorological agency, MeteoGalicia, were used. MeteoGalicia is a meteorological agency
which is dependent of the Consellería de Medio Ambiente, Territorio e Infraestruturas of the Xunta de
Galicia. Nowadays, such agency includes in its website a wide variety of environmental observation
datasets from different weather stations.

The weather stations selected for this study were as follows: Coruña-Hércules, Coruña-Bens, Rio
do Sol, A Gándara, Coto Muiño, Santiago EOAS, Sambreixo, Xesteiras, Cariño, and Salvora. From such
stations, the values of the average daily temperature at 1.5 m, which were registered in the same test
period that the case study, were compiled. As can be seen in Figure 1 and Table 3, such weather stations
were selected because they present important differences in the altitude and the distance between
coordinates with respect to the case study. The average values of the daily external temperature had
therefore differences with respect to the case study (Figure 3). In this sense, the weather stations
located in areas with a high altitude, such as Sambreixo or Xesteiras, presented different temperature
distributions. With this aspect, the limitations that may exist in the methodologies used in case of
using data from weather stations under different climate conditions were assessed.
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Table 3. Coordinates of the weather stations.

Weather Station Latitude a Longitude a Altitude
(m)

Distance from the
Case Study (m)

Height Difference with
Respect to the Case Study (m)

1. Coruña-Hercules 43.3829 −8.40993 21 5883.02 −34
2. Coruña-Bens 43.3634 −8.44187 131 4438.60 76
3. Rio do Sol 43.0952 −8.69099 540 34,549.61 485
4. A Gándara 43.1081 −9.05694 405 57,808.57 350
5. Coto Muiño 43.028873 −8.974914 317 56,622.68 262
6. Santiago EOAS 42,876 −8.55944 255 51,887.22 200
7. Sambreixo 43.1457 −7.79112 496 54,295.09 441
8. Xesteiras 42.6756 −8.58618 715 74,136.00 660
9. Cariño 43,734 −7.86335 5 63,029.12 −50
10. Salvora 42.4649 −9.01364 24 107,967.54 −31

a WGS84 coordinate system.

Energies 2019, 12, x FOR PEER REVIEW 6 of 47 

 

 
Figure 3. Box-plots of the daily temperatures of the case study and the weather stations. The upper 
and bottom lines represent 25% of the data distribution of maximum and minimum values, 
respectively. The points are outliers in the data distribution. 

Table 3. Coordinates of the weather stations. 

Weather Station Latitude a Longitude a Altitude (m) 
Distance from the 

Case Study (m) 
Height Difference with 

Respect to the Case Study (m) 
1. Coruña-Hercules 43.3829 −8.40993 21 5883.02 −34 
2. Coruña-Bens 43.3634 −8.44187 131 4438.60 76 
3. Rio do Sol 43.0952 −8.69099 540 34,549.61 485 
4. A Gándara 43.1081 −9.05694 405 57,808.57 350 
5. Coto Muiño 43.028873 −8.974914 317 56,622.68 262 
6. Santiago EOAS 42,876 −8.55944 255 51,887.22 200 
7. Sambreixo 43.1457 −7.79112 496 54,295.09 441 
8. Xesteiras 42.6756 −8.58618 715 74,136.00 660 
9. Cariño 43,734 −7.86335 5 63,029.12 −50 
10. Salvora 42.4649 −9.01364 24 107,967.54 −31 

a WGS84 coordinate system. 

The temperature values obtained by the weather stations were measured by using the sensors 
indicated in Table 4. Despite sensors are designed for being used under unfavourable external 
conditions (e.g., rainfalls or solar radiation), they were installed inside a protection box to guarantee 
that the data registered by the sensors of each weather stations did not present errors. 

Figure 3. Box-plots of the daily temperatures of the case study and the weather stations. The upper and
bottom lines represent 25% of the data distribution of maximum and minimum values, respectively.
The points are outliers in the data distribution.

The temperature values obtained by the weather stations were measured by using the sensors
indicated in Table 4. Despite sensors are designed for being used under unfavourable external
conditions (e.g., rainfalls or solar radiation), they were installed inside a protection box to guarantee
that the data registered by the sensors of each weather stations did not present errors.
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Table 4. Temperature and humidity sensors of each weather station.

Sensor Measurement Range Accuracy Weather Station

Vaisala HMP155 −80–60 ◦C ±0.25 ◦C Coruña-Hércules, Coruña-Bens, Rio do Sol, A
Gándara, Coto Muiño, Sambreixo, Cariño, Salvora

Geónica STH-5031 −40–60 ◦C ±0.10 ◦C Santiago EOAS

Rotronic HC2A-S3 −50–100 ◦C ±0.30 ◦C Xesteiras

2.3. Approaches for Estimating Adaptive Setpoint Temperatures

To estimate the adaptive setpoint temperatures, two approaches were designed (Table 5):
(i) approach 1, where the adaptive setpoint temperature is determined with the adaptive setpoint
temperature from the previous day and the mean daily external temperature from the previous day of
the weather station; and (ii) approach 2, where the adaptive setpoint temperature is determined with
the mean daily temperatures of the 7 previous days. Such approaches were designed in accordance
with criteria from EN 15251 to estimate the limits of adaptive thermal comfort. Moreover, they were
designed to estimate both upper and lower limits. Input and output variables were used by the
regression algorithms described in Section 2.4 to generate prediction models of each weather station.

Table 5. Input and output variables for each approach.

Approach Input Variables Output Variables

Approach 1 Text,d−1, Tsp,d−1
a Tsp,d

a

Approach 2 Text,d−1, Text,d−2, Text,d−3, Text,d−4, Text,d−5, Text,d−6, Text,d−7 Tsp,d
a

Text,d−n: mean daily external temperature from the previous n days; Tsp,d−1: adaptive setpoint temperature from
the previous day; Tsp,d: adaptive setpoint temperature from the current day. a Adaptive setpoint temperature
corresponding to the upper and lower limit. Regarding approach 1, the limit of the adaptive setpoint temperature
will be the same for both input and output variable.

2.4. The Regression Algorithms Used

To generate the prediction models, two regression algorithms were used: a multivariable linear
regression (MLR) and a multilayer perceptron (MLP).

2.4.1. MLR

MLR is a classic regression algorithm which connects a dependent variable (yi) with independent
variables p:

yi = β0 + ∑ βpXpi + εi (4)

where Xpi are the independent variables (also called explicative), p is the number of the independent
variables, β0 is the constant term, βp is the influence of variables on the dependent variable, and εi is
the term of error (also called term of noise).

MLR is based on a linear statistical model without needing adjustment parameters, and this
is an advantage by applying it [45]. Another advantage is understanding the existing relationship
between the independent variables and the dependent variable [46]. Such algorithm has therefore
been widely used to estimate and predict in the energy analysis of buildings: (i) Pulido-Arcas et al. [46]
developed 18 MLRs to estimate the energy consumption and CO2 emissions in office buildings
which were located in 9 cities of Chile. The correlation coefficient obtained by the models ranged
between 91.81% and 99.56%, thereby reflecting the possibilities of using such models for the energy
characterization of office buildings; (ii) Qiang et al. [47] developed MLR models to estimate the daily
mean cooling load in HVAC systems of office buildings in Tianjin (China). The estimations obtained
by the models presented a mean absolute percentage error lower than 8% with respect to the real
values; (iii) Amber et al. [48] developed an MLR to estimate the daily energy consumption in university
buildings. The independent variables of the model were external temperature, relative humidity, solar
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radiation, wind speed, weekday index (1 for working days and 0 for the remaining days), and type
of building. The results obtained error parameters between 12% and 13% according to the type of
building analysed; (iv) a wider approach was given by Kialashaki and Reisel [49]. These authors
developed MLRs to estimate the energy demand of the residential building stock in United States. The
performance of the models obtained correlation coefficients greater than 95%; and (v) the problem
of reducing the energy consumption in the design phase was analysed by Asadi et al. [50]. In such
study, the use of MLRs to estimate the energy consumption of commercial buildings was assessed by
using the input variables of the envelope and the morphology of the building, as well as the building
occupancy schedule.

2.4.2. MLP

MLPs simulate, through mathematical models, the behaviour of the nervous system. As in
the biological model, the artificial neuron is in charge of receiving, processing, and transmitting
information to the following multiple neurons [51]. The output information is obtained from the
processing through the network of the input information (Figure 4). To integrate and compute the
information from the environment and other neurons, the artificial neuron uses the propagation,
activation, and transfer function. Generally, the propagation function (Equation (5)) is the sum of each
input (pj) multiplied by a weight (Wij):

nj =
n−1

∑
i=0

Wji pi (5)
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The activation function (AF) modifies the value obtained in the propagation function
(Equation (6)), thus relating the input of each neuron to the next activation state. At the output
of the neuron, there could be a threshold function establishing a limit value, which should be exceeded
before being propagated to another neuron (Equation (7)). This function is known as the transfer
function (TF). The next point to define an MLP is to determine the network topology to be used. MLPs
are mainly divided into feedforward and feedback networks. The first network moves the information
to a single direction (input towards output), and the second to any direction:

ai(t) = AF(ai(t− 1), ni(t− 1)) (6)

outi = TF(ai(t)) (7)

where nj(t− 1) is the input value of the neuron, aj is the activation value, and t is the iteration.
MLPs constitute nowadays one of the most used regression algorithms because they generally

have a better performance than other regression algorithms [52,53]. In consequence, they have
been used in many research works to assess the energy performance of buildings and installations:
(i) Attoue et al. [54] developed a model of artificial neural network to estimate the variation of the



Energies 2019, 12, 1197 9 of 47

internal temperature so that the energy consumption in the building could be optimized. By using the
three-hour façade temperature history and the external temperature as input variables, the internal
temperature could be suitably estimated until two hours after obtaining the input data; (ii) Zabada
and Shahrour [55] carried out an analysis using an artificial neural network to assess the influence of
different parameters on heating cases in social dwellings in France. Such analysis reflected that some
parameters, such as the surface of the dwelling, date of construction, and the energy performance,
influenced the heating consumption. Likewise, social indicators such as family size, member age, and
tenant income influenced the heating expense; (iii) Yu et al. [56] developed an MLP to estimate the
heating energy demand in residential buildings. The model was validated with actual demand values
in residential buildings of Chongqing (China). The errors of the estimation obtained by the model were
lower than ±2.5%; (iv) a similar approach was carried out by Deb et al. [57] to estimate the diurnal
cooling load in institutional buildings. The MLP developed allowed the cooling loads in the following
20 days to be accurately predicted; and (v) Moon et al. [58] developed an MLP for the thermal control
in buildings with double skin envelopes by using the air gap temperature and the internal and external
air temperatures, among others, as input variables. The performance of the MLP was analysed for
several opening strategies in heating or cooling situations.

2.5. Dataset, Training, and Testing of the Models

The development, validation, and testing of the approaches and the prediction models followed
the flowchart of Figure 5. Firstly, measurements performed by the external probe of the case study
and the weather stations of MeteoGalicia were compiled. Then, adaptive setpoint temperatures of the
3 categories from EN 15251 (Equations (1)–(3)) were determined. The running mean temperature was
obtained through data of the temperature probe of the case study. It is worth highlighting that the
limit value obtained from Equations (2) and (3) (e.g., for the upper limit of category III, temperatures
of 26.10 and 32.70 were used for their minimum and maximum values, respectively) was used in those
cases in that the running mean temperature is not within the application of the standard (i.e., when
such temperature is not between 10 and 30 ◦C for the upper limit, and not between 15 and 30 ◦C for
the lower limit).

The full dataset was generated by using such data, with a total of 1040 instances (measurement
days). Both the training and testing dataset were generated with such dataset (Table 6). The training
datasets were used to generate individual models for each weather station as well as for each limit
of adaptive setpoint temperature (upper or lower), using MLR or MLP as regression algorithms.
To generate the MLR models, the Akaike information criterion was used [59].

Table 6. Datasets used.

Dataset Number of Instances (days) First Date Last Date

Training 365 12 February 2016 11 February 2017
Testing 675 12 February 2017 17 December 2018

For the MLPs, only architectures of three layers (input, hidden, and output layers) were
used because they generally have performances better than more complex architectures [60]. The
sigmoid function has been selected as a transfer function. In the training of the MLPs, the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [61] has been chosen, thus minimizing the
mean squared error of the difference between the outputs in each step. Likewise, the training was
carried out using a 10-fold cross validation, thereby dividing randomly the training dataset into
10 subsets: for each fold, 9 subsets were used as a training dataset, and the remaining subset was used
to assess the performance of each model. Through this procedure, both the error and the variance of
the model decreased [62].

The testing dataset was used to determine the error of generalization of the models obtained in
the training phase. The performance of each model was assessed by analysing three quality statistical
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parameters: the linear correlation coefficient (R2) (Equation (8)), the mean absolute error (MAE)
(Equation (9)), and the root mean square error (RMSE) (Equation (10)):

R2 =

(
1− ∑n

i=1(ti −mi)
2

∑n
i=1
(
ti − ti

)2

)
(8)

MAE =
∑n

i=1|ti −mi|
n

(9)

RMSE =

(
∑n

i=1(ti −mi)
2

n

)1/2

(10)

where mi is the model’s estimation, ti is the actual value of adaptive setpoint temperature, and n is the
number of observations in the dataset.
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3. Results and Discussion

After generating the dataset, the estimation models were analysed. This section is structured by
distinguishing the approach used and the performance obtained by the MLR and MLP models in each
of them. As mentioned in Section 2.5, all models were created by using a training dataset of 1 year, and
the testing dataset corresponds to the remaining period of time (675 days). Based on the similarity of
the results of the statistical parameters of the models for the three categories of EN 15251, the values of
category III are indicated in the following tables to make its reading easier because variations presented
by the statistical parameters between the different categories were lower than 2%. Appendix A shows
the point clouds between the actual and estimated values for the different categories so that the reader
can visualize the accuracy level of the estimations performed by each model.
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3.1. Approach 1: With the Setpoint Temperature and the External Temperature from the Previous Day

As mentioned above, this approach consisted of determining the adaptive setpoint temperature
with external temperature data from the previous day (Text,d−1) and the adaptive setpoint temperature

from the previous day
(

Tsp,d−1

)
. Depending on the limit to be estimated (upper or limit), the setpoint

temperature from the previous day for such limit is used.
It is worth noting the importance of using the setpoint temperature from the previous day. Such

temperature was used because it generated an adjustment degree on the models. In this sense, Figures 6
and 7 show how including Tsp,d−1 generated a high adjustment between the actual and the estimated
values. Despite the high adjustment obtained with Tsp,d−1, Text,d−1 is required to be considered as
an independent variable because it reduces the error related to the estimations when the external
temperature fluctuations are presented.
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3.1.1. MLR

First, the performance of approach 1 was analysed using the MLR as a regression algorithm.
Table 7 indicates the performances obtained by the MLRs, and Figures A1–A3 and Figures A13–A15
in Appendix A show the point clouds between the actual and the estimated values of the different
categories from EN 15251. As can be seen, the performance obtained by the MLRs was quite adjusted.
In this sense, R2 was always greater than 99% both in the training and the testing of the upper and lower
limits. There were no great deviations in the estimation of the limit values (values which are not within
the application of the standard), with a mean deviation value of 0.06 ◦C in these temperatures. Also,
MAE and RMSE were lower than 0.10 and 0.15, respectively, in the testing phase of almost all models,
and only in some cases the error parameters were higher than these two values, although the increase
in the error parameters was always lower than 25%. By using data from distant weather stations,
a lower performance was not detected either. As seen in Section 2.2, the weather stations of Sambrexio,
Xesteiras, Cariño, and Salvora were those more distant from the case study. The performances of
the models generated with data from such weather stations were analysed, and the results obtained
were similar to those from other nearer weather stations, even obtaining better performances (e.g., the
MLPs of the weather station of Sambreixo, with statistical parameters better than those of the weather
stations of Rio do Sol and A Gándara). Only the MLPs of the weather station of Xesteiras obtained
a less adjusted performance than the other models, although the correlation coefficient was greater
than 99%.

Table 7. Results of the training and testing of the MLR models of approach 1.

Model
Upper Limit Lower Limit

R2 MAE RMSE R2 MAE RMSE

Training
Coruña-Hercules 99.71 0.0696 0.0911 99.01 0.0654 0.0936

Coruña-Bens 99.70 0.0694 0.0923 99.10 0.0650 0.0895
Rio do Sol 99.51 0.0887 0.1183 99.04 0.0640 0.0921
A Gándara 99.54 0.0876 0.1147 99.06 0.0642 0.0915
Coto Muiño 99.72 0.0689 0.0903 99.07 0.0649 0.0908

Santiago EOAS 99.72 0.0675 0.0901 99.07 0.0641 0.0911
Sambreixo 99.66 0.0774 0.0984 99.05 0.0651 0.0919
Xesteiras 99.36 0.1006 0.1356 99.00 0.0642 0.0940
Cariño 99.58 0.0815 0.1099 98.96 0.0643 0.0959
Salvora 99.71 0.0696 0.0911 99.01 0.0654 0.0936

Testing
Coruña-Hercules 99.61 0.0774 0.1087 99.18 0.0679 0.0956

Coruña-Bens 99.52 0.1249 0.1525 99.22 0.0695 0.0954
Rio do Sol 99.53 0.0906 0.1218 99.21 0.0674 0.0937
A Gándara 99.54 0.0927 0.1209 99.21 0.0671 0.0941
Coto Muiño 99.76 0.0654 0.0853 99.27 0.0659 0.0905

Santiago EOAS 99.76 0.0649 0.0849 99.25 0.0667 0.0915
Sambreixo 99.61 0.0796 0.1077 99.17 0.0695 0.0964
Xesteiras 99.46 0.0999 0.1291 99.20 0.0671 0.0948
Cariño 99.62 0.0830 0.1076 99.11 0.0709 0.0999
Salvora 99.61 0.0774 0.1087 99.18 0.0679 0.0956

Another aspect to be considered was the minimum size of the training dataset to obtain valid
results in the next months. Figure 8 shows how estimations with R2 greater than 95% and values of
MAE and RMSE lower than 0.11 and 0.19, respectively, were obtained by using training sample of
only a month. Moreover, the performance obtained was almost the same compared with the model
generated with a training dataset of 1 year. The only requirement to obtain an accurate estimation is
that the training period of 1 month is not composed only by days which are not within the limits of
application (i.e., when the running mean temperature is not between 15 and 30 ◦C for the upper limit,
and not between 10 and 30 ◦C for the lower limit). This aspect is quite relevant because, if the HVAC
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system has an external temperature probe to record external temperatures, the predictive model could
be generated by using data of a month, so the continuity of using adaptive setpoint temperatures is
ensured even if the probe fails in a short period of time.
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3.1.2. MLP

Despite the high performance obtained by the MLRs in approach 1, the MLPs were also analysed.
Table 8 indicates the values of statistical parameters obtained in the training and testing phases of the
different models.

Table 8. Results of the training and testing of the MLP models of approach 1.

Model
Upper Limit Lower Limit

R2 MAE RMSE R2 MAE RMSE

Training
Coruña-Hercules 99.26 0.1112 0,146 98.99 0.0629 0.0969

Coruña-Bens 99.25 0.1117 0.1463 99.00 0.0623 0.0956
Rio do Sol 99.24 0.1100 0.1480 99.01 0.0596 0.0940
A Gándara 99.19 0.1144 0.1521 98.98 0.0619 0.0956
Coto Muiño 99.28 0.1089 0.1437 99.03 0.0591 0.0932

Santiago EOAS 99.31 0.1073 0.1410 99.12 0.0595 0.0899
Sambreixo 99.34 0.1051 0.1380 99.06 0.0606 0.0917
Xesteiras 99.13 0.1168 0.1575 98.88 0.0627 0.0998
Cariño 99.21 0.1143 0.1505 98.92 0.0659 0.0980
Salvora 99.26 0.1112 0.1459 98.99 0.0640 0.0973

Testing
Coruña-Hercules 99.31 0.1197 0,157 99.18 0.0743 0.1072

Coruña-Bens 99.39 0.1158 0.1499 99.07 0.1123 0.1604
Rio do Sol 99.30 0.1313 0.1638 99.15 0.0790 0.1108
A Gándara 99.31 0.1284 0.1621 99.13 0.0743 0.1102
Coto Muiño 99.42 0.1260 0.1624 99.28 0.0830 0.1032

Santiago EOAS 99.46 0.1108 0.1438 99.34 0.0733 0.0961
Sambreixo 99.40 0.1414 0.1805 99.31 0.0808 0.1008
Xesteiras 99.30 0.1260 0.1610 99.18 0.0763 0.1057
Cariño 99.38 0.1252 0.1554 99.16 0.0770 0.1146
Salvora 99.31 0.1202 0.1581 99.19 0.0707 0.0998
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Also, the adjustment degree of the estimated values for each instance of the testing dataset is
shown in Appendix A (Figures A4–A6 and Figures A16–A18). As can be seen, the performance
obtained was similar to that of the MLRs: R2 was greater than 99%, and MAE and RMSE were lower
than 0.10 and 0.15, respectively. Likewise, differences between the models of weather stations nearer or
more distant from the case study were not detected, and identical results were obtained for the models
of categories I and II. Apart from such similarity between the MLRs and MLPs of approach 1, there is
a difference between both models that can limit the use of the MLPs: the size of the training dataset.
As can be seen in Figure 9, the minimum size of a training dataset to obtain an acceptable performance
is of 5 months, although increasing the training sample in 11–12 months would allow a greater stability
in predictions to be guaranteed. In this sense, as can be proved in models of Table 8 (generated with
a training dataset of 1 year), the performance of the estimations in the 675 days which composed the
testing dataset was quite adjusted. Given that both the MLRs obtained similar performances and the
minimum size of the training dataset for the MLRs is lower (1 month), the MLRs are therefore more
possible to be used than the MLPs.
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3.2. Approach 2: With Average Temperatures of the Last Seven Days

As mentioned in Section 2.3, this approach consisted of determining the adaptive setpoint
temperature of the upper and lower limits by using external temperature data from the previous
7 days (Text,d−1, Text,d−2, Text,d−3, Text,d−4, Text,d−5, Text,d−6, Text,d−7). It was necessary to consider using
the 7 external temperatures from the previous days because their performance improved for the MLR
models (Figure 10) and the MLP models (Figure 11) by increasing the number of input variables.

3.2.1. MLR

As in the models of approach 1, the performance of the models of the different weather stations
was first assessed for the adaptive setpoint temperatures of categories I, II, and III.
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As in the models of approach 1, the performance of the models of the different weather stations 
was first assessed for the adaptive setpoint temperatures of categories I, II, and III.  

Table 9. Results of the training and testing of the MLR models of approach 2. 

Model Upper Limit Lower Limit ࡾ ࡾ ࡱࡿࡹࡾ ࡱࡹ ࡱࡿࡹࡾ ࡱࡹ 
Training       

Coruña-Hercules 98.20 0.1621 0.2251 85.25 0.2865 0.3490 
Coruña-Bens 97.97 0.1747 0.2389 86.03 0.2835 0.3404 

Rio do Sol 94.04 0.3138 0.4057 83.03 0.2965 0.3721 
A Gándara 94.42 0.3026 0.3930 83.25 0.2947 0.3699 
Coto Muiño 98.44 0.1523 0.2100 87.45 0.2686 0.3238 

Santiago EOAS 97.69 0.1952 0.2548 87.31 0.2637 0.3255 
Sambreixo 97.96 0.1843 0.2398 87.11 0.2688 0.3279 
Xesteiras 90.88 0.3859 0.4978 81.60 0.2993 0.3860 
Cariño 97.00 0.2173 0.2903 87.06 0.2652 0.3285 
Salvora 98.20 0.1621 0.2251 85.25 0.2865 0.3490 
Testing       

Coruña-Hercules 97.35 0.2039 0.3017 86.04 0.3300 0.3884 
Coruña-Bens 96.91 0.4471 0.5543 91.03 0.2769 0.3434 

Rio do Sol 97.71 0.2640 0.3171 88.17 0.3089 0.3669 
A Gándara 97.52 0.2830 0.3354 88.62 0.3053 0.3643 
Coto Muiño 98.75 0.1581 0.2086 89.83 0.2805 0.3376 

Santiago EOAS 98.39 0.1884 0.2333 89.13 0.2914 0.3430 
Sambreixo 98.34 0.1684 0.2267 87.78 0.2986 0.3621 
Xesteiras 95.40 0.3482 0.4116 86.79 0.3200 0.3853 
Cariño 98.13 0.1925 0.2619 87.89 0.2998 0.3623 
Salvora 97.35 0.2039 0.3017 86.04 0.3300 0.3884 

Figure 10. Influence of the number of the external temperatures used on the MLR model of A Gándara.
Values obtained from the training of the model of the upper limit.
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Figure 11. Influence of the number of the external temperatures used on the MLP model of A Gándara.
Values obtained from the training of the model of the upper limit.

Results show that the models presented two different behaviours (Table 9): (i) on the one hand,
the models for adaptive setpoint temperatures of the upper limit presented acceptable performances in
some of the weather stations, with R2 in the testing phase greater than 95% in most of the models, and
values of MAE and RMSE lower than 0.3 and 0.4, respectively. The worst estimations were when the
running mean temperature presented values which were not within the applicability range of EN 15251
for the upper limit (in the case study analysed, values lower than 15 ◦C). In such cases, the estimation
carried out by the model presented an error of 1 ◦C (see Appendix A). However, given that these
cases are when using heating systems is required, the estimation for the upper limit is acceptable;
and (ii) on the other hand, the models for the lower limit presented a low adjustment. In this sense,
R2 ranged between 81.60% and 87.45% in the training phase, and between 86.04% and 91.03% in the
testing phase. Like for the upper limit, this was due to the difficulties of estimating both models for
the days in that the running mean temperature was not within the applicability range for the lower
limit. This aspect, together with the large number of instances (days) with values of static setpoint
temperatures (202 days in the training dataset and 326 days in the testing dataset) made the obtaining
of accurate results something of a challenge (Appendix A). The use of the MLRs with approach 2 was
not therefore adequate to estimate the adaptive setpoint temperatures accurately.

3.2.2. MLP

The MLRs of approach 2 did not obtain acceptable results, so the performance that could be
obtained with such approach was analysed by using the MLPs as a regression algorithm. Table 10
indicates the adequate performance presented by some of the models. Except the weather stations
of Coruña-Bens, Rio do Sol, A Gándara, and Xesteiras, the remaining models obtained correlation
coefficients greater than 95% in the training and testing phases in both limits, with acceptable error
parameters. In this sense, MAE oscillated between 0.0800 and 0.1828, and RMSE between 0.1236
and 0.2337 in the estimations of the setpoint temperatures of such models of the upper limit (see
Figures A10–A12) and the lower limit (see Figures A22–A24). These values allowed estimations to be
carried out with an adequate adjustment degree of the adaptive setpoint temperatures of the upper
and lower limits.
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Table 9. Results of the training and testing of the MLR models of approach 2.

Model
Upper Limit Lower Limit

R2 MAE RMSE R2 MAE RMSE

Training
Coruña-Hercules 98.20 0.1621 0.2251 85.25 0.2865 0.3490

Coruña-Bens 97.97 0.1747 0.2389 86.03 0.2835 0.3404
Rio do Sol 94.04 0.3138 0.4057 83.03 0.2965 0.3721
A Gándara 94.42 0.3026 0.3930 83.25 0.2947 0.3699
Coto Muiño 98.44 0.1523 0.2100 87.45 0.2686 0.3238

Santiago EOAS 97.69 0.1952 0.2548 87.31 0.2637 0.3255
Sambreixo 97.96 0.1843 0.2398 87.11 0.2688 0.3279
Xesteiras 90.88 0.3859 0.4978 81.60 0.2993 0.3860
Cariño 97.00 0.2173 0.2903 87.06 0.2652 0.3285
Salvora 98.20 0.1621 0.2251 85.25 0.2865 0.3490

Testing
Coruña-Hercules 97.35 0.2039 0.3017 86.04 0.3300 0.3884

Coruña-Bens 96.91 0.4471 0.5543 91.03 0.2769 0.3434
Rio do Sol 97.71 0.2640 0.3171 88.17 0.3089 0.3669
A Gándara 97.52 0.2830 0.3354 88.62 0.3053 0.3643
Coto Muiño 98.75 0.1581 0.2086 89.83 0.2805 0.3376

Santiago EOAS 98.39 0.1884 0.2333 89.13 0.2914 0.3430
Sambreixo 98.34 0.1684 0.2267 87.78 0.2986 0.3621
Xesteiras 95.40 0.3482 0.4116 86.79 0.3200 0.3853
Cariño 98.13 0.1925 0.2619 87.89 0.2998 0.3623
Salvora 97.35 0.2039 0.3017 86.04 0.3300 0.3884

Table 10. Results of the training and testing of the MLP models of approach 2.

Model
Upper Limit Lower Limit

R2 MAE RMSE R2 MAE RMSE

Training
Coruña-Hercules 98.86 0.1376 0.1805 97.81 0.0950 0.1393

Coruña-Bens 97.29 0.2280 0.2869 96.24 0.1343 0.1862
Rio do Sol 93.47 0.3336 0.4263 87.31 0.2330 0.3280
A Gándara 94.02 0.3501 0.4483 86.99 0.2365 0.3339
Coto Muiño 98.97 0.1350 0.1716 97.91 0.0969 0.1362

Santiago EOAS 97.19 0.2204 0.2810 94.88 0.1507 0.2136
Sambreixo 98.23 0.1799 0.2278 97.12 0.1105 0.1600
Xesteiras 88.74 0.4402 0.5521 82.40 0.2803 0.3849
Cariño 96.92 0.2266 0,295 95.23 0.1293 0.2046
Salvora 98.86 0.1376 0.1805 97.81 0.0950 0.1393

Testing
Coruña-Hercules 98.52 0.1551 0,221 98.09 0.1031 0.1643

Coruña-Bens 96.77 0.4797 0.6048 96.58 0.3583 0.5248
Rio do Sol 97.43 0.2303 0.2861 94.24 0.1947 0.2827
A Gándara 97.06 0.2362 0.3004 93.96 0.1470 0.2594
Coto Muiño 99.03 0.1417 0.1865 98.70 0.0800 0.1236

Santiago EOAS 98.59 0.1677 0.2148 98.19 0.1187 0.1597
Sambreixo 98.94 0.1755 0.2282 98.30 0.1270 0.1647
Xesteiras 95.17 0.3259 0.3949 91.66 0.2244 0.3203
Cariño 98.46 0.1828 0.2337 97.09 0.1374 0.1903
Salvora 98.52 0.1551 0,221 98.09 0.1031 0.1643

A better estimation obtained by the MLPs was not detected either in those weather stations
presenting similar temperature distributions because the correlation coefficients greater than 98% were
obtained in the testing phase of the weather stations located in areas with a height difference of more
than 200 m, such as Coto Muiñó, Santiago EOAS, and Sambreixo. Given that the MLPs obtained
adequate results by using approach 2, the minimum size of the training dataset was analysed as in the
models of approach 1. The performances obtained by increasing the number of months included in the
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training dataset are represented in Figure 12. As can be seen, the performance of the MLP presented
acceptable behaviour when the training dataset included data of 6 months. Such minimum size is the
same as that obtained in the MLP of approach 1, so it is shown again the need for having large training
datasets to carry out estimations of the adaptive setpoint temperatures accurately.
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3.3. Estimation Methodology of the Adaptive Setpoint Temperatures

Based on the results obtained of approaches 1 and 2, the use of MLRs and MLPs allowed the
adaptive setpoint temperatures to be accurately estimated. According to the approach used, the
regression algorithm presented different behaviour: whereas the MLRs and the MLPs can be used for
approach 1, only the use of the MLPs obtained adequate results for approach 2.

The existing differences between the input variables of both approaches imply many possibilities
of being used. In this sense, one of such possibilities of using the methods suggested is the configuration
of the thermostat of the HVAC system to estimate the setpoint temperature if the external temperature
sensor fails (Figure 13). By connecting the thermostat to internet, the data obtained from the weather
stations of the meteorological agency of the area (in the present case study, MeteoGalicia) have been
imported to generate the data vector to be introduced into the models in order to estimate the adaptive
setpoint temperature. Because of possible lacks in the data records (e.g., the setpoint temperature from
the previous day has not been recorded or some weather stations fail), the use of both approaches and
data from various weather stations (e.g., 5 weather stations) would guarantee the correct estimation
of the adaptive setpoint temperatures. If all models can carry out the estimation correctly due to the
accuracy obtained in the estimations of the models, the final output value can be obtained by means
of the average of the different adaptive setpoint temperatures obtained. This methodology could
be used if the external temperature probe fails or in case such probe has been removed because it
fails, and another probe cannot be installed. It could also be used if an external temperature probe is
provisionally installed in the HVAC system. The probe would be removed when a minimum training
size is available to generate the MLRs models of approach 1 (i.e., measurements of 1 month).
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Also, another great possibility to be used is related to approach 2. Unlike approach 1, the MLPs
of approach 2 estimated the adaptive setpoint temperatures using only external temperature data.
Considering this aspect, configurations of adaptive setpoint temperatures could be implemented in
HVAC systems without the need of having external temperature probes, thereby reducing the economic
cost of implementing such energy conservation measures, contributing to a high implementation rate,
and avoiding possible errors caused by distortions in the measurement of the external temperature
during its operation. Therefore, local MLPs could be developed for the different cities or climate zones
of a country by using data from weather stations to be used by buildings located in such areas. Like
in the methodology shown in Figure 13, the thermostat would be connected to the weather stations
of the meteorological agency, and the average values of the external temperature from the previous
7 days would be imported and then introduced into the MLP of each weather station to estimate the
adaptive setpoint temperatures (see Figure 14).
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4. Conclusions

Due to the limitations presented by the implementation of adaptive setpoint temperatures
(it should be determined according to the variations of the external temperature), various possibilities
of determining such typology of setpoint temperatures without measuring the external temperature are
studied in this paper. To achieve this, two approaches were analysed by using two different regression
algorithms: a multivariable linear regression and a multilayer perceptron. The approaches were
different because of the type of input variables used by each: approach 1 used the setpoint temperature
from the previous day and the mean daily external temperature from the previous day, and approach
2 used the mean daily external temperature from the previous 7 days. External temperature data were
obtained from 10 weather stations of the meteorological agency MeteoGalicia, which were located at
different heights and areas distant from the case study. This allowed the reliability of using the method
with data from other climate zones to be ensured.

Based on the results obtained with a dataset of 1040 days, the conclusions are as follows:
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• The approach which used the values of setpoint temperature and mean daily external temperature
from the previous day to estimate adaptive setpoint temperatures carried out estimations close
to the actual values by using both data from all weather stations and two regression algorithms.
In this way, the only difference between such algorithms was the time required to generate
models with an adequate performance (1 month for the multivariable linear regression models
and 5 months or more for multilayer perceptrons). This is useful to guarantee the feasibility of
using MLRs to carry out estimations with an appropriate degree of accuracy.

• The approach which used the average values of the external temperature from the previous
7 days had different behaviour with respect to the other approach: only multilayer perceptrons
obtained adequate performances, whereas the multivariable linear regression models obtained
low correlation coefficients both in the training and testing phases. This was due to the limitations
presented by the multivariable linear regression models when the adaptive setpoint temperatures
were estimated not within the applicability of EN 15251 in the intervals of the running mean
temperature. However, this aspect did not decrease the accuracy of the estimations carried out
using the multilayer perceptrons, and accurate models could be obtained with training datasets
of at least 6 months.

The results of this research could be useful for energy auditors, engineers, architects, installers,
and construction companies because new and existing buildings could be provided with HVAC
systems with a lower energy consumption. Firstly, the two approaches would ensure the continuity of
using adaptive setpoint temperatures despite possible measurement errors or failures of the external
temperature probes. Secondly, the possibility of developing multilayer perceptrons carrying out
estimations by using measurements from weather stations of the official meteorological agencies
in the country or region would implement adaptive systems both in the existing equipment in the
building stock and buildings where the installation of external temperature probes is not recommended
(e.g., façades facing west and with a strong incidence of solar radiation). This research could
therefore improve the energy efficiency of the building stock, and adaptive setpoint systems could be
implemented in many existing buildings in the medium term. Given that the methodology proposed
has not been applied to a real case study, further steps of this research will be focused on its use in
a dwelling.
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values (category III) of the MLR (approach 2).
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values (category I) of the MLP (approach 1).
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values (category II) of the MLP (approach 1).
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values (category III) of the MLP (approach 1).
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values (category I) of the MLR (approach 2).
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values (category II) of the MLR (approach 2).
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values (category III) of the MLR (approach 2).
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