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Abstract: An online line switching methodology to relieve voltage violations is proposed. This novel
online methodology is based on a three-stage strategy, including screening, ranking, and detailed
analysis and assessment stages for high speed (online application) and accuracy. The proposed
online methodology performs the tasks of rapidly identifying effective candidate lines, ranking the
effective candidates, performing detailed analysis of the top ranked candidates, and supplying a set
of solutions for the power system. The post-switching power systems, after executing the proposed
line switching action, meet the operational and engineering constraints. The results provided by
the exact Alternating Current (AC) power flow are used as a benchmark to compare the speed
and accuracy of the proposed three-stage methodology. One feature of the methodology is that it
can provide a set of high-quality switching solutions from which operators may choose a preferred
solution. The effectiveness of the proposed online line switching methodology in providing single-line
switching and multiple-line switching solutions to relieve voltage violations is evaluated on the IEEE
39-bus and 2746-bus power system. The CPU time of the proposed methodology compared with
that under AC power flow constitutes a speed-up of 9905.32% on a 2746-bus power system, showing
good potential for online application in a large-scale power system.

Keywords: line switching; voltage violations; three-stage

1. Introduction

It is widely known that the modern power grid is a large-scale and extremely complex
interconnected network. Fulfilling the demand for electric power is essential from economic, protective,
and societal standpoints [1,2]. Unfortunately, it is not easy to keep the grid running at a stable point all
the time: voltage variation problems seriously affect the stable operation of the system.

Line switching is a cost-effective measure to improve the operational stability of power
systems. There are several instances where line switching is employed for corrective applications
by the industry today. One of the line switching operations mentioned in the Pennsylvania-New
Jersey-Maryland Interconnection (PJM) transmission operations manual is described below: Loadings
on the Sunnyside–Warner–Torrey 138 kV for the loss of the S. Canton–Torrey 138 kV can be controlled
by opening the S.E. Canton–Sunnyside 138 kV line at Sunnyside via supervisory control. Contingency
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loadings need to be watched on the SE Canton–Canton Central 138 kV and S. Canton–Torrey 138 kV
circuits when this procedure is implemented [3].

Hedman [4] and Rolim [5] presented the development and applications of line switching.
Compared with other methods, line switching has more advantages in terms of cost reduction,
fast speed, and accuracy improvement [6,7]. Relevant work has illustrated the effectiveness of line
switching in relieving line overloads [8–15], reducing transmission losses and generation cost [16–20],
assisting in load recovery, improving voltage profiles, relieving system congestion, and enhancing
system reliability [21–26].

Guo [27] proposed that for extra-high-voltage power systems, line switching can be used to
relieve voltage violations at low-load periods. In order to avoid computational intractability, a basic
mixed-integer nonlinear program formula is transformed into a mixed-integer linear program in this
reference. Based on fast decoupled power flow with finite iterations, a new algorithm was proposed by
Shao [28] to find the best line and bus bar switching action to relieve overloads and voltage violations
caused by system faults. Although the algorithm developed in references [27,28] can relieve the
problem of voltage violation, it is very time-consuming and difficult to implement in a practical
power system.

However, the effectiveness of line switching depends on the selection of lines to be switched
off. It is well recognized that linear methods are usually satisfactory in speed but not in accuracy,
while nonlinear methods are usually accurate but can be slow [29]. In other words, by simplifying
the size of the network that linear methods perform linear algebra operations, the speed is improved
but the accuracy is reduced. In order to further improve the speed and accuracy, a novel online line
switching methodology is proposed in this paper to relieve voltage violations. Instead of dealing
with the combinatorial character of optimal transmission switching (OTS), the proposed methodology
combines linear and nonlinear methods to achieve the goal of online application. The proposed
methodology employs a three-stage strategy combining linear and nonlinear methods: (i) a screening
stage using a linear method, (ii) a ranking stage using a PQ decoupled method, and (iii) a detailed
analysis stage which utilizes AC power flow.

The task of the screening stage is to quickly select effective lines from the list of credible candidate
lines that can relieve voltage violations after switching. The effective candidates selected by the
screening stage are ranked in order in the ranking stage. The detailed analysis stage performs a
detailed evaluation of the several top-ranked lines of stage (ii) and provides multiple high-quality
solutions that can relieve voltage violations, while the post-switching system satisfies operational and
engineering constraints.

The innovation of the proposed methodology in this paper is mainly reflected in the
following aspects:

(1) It can find the “best” line switching scheme to relieve bus voltage violations for the power system.
(2) It can provide a variety of high-quality line switching schemes for multiple-line switching, from

which the system operator can select a “desired” one.
(3) It shows fast speed, which means that it is suitable for determining switching lines of large-scale

power systems in an online environment.

The effectiveness of the proposed online switching methodology is evaluated on the IEEE 39-bus
and 2746-bus power systems.

2. Problem Formulations

We consider a comprehensive power system quasi-steady-state model of the following
general form:

0 = f (x) (1)

where x is the vector of state variables.
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The proposed line switching problem can be generically expressed as

min
N∈N

Num(N ) (2)

subject to
fN (x) = 0 (3)∣∣Sij

∣∣ = (P2
ij + Q2

ij)
1/2 ≤ Smax

ij i, j ∈ 1, 2, 3 · · · , n; (4)

Vmin
i < Vi < Vmax

i i ∈ 1, 2, 3 · · · , n; (5)

Num(N −Nbase) ≤ m (6)

where Equation (2) is the minimum number of switched lines required for relieving voltage violations;
N represents the new topology after the lines are switched out; Sij, Pij, and Qij represent the apparent,
active, and reactive power flows, respectively, of branch i–j; Vmin

i and Vmax
i are the minimum and

maximum voltage magnitudes at bus i; and Smax
ij is the maximum apparent power flow of line i–j.

The constraints given by Equations (4) and (5) limit the line flows and voltage violation. Num(·)
indicates the number of line switching actions needed to change the network topology Nbase to the
new network topology N , Nbase denotes the network topology of the base case power system, and m
is the upper bound of the number of switching lines allowed.

In this paper, we use the proposed three-stage methodology to relieve voltage violations.
Equation (2) is used to search the network topology such that the voltage violation is relieved with a
minimum number of lines switched out within the boundaries of the constraints of the power flow
equation (Equation (3)), operational and engineering constraints (Equations (4) and (5)), and the upper
limit of the number of switched lines (Equation (6)).

3. Solution Methodology

The proposed methodology employs a three-stage strategy that contains screening, ranking, and
detailed analysis and assessment stages. The solution methodology used in each stage is presented as
follows: A sensitivity-based method was used to increase the speed of screening to achieve the goal
of Stage 1. Stage 2 is based on the PQ decoupled method to achieve fast and accurate ranking goals,
while Stage 3 utilizes AC power flow to assess the switching solutions for the post-switching power
systems. The architecture of the proposed methodology is shown in Figure 1.
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Figure 1. Architecture of the proposed three-stage solution methodology.

3.1. Stage 1: Screening

The task of this stage is to identify candidate lines whose disconnection may relieve voltage
violations. In the screening stage, we use a sensitivity method to rapidly estimate the voltage variations
on bus i of the power system due to the switching-out action of each candidate [30].
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Assume that the network has n buses and b branches and that we can relieve a voltage violation
of bus i by switching line k–m. Let the base case system impedance be expressed as

Z =

 Z11 · · · · · · Z1n
...

...
Zn1 · · · · · · Znn

 (7)

where Zij is the impedance between buses i and j.
The current system operating state and the power flow of the post-switching power system will

be changed when the lines are switched out. Once the line k–m has been switched out, its impact on
the voltage variation can be described as

∆V = Zpost∆I (8)

where ∆V, ∆I denote the other branches’ voltage and current variations, respectively, due to switching
out k–m. After line k–m has been switched out, the system impedance matrix Zpost can be expressed as

Zpost =



Zpost
11 · · · Zpost

1k · · · Zpost
1m · · · Zpost

1n
...

...
...

...
Zpost

k1 · · · Zpost
kk · · · Zpost

km · · · Zpost
kn

...
...

...
...

Zpost
m1 · · · Zpost

mk · · · Zpost
mm · · · Zpost

mn
...

...
...

...
Zpost

n1 · · · Zpost
nk · · · Zpost

nm · · · Zpost
nn


(9)

Then, the voltage variations with lines out of service can be obtained as follows:

∆Vi,km = Zpost
ik ∆Ik + Zpost

im ∆Im = (Zpost
ik − Zpost

im )Ikm (10)

Using the branch-adding method [31], Zpost
ik and Zpost

im are described by the following equations:

Zpost
ik = Zik +

1
zkm − Zkk − Zmm + 2Zkm

(Zik − Zim)(Zkk − Zmm) (11)

Zpost
im = Zim +

1
zkm − Zkk − Zmm + 2Zkm

(Zik − Zim)(Zkm − Zmm) (12)

where zkm is the impedance of branch k–m and Zkk, Zmm, Zkm, Zim, and Zik are elements of Z.
Then, Equation (10) can be rewritten as

∆Vi,km = (Zik − Zim)
zkm

zkm − Zkk − Zmm + 2Zkm
Ikm (13)

where Ikm is the current from k to m in the base case power system.
Consider that the reactance in the transmission line is much larger than the resistance; in this

paper, we replace the impedance in the above formula with reactance. Then, the voltage variations
∆Vi−km on bus i caused by switching line k–m can be obtained by the following:

∆Vi−km = (Xik − Xim)
xkm

xkm − Xkk − Xmm + 2Xkm
Ikm (14)

where Xik, Xim, Xkk, Xmm, and Xkm are the corresponding elements in the reactance matrix X, and xkm
represents the reactance of branch k–m.
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We define the impact factor βi−km as the voltage variations on bus i caused by switching line k–m.
with unit current. Then we have

βi−km = (Xik − Xim)
xkm

xkm − Xkk − Xmm + 2Xkm
(15)

The screening stage uses the sensitivity equation (Equation (15)) to rapidly identify effective
candidate lines. All of the candidates with βi−km > ε or βi−km < ε (where ε is a pre-defined value) are
captured and sent to Stage 2 for further ranking.

3.2. Stage 2: Ranking

In this stage, the effective candidate lines selected in Stage 1 are ranked. The PQ decoupling
method is used to compute the voltage of the violation bus with each effective candidate switched
out, and the effectiveness of each candidate is ranked based on the calculated voltage variations of
the post-switching power system. PQ decoupling is a variation of the Newton–Raphson method that
exploits the approximate decoupling of active and reactive flows in well-behaved power networks and
additionally fixes the value of the Jacobian matrix during the iteration in order to avoid costly matrix
decompositions [32]; it is also referred to as fixed-slope, decoupled Newton–Raphson. Within the
algorithm, the Jacobian matrix gets inverted only once and is simplified to form two separate matrices
of P and Q. This simplification splits the Jacobian matrix into two small matrices, which means that the
PQ decoupling method can return the answer within seconds, whereas the Newton–Raphson method
takes much longer.

Figures 2 and 3 show the transmission line π-equivalent model and reactive power flow
model [33]:

Qkm = (Bkm − Bcap)V2
k + GkmVkVm sin (θk − θm)− BkmVkVm cos (θk − θm) (16)

Qmk = (Bkm − Bcap)V2
m + GkmVkVm sin (θm − θk)− BkmVkVm cos (θm − θk) (17)

Qkm =
(Bkm − Bcap)(V2

k −V2
m)

2
+ GkmVkVm(θk − θm) (18)

Qk,loss =
1
2
(Bkm − Bcap)(V2

k + V2
m)− BkmVkVm (19)

where Qkm and Qmk denote the reactive power flow from bus k to bus m and bus m to bus k, respectively;
Bkm and Gkm are the imaginary and real parts, respectively, of the reactance for branch k–m; Bcap is
the admittance to ground of branch k–m; and θk and θm are the voltage phase angles of bus k and bus
m, respectively.
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Figure 4 shows the pre-switch power system. We have

Qk = Qk,µ + QS
km + Qk,loss (20)

Qm = Qm,ϑ + QS
mk + Qm,loss (21)

where buses µ is the set of buses connected to bus k excluding bus m and buses ϑ is the set of buses
connected to bus m excluding bus k; Qk,µ and Qm,ϑ are the reactive power flows in lines connecting
bus k and bus m to buses µ and buses ϑ, respectively; QS

km represents the reactive power flow of the
transmission part; and Qk,loss, Qm,loss are the reactive power flows of the loss part.

As shown in Figure 5, with line k–m out of service, we have

Qk = Q′k,µ (22)

Qm = Q′m,ϑ (23)

where Q′k,µ and Q′m,ϑ are the reactive power flows in lines connecting bus k and bus m to buses µ and
buses ϑ, respectively, after line k–m is taken out of service.

Assume that bus k and bus m still connect, as shown in Figure 6, then the simulated line part of
reactive power flow from bus k to bus m (Q′Skm) and the simulated loss part of reactive power flow in
bus k and bus m (Q′k,loss) can be described as

Q′Skm = ∆Qk1 = −∆Qm1 = −Q′Smk (24)

Q′k,loss = ∆Qk2 = ∆Qm2 = Q′m,loss (25)

where ∆Qk1, ∆Qm1 are the injected reactive powers with values equal to Q′Skm and Q′Smk and ∆Qk2,
∆Qm2 are the injected reactive powers with values equal to Q′k,loss and Q′m,loss, respectively.

Then
Qk + ∆Qk1 + ∆Qk2 = Q′k,µ + QS

km + Qk,loss (26)

Qm + ∆Qm1 + ∆Qm2 = Q′m,ϑ + QS
mk + Qm,loss (27)

Then, the voltage variations of bus i can be rewritten as

∆Vi = αi−kmQS
km + δi−kmQk,loss (28)

In the equation above, {
αi−km = X′ik−X′im

1−a(X′kk−X′km)−b(X′mk−X′mm)

δi−km = Xik+Xim
1−g(X′kk+X′km)−h(X′mk+X′mm)

(29)


a = Vk(Bkm − Bcap) + GkmVm(θk − θm)

b = −Vm(Bkm − Bcap) + GkmVk(θk − θm)

g = Vk(Bkm − Bcap) + BkmVm

h = Vm(Bkm − Bcap) + BkmVk

(30)

where X′ik, X′im, X′kk, X′km, X′mk, and X′mm are the corresponding elements in the reactance matrix
X′ and X′ is the inverse matrix of the coefficient matrix of the PQ decoupling method [31].
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We calculate the alleviation contribution ∆Vi of each candidate line out of service on the violated
bus using Equation (28) and rank them in order.

3.3. Stage 3: Detailed Analysis and Assessment

To perform a detailed analysis of the several top candidates ranked at the ranking stage, the
AC power flow is employed to compute the exact post-switching bus voltage. Based on the exact
calculation of the AC power flow, the optimal network topology of the post-switching power system
and the needed action of line switching are assessed.

We define the performance index NAM as follows:

NAM = min
{

Vi_max−VNi
Vi_max

, VNi −Vi_min
Vi_min

}
∗ 100% i ∈ 1, 2, 3 · · · , n; (31)

where Vi_max and Vi_min are the maximum and minimum voltage magnitudes of bus i, and VNi is
the actual voltage magnitude of bus i with line k–m switched out. By using Equation (31), the line
switching solutions list is assessed.

4. The Overall Solution Methodology

A step-by-step description of the proposed three-stage methodology for online applications is
summarized in the following steps and shown in Figure 7.

Step 1: Input the online data, including the generation schedule, load demands, state estimation,
network topology, and candidate lines for online line switching action.
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Step 2: Run the AC power flow according to the given operating state. If voltage violations exist,
go to Step 3; otherwise, stop and output the base case assessment results.

Step 3: If all candidate line combinations have been checked, stop and output “no solution found”;
otherwise, go to Step 4.

Step 4: Apply the sensitivity formula (Equation (15)) to each candidate line.
Step 5: If effective candidate lines are found, then send them to Step 6 for ranking. Otherwise, go

to Step 3.
Step 6: Apply Equation (28) to calculate the alleviation contribution ∆Vi of each line from Step 5

and rank them in order. Send the top candidate lines to Step 7 for detailed analysis.
Step 7: Apply AC power flow to compute the post-switching bus voltage corresponding to each

top-ranked line switching and assess the line switching solutions for the power system.
Step 8: Rank the line switching solutions in order using NAM.
Step 9: Output the ordered effective line switching solutions and analysis; if no effective line is

found, go to Step 3.Energies 2018, 11, x FOR PEER REVIEW  8 of 15 
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5. Numerical Schemes

The proposed online line switching methodology was applied to the IEEE 39-bus and 2746-bus
power systems to validate its effectiveness and accuracy. The proposed methodology was implemented
in MATPOWER 6.0 on a ThinkPad PC with Intel Core 2.50 GHz i5–7200U CPU and 8 GB of memory.
The results provided by the exact AC power flow were used as a benchmark to compare the speed and
accuracy of the proposed three-stage methodology.

5.1. Single-Line Switching

The IEEE 39-bus system has 46 branches and 10 generators, and the active power of total loads is
6254.2 MW. The maximum and minimum voltage magnitudes of bus 26 are 1.0494 p.u. and 0.94 p.u.,
respectively; those of the other buses are 0.94~1.060 p.u. The power flow was run at current operating
conditions and a voltage violation was found on bus 26.

By applying the proposed methodology, several solutions were assessed to relieve the voltage
violation of bus 26. The screening, ranking, and detailed analysis results are shown in Table 1, and the
CPU time for this example is displayed in Table 2. The voltages of bus 26 for the pre-switching and
post-switching power systems are shown in Figure 8. We made the following observations from the
results:

• Stage 1: By using βi−km, 20 effective candidate lines were identified from 45 candidate lines.
• Stage 2: The ∆Vi of each line (20 effective candidates from Stage 1) was calculated to select the top

seven lines and rank them in order: lines 26–29, 26–28, 26–27, 2–3, 28–29, 16–21, and 21–22.
• Stage 3: The AC power flow was used to check for any voltage violation at the current operating

point with the top seven lines switched out individually. With lines 26–27 and 16–21 switched
out individually, we found that there were still voltage violations on bus 26 of 1.0740 p.u. and
1.0497 p.u., respectively. Thus, the high-quality line switching solutions found to relieve voltage
violation of bus 26 were lines 28–29,26–29, 26–28, 21–22, and 2–3. With each of these top five lines
switched out, the voltage magnitudes on bus 26 were 1.0326 p.u. (NAM = 1.6009), 1.0366 p.u.
(NAM = 1.2197), 1.0404 p.u. (NAM = 0.8576), 1.0414 p.u. (NAM = 0.7623), and 1.0416 p.u.
(NAM = 0.7433).

Table 1. Result of single lines switched off.

Stage 1
Screening

Stage 2
Ranking

Stage 3
Detailed Analysis and Assessment

Effective Candidates Highly Ranked
Candidates ∆V26 Error Top

Candidates NAM V26/p.u.

2–3 5–6 8–9 26–29 −0.0109 −0.0019 28–29 1.6009 1.0326
3–4 7–8 21–22 26–28 −0.0062 −0.0028 26–29 1.2197 1.0366

4–14 6–7 16–21 26–27 −0.0022 0.0268 26–28 0.8576 1.0404
6–11 16–24 28–29 2–3 −0.0010 −0.0068 21–22 0.7623 1.0414
17–18 22–23 4–5 28–29 −0.0008 −0.0160 2–3 0.7433 1.0416
10–11 26–27 26–29 16–21 −0.0007 0.0010

/5–8 26–28 / 21–22 −0.0006 −0.0074

The error is the difference between the actual voltage variation and the calculated value ∆V26.

To evaluate the speed and accuracy of the proposed methodology, all 45 candidate lines were
switched out individually and then lines 28–29, 26–29, 26–28, 21–22, and 2–3 were selected to relieve
the voltage violation by using AC power flow. With the five lines switched out individually, the
voltages on bus 26 were 1.0326 p.u., 1.0366 p.u., 1.0404 p.u., 1.0414 p.u., and 1.0416 p.u., respectively.
This is consistent with the solutions assessed by the proposed methodology. It is noteworthy that the
scheme given in this example is locally optimal when evaluated using full AC power flow.
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The total CPU time of the proposed methodology in this study was 0.1054 s, whereas full AC
power flow takes 0.9766 s. Compared with AC power flow, the CPU time speed-up given by the
method in this study is 826.57%, as shown in Table 2.

We then compared the speed and accuracy of the proposed methodology with Shao’s method
in [28]. Lines 28–29, 26–29, and 26–28 are given to relieve the violation on bus 26 by using the method
in [28], and the CPU time is 0.3816 s. From the results we can see that compared with the method
in [28], the proposed methodology can provide more effective solutions and the speed is faster.

As can be seen from Figure 8, the line switching solutions obtained using the proposed
methodology relieved the voltage violation on bus 26 in this study.

Table 2. CPU time required for the example (seconds).

The Proposed Methodology
AC Power Flow Speed-Up

Stage 1 Stage 2 Stage 3 Total

0.0007 0.0026 0.1021 0.1054 0.9766 826.57%Energies 2018, 11, x FOR PEER REVIEW  10 of 15 
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The above results illustrate the effectiveness of the proposed methodology in relieving voltage
violations by switching out single lines compared with AC power flow. This study also shows the
accuracy and fast speed of the proposed methodology compared with Shao’s method in [28].

It is worth noting that considering the existence of errors in stage 1 and 2, the solutions provided
in this paper may omit some solutions, but the proposed method can still provide a set of high-quality
schemes to relieve voltage violations. All high-quality solutions are given in this study.

5.2. Multiple-Line Switching

The IEEE 39-bus system has 46 branches; the maximum and minimum voltage magnitudes of
bus 26 are 1.0494 p.u. and 0.94 p.u., respectively, and those of the other buses are 0.94~1.060 p.u.
The power flow was run at current operating conditions and a voltage violation was found on bus
26: V26 = 1.0526 p.u. A single line switched off cannot effectively relieve this voltage violation, so we
increased the number of switching lines by 1 and utilized the proposed methodology to provide a set of
multiple-line switching solutions. In this study, we set the number of switching lines at 2. The obtained
solutions are summarized in Table 3 and the CPU times are displayed in Table 4. The voltages of bus
26 for the pre-switching and post-switching systems are shown in Figure 9.
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Table 3. Results of multiple lines switched off.

Stage 1
Screening

Stage 2
Ranking

Stage 3
Detailed Analysis and Assessment

Effective Candidates Highly Ranked
Candidates ∆V26 Error Top Candidates NAM V26/p.u.

2–3 5–6 8–9 28–29, 21–22 −0.0317 −0.0025 28–29, 21–22 2.9541 1.0184
3–4 7–8 21–22 2–3, 28–29 −0.0315 −0.0021 2–3, 28–29 2.8969 1.0190
4–14 6–7 16–21 26–29, 21–22 −0.0272 −0.0021 26–29, 21–22 2.4871 1.0233
6–11 16–24 28–29 26–28, 21–22 −0.0216 −0.0037 26–29, 2–3 2.4490 1.0237

17–18 22–23 4–5 26–28, 2–3 −0.0197 −0.0053 26–28, 21–22 2.1060 1.0273
10–11 26–27 26–29 26–29, 2–3 −0.0181 −0.0108 26–28, 2–3 2.0774 1.0276
5–8 26–28 / 2–3, 21–22 −0.0159 −0.0086 2–3, 21–22 2.0297 1.0281

The error is the difference between the actual voltage variation and the calculated value ∆V26.

We made the following observations from the results:
Twenty-one candidates were identified from 45 candidate lines at Stage 1 and sent to Stage 2 for

ranking. The top seven single lines were identified: lines 26–29, 26–28, 26–27, 2–3, 28–29, 16–21, and
21–22, as in Section 5.1. We combined the top seven single switching lines in pairs and calculated the
∆Vi of each candidate solution. Then, the seven most highly ranked multiple-line candidates were
captured and sent to Stage 3 for detailed analysis and assessment: lines 28–29 and 21–22, lines 2–3 and
28–29, lines 26–29 and 21–22, lines 26–28 and 21–22, lines 26–28 and 2–3, lines 26–29 and 2–3, and lines
2–3 and 21–22.

Lines 28–29 and 21–22, lines 2–3 and 28–29, lines 26–29 and 21–22, lines 26–29 and 2–3, lines 26–28
and 21–22, lines 26–28 and 2–3, and lines 2–3 and 21–22 were assessed to relieve the voltage violation
of bus 26 for the current power system by using AC power flow at Stage 3. For the successful line
switching solutions, the voltage violations on bus 26 were 1.0184 p.u. (NAM = 2.9541), 1.0190 p.u.
(NAM = 2.8969), 1.0233 p.u. (NAM = 2.4871), 1.0237 p.u. (NAM = 2.4490), 1.0273 p.u. (NAM = 2.1060),
1.0276 p.u. (NAM = 2.0774), and 1.0281 p.u. (NAM = 2.0297) in the current power system, respectively.

To verify the effectiveness of the obtained solutions, we performed an exhaustive search with all
45 candidate lines combined in pairs and then switched out. Switching solutions including lines 28–29
and 21–22, lines 2–3 and 28–29, lines 26–29 and 21–22, lines 26–29 and 2–3, lines 26–28 and 21–22, lines
26–28 and 2–3, and lines 2–3 and 21–22 were obtained to relieve the voltage violation by using AC
power flow. It can be clearly seen that the effective line switching solutions obtained by the proposed
methodology are the same as those in the AC power results.

The CPU time of the proposed methodology in this case was 0.1372 s, while the exhaustive search
based on AC power flow took 7.3152 s. The speed-up was 5231.78%. Figure 9 shows the effectiveness
of the proposed methodology for relieving the voltage violation of bus 26.

Similarly, lines 2–3 and 28–29, lines 26–28 and 2–3, lines 26–29 and 2–3, and lines 2–3 and 21–22
are provided by using the method in [28], and the CPU time is 0.8293s. Compared with the method
in [28], the proposed method shows more advantages in accuracy and speed.

This study shows that the proposed methodology can provide several high-quality multiple-line
switching solutions to relieve voltage violations. The CPU time test verifies the fast speed of the
three-stage methodology.

Table 4. CPU time required for the example (seconds).

The Proposed Methodology
AC Power Flow Speed-Up

Stage 1 Stage 2 Stage 3 Total

0.0007 0.0047 0.1318 0.1372 7.3152 5231.78%
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The CPU time of the proposed methodology in this case was 0.1372 s, while the exhaustive 
search based on AC power flow took 7.3152 s. The speed-up was 5231.78%. Figure 9 shows the 
effectiveness of the proposed methodology for relieving the voltage violation of bus 26.  
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Figure 9. The voltage of bus 26 for the pre-switching and post-switching systems.

5.3. The 2746-Bus System

The proposed online methodology for line switching was evaluated on a 2746-bus power system
containing 3514 transmission lines; the voltage limit on bus 249 was 0.94~1.06 p.u. and the actual
voltage magnitude of the base case power system on bus 249 was 1.0829 p.u., meaning the existence of
a voltage violation on bus 249.

The line switching solutions obtained after applying the proposed methodology are summarized
in Table 5. The voltages of bus 249 for the pre-switching and post-switching systems are shown in
Figure 10. The output from each stage is summarized as follows:

• Stage 1: There were 79 candidates identified from 2836 candidate lines. Due to space limitations,
Table 5 displays 21 effective candidates.

• Stage 2: The 79 candidates were ranked, and the top seven candidates are selected for detailed
analysis and assessment to be performed at Stage 3: lines 17–3, 249–3, 474–210, 474–248, 471–210,
249–247, and 374–247.

• Stage 3: For each top candidate line, AC power flow was performed to assess the effectiveness of
each candidate. Consequently, lines 17–3, 249–3, and 474–248 were assessed to be most effective
for relieving the voltage violation in the power system.

Table 5. Result of lines switched off.

Stage 1
Screening

Stage 2
Ranking

Stage 3
Detailed Analysis and Assessment

Effective Candidates Highly Ranked
Candidates

Top
Candidates NAM V249/p.u.

7–8 350–287 249–247 17–3 17–3 3.2128 0.9702
7–17 2588–2460 471–437 249–3 249–3 1.9623 1.0392
17–3 287–218 474–210 474–210 474–248 1.1226 1.0481
249–3 370–286 2714–2604 474–248

/
25–192 374–247 2460–2714 471–210
383–370 474–248 513–278 249–247
374–270 471–210 553–299 374–247
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Figure 10. The voltages of bus 249 for the pre-switching and post-switching systems.

To evaluate the speed and accuracy of the proposed methodology, all 2836 candidate lines were
switched out individually, and lines 17–3, 249–3, and 474–248 were found to relieve the voltage violation
by using AC power flow. This is consistent with the solutions obtained by the proposed methodology.

As shown in Table 6, the total CPU time of the proposed methodology in this study was 2.3093 s,
whereas the exhaustive search based on AC power flow took 231.0528 s—an improvement in speed by
the proposed methodology of 9905.32%.

Table 6. CPU time required for the example (seconds).

The Proposed Methodology
AC Power Flow Speed-Up

Stage 1 Stage 2 Stage 3 Total

0.1969 0.8592 1.2532 2.3093 231.0528 9905.32%

Figure 10 shows that all the line switching solutions provided by the proposed methodology
relieved the voltage violation on bus 249.

Simulation studies on the 2746-bus system showed that the proposed methodology is able to
effectively solve the problems of voltage violations, and that the computation time is also satisfactory
for online application in large-scale systems.

6. Conclusions

This paper proposed a novel online methodology of line switching for relieving voltage violations.
The proposed methodology employs a three-stage strategy that contains screening, ranking, and
detailed analysis and assessment stages. The proposed methodology balances speed and accuracy for
online applications by combining linear and nonlinear methods to relieve voltage violations.

One distinguishing feature of the proposed methodology is that it can provide a set of high-quality
solutions from which operators may select a preferred solution. Numerical schemes and methods
were developed and implemented for each stage of the proposed methodology. It was evaluated
on the IEEE 39-bus and 2746-bus power systems with promising results. The results provided by
exact AC power flow were used as a benchmark to compare the speed and accuracy of the proposed
three-stage methodology.

The results showed that the proposed methodology can provide single-line switching as well as
multiple-line switching to relieve voltage violations. Compared with the method in [28], the proposed
method shows more advantages in accuracy and speed. In addition, compared with AC power flow,
the three-stage methodology requires less CPU time, especially in a large-scale system. A numerical
study was conducted on the 2746-bus power system and revealed the fast speed (a speed-up of
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9905.32% over AC power flow) and effectiveness of the proposed methodology when applied to
large-scale systems, showing good potential for online applications.
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