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Abstract: We present a nonintrusive approach for combining high-fidelity simulations using
Finite-Volume (FV) methods with Proper Orthogonal Decomposition (POD) and Galerkin
Reduced-Order Modeling (ROM) methodology. By nonintrusive we here imply an approach that
does not need specific knowledge about the high-fidelity Computational Fluid Dynamics (CFD)
solver other than the velocity and pressure results given on an element mesh representing the related
discrete interpolation spaces. The key step in the presented approach is the projection of the FV results
onto suitable finite-element (FE) spaces and then use of classical POD Galerkin ROM framework.
We do a numerical investigation of aerodynamic flow around an airfoil cross-section (NACA64) at low
Reynolds number and compare the ROM results obtained with high-fidelity FV-generated snapshots
against similar high-fidelity results obtained with FE using Taylor–Hood velocity and pressure spaces.
Our results show that we achieve relative errors in the range of 1–10% in both H1-seminorm of the
computed velocities and in the L2-norm of the computed pressure with reasonably few ROM modes.
Similar accuracy was obtained for lift and drag.

Keywords: NACA64 airfoil; finite-volume method; finite-element method; proper orthogonal
decomposition; reduced-order model

1. Introduction

High-fidelity numerical simulations based on finite-volume (FV) method [1], finite-element (FE)
method [2] and finite-difference (FD) method [3] are generally used to study phenomena governed by
partial differential equations [4]. In the context of incompressible fluid flow, these equations are called
the Navier–Stokes equations and the branch of computational techniques that deals with it called
the Computational Fluid Dynamics (CFD) [5]. The solution of these equations for complicated flows
around complex geometries such as a turbine blade [6] requires high degrees of freedom and hence are
computationally very demanding even on the most advanced computing facilities [7,8]. The industry,
on the other hand, has a need for accurate yet computationally light modeling tools for design
optimization and real-time predictions. To this end, researchers have been developing reduced-order
models. One such development in the field is towards the use of self-excited oscillator models for
prediction of the aerodynamic forces (drag and lift) on the bluff bodies [9,10]. Others have exploited
reduced basis methods for higher-dimensional systems by extracting the most useful information from
the flow field [11–13]. In a reduced basis method, high-fidelity numerical simulation results for a set
of input parameters are projected onto a significantly lower-dimensional space to construct reduced
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basis which is then used to build up a reduced-order model [14–16]. Such models exhibit efficiency,
robustness, reliability, and accuracy.

Usually, the aerodynamic flow-related problems in wind engineering depend heavily on some
critical parameters such as angle of attack, wind velocity, airfoil shape, etc. [17]. For faster-repeated
sampling, it could be a legitimate alternative to approximate the behavior based on a linear combination
of precomputed solutions on a reduced basis for different choices of input parameter space (physical or
geometrical) [18]. This required transformation of the non-affine problems in an affine way which—to
the best of the knowledge of the authors—have not been addressed before for wind turbines, where
the angle of attack undergoes periodic variations over a complete cycle. Concerning order reduction
procedures, known methods to develop the basis in the literature are Greedy Method (GM), Centroidal
Voronoi Tessellations (CVT) Taylor, Lagrange, Hermite, and Proper Orthogonal Decomposition
(POD) [19]. The techniques provide a subspace which optimally represents a dynamical system
with fewer degrees of freedom [20,21]. The dominant modes after the decomposition capture the
highly energetic coherent structures in a flow field [22–24].

To perform POD, input data sets are required and taken from experiments or numerical studies.
The reduced basis obtained from POD is ordered by descending energy content and termed as basis
functions or modes [25]. The first use of POD in engineering applications was formally introduced
in the study by authors [26,27], who employed the technique to study the formation of coherent
structures in a flow field. Later, authors of [20,28] used it to solve problems related to boundary layer
turbulence. The author of [29] used FE technique to generate the snapshots and analyzed the turbulent
structures using POD around a circular cylinder. The author of [30] extended that technique to
develop a Galerkin free POD formulation of incompressible flows using snapshots from a DNS solver.
The authors of [31] developed a minimum residual projection to build coupled velocity-pressure
POD-ROM for incompressible Navier–Stokes equations using the high-fidelity data from the FE
approach. The new model enabled to increase the velocity and pressure fields accuracy. The authors
of [11] employed POD to develop a Galerkin ROM for the construction of both pressure and velocity
spaces. They adopted an enrichment procedure of the velocity space by supremizer solutions to
enhance the stability and monitored the fulfillment of an inf-sup Ladyzhenskaya–Babuska–Brezzi
(LBB) stability condition at the reduced-order level. Whereas studies related to the affine representation
of velocity and pressure fields are important and based on the reduced basis and a transformation
between physical and reference geometries. The authors of [32] employed the strategy and developed
a ROM for the Stokes problem using a domain decomposition technique. The author of [24] has shown
the integration of FVM and POD, whereas authors of [16] demonstrated the applicability of such an
approach on a two-dimensional cylinder.

In this paper, the concept of mixing of methods for the development of novel FE-based ROM is
demonstrated. We devised mixed method term for the reduced FE solution obtained from the snapshots
generated by FV method. Whereas, uniform method is called for the reduced FE solution based on the
snapshots created by FE method. The methods are implemented, and their applicability is manifested
on a parametrized two-dimensional NACA64 airfoil. For a combination of input physical (velocity)
and geometrical (incidence angle) parameters, high-fidelity simulations of FE and FV are conducted
using an in-house code and OpenFOAM (4.0) [33] respectively. First, an optimal reduced basis is
constructed on the reference domain with the application of POD on the snapshots generated using
FE and FV methods. Using the reduced space, a reduced-order model based on FE method is formed
in the Nutils [34] framework. The ROM solutions are compared with the corresponding FE, and FV
high-fidelity discretization and the differences are illustrated in the energy spectrum, error magnitudes,
computational time for the methods and the shape of the modes. Supremizer solutions are added to the
velocity space such that non-spurious pressure modes can be developed resulting in a stable solution.
The whole procedure is demonstrated with a novel procedure, that transforms wind turbine-related
problems from a classical non-affine context to an affine framework thereby motivating the use of
precomputed solutions as a linear combination of reduced basis functions.
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In this paper, Section 2 describes the systems of governing equations, the discretization technique
for the map and the affine transformation. The formulation of reduced-order modeling (ROM) is then
presented in Section 3. The section also describes the implementation of our solver and boundary
conditions. In Section 4, the results are compared for the two developed models in terms of flow
dynamics, spectrum of velocity/pressure, L2 error and the computational efficiencies evaluated in a
test case of the NACA64 airfoil. The last section describes the conclusions of the work followed by
future recommendations.

2. Theory

This section describes the mathematical formulation of the reduced assembly based on the
governing equations, the POD, and the affine representation of the equations.

2.1. Governing Equations

The steady Navier–Stokes equations can model the flow in a low Reynolds number regime,
where the equations are non-linear due to the presence of the convection term [35]. The equations are
considered for the cases when ν is constant. The flow remains incompressible below the Mach number
of 0.3. The mathematical description of the Navier-Stoke equations is given as

−ν∆u + (u · ∇)u +∇p = f in Ω,

∇ · u = 0 in Ω,

u = g on ΓD,

−pn + ν(∇u)n = h on ΓN.

The equation represents distributive force f , Dirichlet data g and Neumann fluxes h where ν is
the kinematic viscosity, u = (u1, u2) is the velocity field, p, is the pressure and n shows the normal
unit vector to ΓN. The domain of interest is represented by Ω ⊂ Rd, with mixed boundary conditions.
Figure 1 represents the boundaries of the domain, where a solid line at the inlet illustrates Dirichlet
(ΓD) and the dotted line represents the Neumann (ΓN) conditions at the boundary. The mathematical
description of boundary is introduced as

∂Ω = ΓD ∪ ΓN, ΓD ∩ ΓN = ∅, ΓD 6= ∅.

Figure 1. NACA64: Exaggerated sketch of the domain setup. Solid and dotted lines on the
domain boundary represent the Dirichlet boundaries and Neumann boundary condition, respectively.
The parameter space consists of a geometrical parameter −25° < ϕ < 25° and a physical parameter
2 m/s < g < 20 m/s. The mapping πϕ represents the transformation between the physical and
reference geometry.
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2.1.1. FE Discretization

The discretization of the Navier–Stokes equations is developed by determining the weak
variational formulation of our problem [36,37]. To manage the inhomogeneous Dirichlet boundary
conditions, a lifting function is constructed ` corresponding to the Dirichlet boundary condition such
that ` = g on ΓD, writing u = u0 + ` where u0 satisfies homogeneous Dirichlet conditions u0 = 0 on
ΓD. The governing equations are multiplied with the test functions (w, q) and perform integration by
parts to obtain the solution onto the physical domain. Hence, the weak form is described as

d(u0, w) + c(u0, u0, w) + b(p, w) = f 1(w), (1)

b(q, u0) = −b(q, `). (2)

the bi- and trilinear forms are defined as

d(u0, w) = d(u0, w) + c(u0, `, w) + c(`, u0, w), (3)

f 1(w) =
∫

ΓN

h ·w +
∫

Ω
f ·w− d(`, w)− c(`, `, w), (4)

d(v, w) = ν
∫

Ω
∇v : ∇w, (5)

b(p, w) = −
∫

Ω
p∇ ·w, (6)

c(z, v, w) =
∫

Ω
(z · ∇)v ·w. (7)

For Galerkin discretization, we then choose finite dimensional subspaces Uh ⊂ U, Ph ⊂ P,
Uh

0 =
{

v ∈ Uh | v = 0 on ΓD

}
and wish to find (u0, p) ∈ Uh

0 × Pn such that (1) and (2) hold for all

(w, q) ∈ Uh × Ph.
Specifically, let Ω = diKe be a decomposition of the computation domain into quadrilateral

pairwise disjoint elements Ke, and for each element, define a mapping

πe : Ke− > [0, 1]2

Given a selection of shape functions defined on the reference element [0, 1]2, we can then define
the corresponding shape functions on Ke by pullbacks through πe. With this in mind, let us define on
[0, 1]2 the bilinears and biquadratics,

Q1,1 = span {1, ξ, η, ξη}

Q2,2 = span
{

1, ξ, η, ξη, ξ2, η2, ξ2η, ξη2, ξ2η2
}

and define our finite dimensional subspaces as globally C0-continuous biquadratics and bilinears [38],
respectively. These are also known as Taylor–Hood [39] type elements.

Uh =
{

v ∈ H1(Ω)2 ∩ C0(Ω)2 | π∗e v ∈ Q2
2,2 ∀ e

}
Ph =

{
p ∈ L2(Ω) ∩ C0(Ω) | π∗e p ∈ Q1,1 ∀ e

}
.

2.1.2. FV Discretization

The Navier–Stokes equations in space are discretized using the FV approximation technique.
The PDEs are discretized over the control volume using the integral form approach. To avoid additional
errors due to the differences between the domain subdivisions into finite cells/elements, the same
number of non-overlapping cells are used in both methods. The discretized equations for momentum
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and continuity are represented for each term using the Gauss theorem which converts the volume
integrals into surface integrals [40]. The integral form of the momentum equation over each control
volume is given by ∫

V
(u · ∇)u dV − ν

∫
V

∆u dV +
∫

V
∇p dV = 0 (8)

Here, the discretization of each term in the Navier–Stokes is discussed explicitly. The convective
term, using the linear variation of u and applying the generalized form of Gauss theorem is discretized∫

V
(u · ∇)u dV =

∫
V
∇ · (uu) dV =

∫
S

dS f · (uu) ≈∑
f

S f · u f u f = ∑
f

Fu f (9)

the u f represents the velocity at the center of the face of the control volume. where S f is the surface
area of the face and F is the face flux. The F represents the mass flux over the surface of each face
constituting the control volume. It is formed from the product of S f · u f .

The Laplacian, continuity, and pressure terms are discretized as follows∫
V
∇ · (ν∇u) dV =

∫
S

dS f · (ν∇u) ≈∑
f

νS f · (∇u) f = ν ∑
f

F (10)

∫
V
∇ · u dV =

∫
S

dS · (u) = ∑
f

S f · u f = ∑
f

F (11)

∫
V
∇p dV =

∫
S

dS · (p) = ∑
f

S f · p (12)

p represents the values at the center of each control face of the control volume. The integrals appearing
in the equations above are linearized employing the first/second-order upwind, blended difference,
and the central differencing schemes available in OpenFOAM (4.0) [33]. The continuity equation is
solved taking the divergence of momentum and solving as pressure Poisson equation. For further
explanation, the reader is referred to [33]. The schemes used for the solution of numerical examples
are described in Section 4.1.

2.2. Projection of FV Results to FE Space

Earlier work on combining the FV high-fidelity solvers with POD Galerkin ROM is presented
in [16,24]. They have adopted a consistent approach and included the contribution of the face flux field
(face area vector multiplied by the face flux) in addition to the velocity and pressure fields into the
POD Galerkin ROM. This is done to ensure that the method employed to construct the ROM remain
consistent with the Full-order Model (FOM). However, the drawback with this is that it introduces an
extra field variable and that it requires access to the high-fidelity face flux field, which is not always
easily accessible.

Herein, we explore a nonintrusive approach, i.e., no specific knowledge is needed about the
high-fidelity CFD solver other than the velocity and pressure snapshots given on an element mesh
representing the related discrete interpolation spaces. The key step in our approach is that the
FV high-fidelity velocity and pressure fields are projected onto suitable FE spaces and then the
classical POD Galerkin ROM algorithm is applied. Unfortunately, the projection from FV-spaces to FE
spaces introduces an inconsistency between the FV-FOM and the resulting ROM, i.e., the projected
high-fidelity FV velocities and pressures do not fulfill Equations (1) and (2). The significance of this
inconsistency error relative to the error introduced by ROM is an important issue in our numerical
investigation presented below.

We have used OpenFOAM in this study to produce the high-fidelity FV results and the computed
velocities and pressures are transferred to the Taylor–Hood FE space in a two-stage process:

• Cell centers to cell nodes interpolation :
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In the first stage, the velocity and pressure fields that are calculated by OpenFOAM at the center
of the control volumes are interpolated onto the control volume vertices using Inverse Distance
Weighting (IDW) interpolation before they are stored at VTK-files. Thus, the stored velocity and
pressure results on the VTK-files are implicitly assumed to be interpolated as bilinear fields.

• Projection to taylor hood FE space :

In the second stage, the velocity and pressure results stored on the VTK-files are projected onto
the Taylor–Hood FE space. Herein, we have used L2-projection for both velocities and pressure.

To minimize the inconsistency error, we generated first the FE-mesh with characteristic element
size 2h and then uniformly refined every element into four new elements with characteristic element
size h. As illustrated in Figure 2a this was done in such a way that the geometry of the domains Ωh

and Ω2h is exactly the same for the two different meshes.

(a) (b) (c)

Figure 2. NACA64: (a) Each finite element of size 2h is divided into four finite volumes of size h, and
together with bilinear interpolation of the geometry ensures that the geometrical representation of
Ω is the same for the FE and FV mesh. (b) Four finite volumes of size h where the dots represent
cell-centered velocity and pressure values, the circles represent velocities at the nodes, and squares
represents the pressures at the nodes. OpenFOAM produce cell-centered velocities and pressures,
whereas the stored velocity and pressure values on the VTK-files are post-processed to cell-vertices
(mesh nodes) by means of Inverse Distance Weighting (IDW) and are assumed to vary bi-linearly. (c) A
Taylor–Hood FE of size 2h which have biquadratic interpolation of velocities (circles) and bilinear
interpolation of pressure (squares).

The Taylor–Hood FE space is characterized by biquadratic interpolation of velocities and bilinear
interpolation of the pressure, whereas the OpenFOAM results stored on the VTK-files are assumed
interpolated bi-linearly for both variables. We have here chosen to project the FV results computed
on a mesh with characteristic size h onto an FE-mesh of characteristic size 2h as this gives the same
number of degrees of freedoms (DOFs) for the FV and FE velocity fields. Furthermore, the original
FV results are piecewise (cell-centered) constant, and therefore considered to be less accurate than
Taylor–Hood FE of the same mesh size.

2.3. Parametric Dependency

We consider here the case where the problem defined by (1) and (2) is depends on several
parameters. Denote by P the parameter space and by µ any given element of P . For flow problems we
typically have the following classes of parameters: physical parameters, boundary condition parameters
and geometric parameters. We shall denote the linear and bilinear forms dependence on the parameters
µ with notation such as d(u, w; µ), and similarly for other forms.

Physical parameters are very often material parameters describing the continuum at hand e.g.,
the viscosity ν of an incompressible fluid. Boundary condition parameters are related to the Dirichlet
and Neumann conditions, e.g., g and h in the governing equations of the Navier–Stokes equation.
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In particular, non-homogeneous Dirichlet parameters g (that introduce the lifting function l) needs to
be handled properly [41].

Geometric parameters imply that the computational domain Ω = Ω(µ) varies. Let Ω̂ be a reference
domain which herein is described by the physical domain of Ω(µ2 = ϕ = 0) (i.e., angle of attack equal to
zero) and a corresponding FE and FV discretization of Ω̂. A one-to-one mapping is then introduced to
map the physical domain to the reference geometry and is defined by

πµ : Ω̂(µ)→ Ω.

Suitable functions are created in the physical domain Ω(ϕ) by applying the pullback on the
transformation which maps the solution from the reference geometry onto the physical geometry and
is given by (see [41] for more details)

v = π∗µv̂, p = π∗µ p̂. (13)

The geometry variation affects the linear and bilinear forms. Hence for the convective form c, the
mapping takes the form

c(π∗ϕû, π∗ϕv̂, π∗ϕŵ; ϕ) =
∫

Ω̂
(û · J−ᵀ∇)v̂ · ŵ ≈

2n

∑
i=0

ϕi
∫

Ω̂
(û · B(−)

i ∇)v̂ · ŵ.

and for the diffusive part d it reads

d(π∗ϕû, π∗ϕŵ; ϕ) = ν
∫

Ω̂
(J−ᵀ∇)û : (J−ᵀ∇)ŵ = ν

∫
Ω̂
∇û : (J−1 J−ᵀ∇)ŵ,

and finally, the incompressibility constraints b becomes

b(π∗ϕ p̂, π∗ϕŵ; ϕ) =
∫

Ω̂
p̂(J−ᵀ∇) · ŵ =

∫
Ω̂

p̂J−ᵀ : ∇ŵ,

To find the detail derivation of the above ROM equations and the explanation of expressions B(−)
i

the reader is referred to the article by Fonn et al. [41]

2.4. ROM Using POD

The notion of ROM is introduced to obtain an accurate solution of the Navier–Stokes equations
over a discrete solution space whose dimensions far exceeds the natural dimensions of the model
itself [42]. In other words, the practical dimensions of the space

{(û0(µ), p(µ)) | µ ∈ P} (14)

is considerably more manageable than the dimension of any discretization necessary to achieve good
accuracy with conventional FE/FV methods. We will solve the steady Navier–Stokes problem and
proceed by sampling and generate the ensemble of solutions which corresponds to different snapshots
to produce an approximation of the space of Equation (14). The POD is employed to reduce the
dimension of the space such that the solution can be described by an optimal combination of the most
energy rich modes [21,42].

First the ensemble is developed by performing the high-fidelity simulations at each state chosen
by a combination of input parameters with FE and FV methods (µi = (ϕi, gi))

Φ =
{

φi = (ûi
0(ϕi, gi), ( p̂i(ϕi, gi)

}N

i=1
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A correlation matrix is then constructed from the ensemble for velocity and pressure respectively,

Cij = a(φi, φj)

Given eigenpairs (λi, vi) of C, one may then pick an M such that

M

∑
i=1

λi ≥
(

1− ε2
) N

∑
i=1

λi (15)

where ε > 0 is a suitable error tolerance. It is hoped that M� N, as M will be the dimension of the
reduced space (it can be interpreted as the practical dimension of the space given by Equation (14) Error
ε, as measured in the norm || · ||a =

√
(a(·, ·)). The reduced basis functions are then given by

ψj =
1√
λj

N

∑
i=1

vj
iφi, 1 ≤ j ≤ M (16)

It can be noted that the ψj are orthonormal in the a(·, ·) inner product [43]. In practice, this
construction is performed separately on the velocity and pressure fields. Thus, first we choose a
velocity correlation function

au((û0, p̂), (v̂0, q̂)) = (∇û0,∇v̂0)L2(Ω)

Secondly, we choose the pressure correlation function

ap((û0, p̂), (v̂0, q̂)) = ( p̂0, q̂0)L2(Ω)

The velocity and pressure basis are constructed as

ûR
j =

1√
λj

N

∑
i=1

v(u),ji ûi
0, p̂R

j =
1√
λj

N

∑
i=1

v(p),j
i p̂i, 1 ≤ j ≤ M

2.5. Mixed and Uniform Methods

Classical reduced basis methods generally use the same high-fidelity method both for constructing
the ensemble and creating the reduced basis method itself. In other words, given that the ensemble
solutions u(µi) satisfy the equation

A(µi)u(µi) = b(µi),

where A, b denote a parameter-dependent system matrix and right-hand side, respectively, the reduced
system is given as

AR(µ) = VᵀA(µ)V , bR(µ) = Vᵀb(µ),

the “tall” matrix V is generated from the relation between high-fidelity basis and the reduced-order
basis as given in Equation (16)

(V T)ij =
vj

i√
λj

In the following, the above method will be denoted as uniform, to distinguish it from the mixed
method. By the latter it is meant that a model is obtained by generating ensemble solutions with a
given high-fidelity method (1),

A(1)(µi)u(µi) = b(1)(µi),
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and then using a different high-fidelity method (2) as a basis for the reduction, i.e.

AR(µ) = VᵀA(2)(µ)V , bR(µ) = Vᵀb(2)(µ).

This is motivated by the idea of enable nonintrusive ROM. So long as the two high-fidelity
methods purport to solve the same physical model (and that this physical model accurately reflects
reality), one may reasonably hope that mixing methods in this way will be sufficiently accurate.

In the following, the two high-fidelity methods used in the present study are the FE and FV
methods described in Sections 2.1.1 and 2.1.2 respectively. By the “Uniform” method, it is meant that
the reduced model is based fully on the FE method, and by the “Mixed” method, it is meant that the
snapshots (and therefore the basis) were generated with the FV method, but the method underlying
the reduction was the FE method. As such, the difference between the two reduced models is entirely
in their bases.

3. Development of the Solver

ROM Solver

The reduce space after the POD stage is obtained. The solution for the reduced-order model
requires solving several systems of the form(

Avv Bvp

Bpv

)(
v
p

)
=

(
bv

bp

)

The matrix Bvp is observed to be numerically rank-deficient, i.e., it has a nontrivial kernel, therefore
leading to unstable pressure solutions. To remedy this, the velocity space is artificially enriched with
supremizers basis functions whose purpose is not to achieve greater approximative power but rather to
keep the system well-conditioned [11]. Therefore, for each pressure snapshot p̂i, represented by the
high-fidelity coefficient vector p, at a parameter µi, to solve the system

MV(µi) v = Bᵀ(µi) p

for the velocity coefficient vector v, which then yields the supremizer function at that particular
parameter-value. Here, MV is the H1-norm mass matrix, and B is the matrix associated with the
b(·, ·; µ) bilinear form.

The supremizers are then reduced using the POD as well, just like the regular velocity solutions,
into a separate and independent reduced space, yielding the systemAvv Avs Bvp

Asv Ass Bsp

Bpv Bps


v

s
p

 =

bv

bs

bp

 (17)

In practice, the sizes of each basis are kept equal, so with M degrees of freedom each for velocity,
supremizers and pressure, one obtains a 3M-sized system [11].

4. Results and Discussion

The aim of the numerical investigation is to see how well the mixed method compares with the
uniform method. In particular, we want to study the significance of the inconsistency error compared
to the error introduced by choosing a reduced-order basis. Our aim regarding accuracy is to achieve
a difference between the high-fidelity simulation and the reduced-order simulation in the range of
1–10% relative error in suitable norms for the quantity of interest.
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In the following, we first describe in detail the high-fidelity simulation setup and the choice of
parametric values for the snapshot creation. To introduce the study of the obtained ROM results we
display the most energy-rich modes and corresponding spectrum of the reduced-order basis. Then we
focus on the relative error convergence plots of H1-seminorm of the computed ROM-velocities and the
L2-norm of the computed ROM-pressures. Similarly, we display the relative error convergence plot of
the computed ROM lift and drag. We then report the parametric dependence of the difference in the
FV and FE high-fidelity solutions. In the end, we report the observed speedup.

4.1. High-Fidelity Simulation Setup

The developed ROM is benchmarked on a two-dimensional NACA64, which is the airfoil located
at the outer most section of NREL 5MW wind turbine [44,45]. For testing our methodology, the
Reynolds number range of the simulation is designed to remain in the laminar range (2–20). Under the
current operating conditions, the flow is creeping and produces insignificant changes while flowing
over the airfoil. The present aim of the numerical examples is to establish the accuracy of the developed
methods, rather than studying the details of flow dynamics across the airfoil. To simulate the flow
field, a cylindrical domain is constructed with a diameter of 30 m with the airfoil chord length of 1 m.
The discretized mesh for the two-dimensional case is shown in Figure 3. In particular, inlet velocity
is chosen 2 m/s < g < 20 m/s as the physical parameters and angle of attack −25° < ϕ < 25° as the
geometric parameter as shown in Figure 4. The viscosity is set at ν = 1 m2/s, with strongly enforced
no-slip conditions at the airfoil boundary.

(a) G1 = 1440 (b) G2 = 2880 (c) G3 = 4400

Figure 3. NACA64: Schematic of the hexahedral computational mesh used for high-fidelity simulations
with ϕ = −π/4. The computational domain Ω has a diameter of D = 30 m with a chord length of
c = 1 m. G1, G2, G3 has Nθ = {60, 80, 100} elements in the angular direction and Nr = {24, 36, 44}
elements in the radial direction. G2 is found to produce a mesh-independent solution. A uniform set of
nodes are created around the airfoil (ΓA), and similarly around the outer boundary which is circular (ΓB).
In between corresponding nodes on the airfoil with Cartesian coordinate xA,i and on the outer boundary
with Cartesian coordinate xB,i (corresponding points have same angular coordinate) the internal nodes
are interpolated using the mathematical expression (((j/Nr)3 × xB,i) + ((1− (j/Nr)3)× xA,i)), i.e., j
are the levels from airfoil (j = 0) to the boundary (j = Nr), the exponent 3 represents the strength of the
mesh grading and Nr are the number of elements in the radial direction.
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2 10 20
−25

0

25

g[2, 20]

ϕ[−25, 25]

Figure 4. NACA64: The parameter space employed in the analysis consists of the physical parameter
2 m/s < g < 20 m/s and the geometrical parameter −25° < ϕ < 25°. The training set for finding the
reduced-order basis is a uniform tensor product parameter space consisting of 10× 11 values of the
parameters g and ϕ.

To handle variation in geometry due to variation in the angle of attack ϕ we introduce the
following geometrical mapping written in reference variables as a function of the angle of attack and
radius r

π−1
ϕ r̂ = R(ϕθ(r))r̂, (18)

where r = ‖r̂‖, r̂ = (x̂, ŷ) and R is the rotation matrix

R(a) =

[
cos a − sin a
sin a cos a

]
. (19)

The function θ is chosen as sufficiently smooth function satisfying the properties

θ(r) = 1 r < rmin, (20)

θ(r) = 0 r > rmax. (21)

Figure 5 describes the variation of r with the changes in the incidence angle. One possible choice
is with r = (r−rmin)/(rmax−rmin)

θ(r) =


1, r < rmin,

0, r > rmax,

(1− r)3(3r + 1), otherwise.

(22)

Noting that the airfoil is within the region r < rmin, and the external boundaries of the domain are
entirely contained within the region r > rmax, this produces a suitable parameter-dependent domain
Ω(ϕ) as shown in Figure 3. Here we have set rmin = 1 m and rmax = 10 m.
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r = rmin r = rmax

θ(
r)

Figure 5. NACA64: θ(r) as a function of r. For the mathematical expression see Equation (22).

The solution strategy is divided into offline and online stages, where the basis is precomputed in
the offline stage such that fast parametric estimates can be made in the online stage. An ensemble of
high-fidelity solution is created with different choices of the parameters (g, ϕ), see Section 4.2. For the
FV solutions, a mesh is used that is twice as dense as for FE as described in Section 2.2. Three meshes
are shown in Figure 3 has been used for providing FV high-fidelity velocity and pressure fields.
Based on the computed results we choose the G2 that is characterized by having the following number
of elements Nθ × Nr = 80× 36 = 2880 Nel.

The FV and FE-based solvers are created in OpenFOAM (4.0) [33] and Nutils (open source
numerical tool in Python [34]) respectively. To provide an accurate estimate of initial guess over
the discretize points for higher speedups and rapid convergence rates, the solution for the Stokes
equation is first obtained. Later the convective terms are introduced to develop the standard system of
Navier–Stokes. The FE-based solver employs Newton iteration to obtain the solution of velocity and
pressure, which is calculated until the desired value of the residuals is achieved (iteration tolerance
is 10−10 in velocity H1-seminorm). For the FV solution, the face values are determined from the cell
centers using an interpolation scheme. Linear upwind (φ f = φN + 0.5(φP − φN)) scheme is employed
to discretize the velocity in the convective term of the momentum equation, where φ f represents
the values at the face of the control volume, and φN and φP shows the values at the neighboring
upwind and downwind cell centers respectively. The pressure and diffusion terms are discretized
using linear schemes (φ f = fxφN + (1− fx)φN), where fx is the interpolation factor defined as the ratio
of distances between the face and the downwind cell center to the distance between the upwind and
downwind cell centers [33]. For the solution of FV algebraic equations, the divergence of momentum
equation produces an elliptic equation for the modified pressure. The resulting equation along with
the momentum is solved in a segregated manner using the Semi-Implicit Method for Pressure-Linked
Equations (SIMPLE) algorithm. The converged solution of the field variables (u, p) is located at the
cell centers. IDW method (z = ∑n

i=1(zi/di)/∑n
i=1(1/di), where d is the distance between the cell nodes and

cell centers, and z is the corresponding cell center value) is used to interpolate the values from the cell
centers to the cell nodes. This procedure provides a well-defined solution for both FE and FV methods
at the same locations (see Figure 2), which eventually ease the projection of the solution on the reduced
basis at the later stage. The FE and FV ensembles are created on a desktop computer with Intel Core
i7-4930MX 3.00 GHz, 8 logical cores, 32GB RAM with 4MB of cache memory.

4.2. Snapshots Creation

To generate datasets of high-fidelity simulations, 10× 11 = 110 snapshots for the pressure and
velocity fields over the range of parametric values (g, ϕ) are considered as shown in the Figure 4.
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The Reynolds number values depict a laminar flow regime and vary between 2–20, thus snapshots
are only considered for the steady state solutions of the Navier–Stokes. To establish the fact that the
flow field remains consistent under steady and unsteady conditions, one simulation is formulated
under each condition. The results are plotted in Figure 6 which manifests that the two simulations
converge with minimal differences. Thus, steady solutions over the parametric space are employed for
the simulations conducted afterward. Each subsequent snapshot contains the velocity and pressure
field variables over the domain. The ensemble is generated for two sets of case definitions employing
FV and FE methods. Using these ensembles, two ROM models are developed, i.e., FE-based ROM
with snapshots generated from FV (mixed ROM) and FE-based ROM with snapshots generated from
FE (uniform ROM). The detailed comparison of each ROM is presented in the upcoming section.

(a) Steady (b) Unsteady

(c) Difference between steady and unsteady

Figure 6. NACA64: Simulations conducted by (a) steady and the (b) transient solvers under similar
operating conditions (conducted using G2 at (Re = 20, g = 20 m/s, ϕ = 25°)) (c) shows that the two
solutions results in differences that are insignificant for our purposes.

4.3. Spatial Development of Modes/Reduced Basis

To gain insight into the type of eigenmodes we get using POD we display the first six
reduced-order basis function for velocities in Figures 7 and 8 and pressures in Figures 9 and 10
obtained with the uniform and mixed ROM methods, respectively. The geometrical variation is
highlighted in the modes with vortex fronts of various spatial directions. The POD produces in general
optimal linear subspace of modes by acting as an energy filter which identifies the large coherent
structures and passes the less coherent structures to the lower modes [46,47]. The figures represent the
modes sorted in a hierarchical manner of high to low energetic states of the system with its spatial
evolution. All the sorted modes are orthogonal to each other (in respective H1-seminorm for velocity
and L2-norm for pressure) and exhibit a distinct spatial pattern. The change in the spatial distribution
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of the small coherent structures in the modes is considered to be due to the redistribution of the energy
between scales of varying length.

Figure 7. NACA64: The first six basis functions for the velocity obtained from the FE-based ROM
using the ensemble from FE method. The ensemble solution consists of 110 high-fidelity solutions
corresponding to the parameter space of 2 m/s < g < 20 m/s and −25° < ϕ < 25°. Higher modes
represent the global mean behavior of the flow field. Whereas, lower modes show local behavior with
increasing vortex fronts and erratic flow distribution with less coherence.

Figure 8. NACA64: The first six basis functions for the velocity obtained from the FE-based ROM
using the ensemble from FV method. The ensemble solution consists of 110 high-fidelity solutions
corresponding to the parameter space of 2 m/s < g < 20 m/s and −25° < ϕ < 25°. Higher modes
represent the global mean behavior of the flow field. Whereas, lower modes show local behavior with
increasing vortex fronts and erratic flow distribution with less coherence.
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Figure 9. NACA64: The first six basis functions for the pressure obtained from the FE-based ROM
using the ensemble from FV method. The ensemble solution consists of 110 high-fidelity solutions
corresponding to the parameter space of 2 m/s < g < 20 m/s and −25° < ϕ < 25°.

Figure 10. NACA64: The first six basis functions for the pressure obtained from the FE-based ROM
using the ensemble from FE method. The ensemble solution consists of 110 high-fidelity solutions
corresponding to the parameter space of 2 m/s < g < 20 m/s and −25° < ϕ < 25°.

The plots of mixed and uniform reduced methods demonstrate that the first few velocity modes
show a mean behavior of the flow field. The first mode, in particular, carries the highest portion of
energy and exhibits a mean flow pattern of the velocity field. The second mode exhibits a wake region



Energies 2019, 12, 1271 16 of 23

behind the airfoil; however, the mean behavior is still reflected in it. The third mode interestingly
manifests two distinct vortex regions behind the airfoil [48]. These dipole vortex structures turn
into tripole structure in the downstream direction of the fourth mode. In the subsequent modes, an
addition of one vortex structure is seen in all modes. Increasing vortex structures show the limited
coherence of energy in the flow field. The unique large coherent structures are only present in the
first few modes, and the lower modes characterize the vorticity structure present inside the flow field.
The vorticity mixing and the eddies in the wake are observed to collapse and became less pronounced.
The initial modes represent the global behavior (large scale coherent motion), while the following
modes have predominantly shown the local response (such as the representation of small eddies in the
wake region). For instance, the scales depicted in the corresponding modes principally describes small
scales with a subsequent increase in the number of vortices in the wake. Interestingly, the modes from
both high-fidelity input methods have shown similar behavior, which demonstrates that irrespective
of the input method used, the six first reduced basis functions remain nearly the same.

4.4. Spectrum and Related Error

The decay of eigenvalues of the mixed and uniform methods is depicted for the sixty-first modes
in the Figure 11a whereas the accumulated energy for the twenty-first modes is shown in Figure 11b
and tabulated in Table 1. It highlights the number of basis functions required for a suitable construction
of ROM for each method. The decay of energy for velocity is similar for the uniform and mixed
method up to the fifty-first modes, whereas, for the scalar pressure, the two methods differ after the
forty-first modes.

Table 1. NACA64: Accumulated energy for the 20 first velocity and pressure modes.

Mixed-Velocity Uniform-Velocity Mixed-Pressure Uniform-Pressure

DoFs ∑20
i=1 λi ∑20

i=1 λi ∑20
i=1 λi ∑20

i=1 λi

1 0.5855145451 0.5764554385 0.7334786512 0.7413536071
2 0.9320673270 0.9276187838 0.9947750576 0.9948088692
3 0.9819303885 0.9801400555 0.9993205450 0.9993294807
4 0.9900400584 0.9890380980 0.9998532791 0.9998502524
5 0.9954221934 0.9947546689 0.9999682922 0.9999676828
6 0.9975491011 0.9971518139 0.9999827134 0.9999820036
7 0.9990781402 0.9988937420 0.9999945064 0.9999940851
8 0.9993870184 0.9992443210 0.9999970640 0.9999968682
9 0.9996459298 0.9995575066 0.9999984249 0.9999982012
10 0.9997908626 0.9997329171 0.9999995168 0.9999994521
11 0.9998805961 0.9998491443 0.9999996861 0.9999996457
12 0.9999385575 0.9999185397 0.9999998352 0.9999998220
13 0.9999560220 0.9999403728 0.9999998957 0.9999998900
14 0.9999725492 0.9999616808 0.9999999427 0.9999999450
15 0.9999810290 0.9999733205 0.9999999688 0.9999999681
16 0.9999892611 0.9999845707 0.9999999772 0.9999999772
17 0.9999926070 0.9999891758 0.9999999843 0.9999999857
18 0.9999957257 0.9999935479 0.9999999881 0.9999999904
19 0.9999969535 0.9999953122 0.9999999918 0.9999999940
20 0.9999979067 0.9999968180 0.9999999945 0.9999999967

From Figure 11b we observe that the accumulated energy in the pressure field converges more
rapidly towards 1 (i.e., 100%) than correspondingly for the velocity. Table 1 verify this observation.
We may expect that the error in H1-seminorm for velocity and L2-norm is proportional to ε if the
accumulated energy (measured in the same norms) by the reduced-order modes in the corresponding
fields are equal to 1− ε2 [14]. However, Figure 12 shows that the error for pressure does not comply
very well with this assertion, only the velocity obtained using the uniform method comply reasonably
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well. Notice furthermore that the error obtained for the mixed method using nine and more modes is
decreasing very slowly (saturation).
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Figure 11. NACA64: (a) Velocity and pressure energy spectrum plotted for 60 first modes out of
110 high-fidelity snapshots. The marks are given at intervals of 5 modes. (b) Accumulated energy
for the 20 first velocity and pressure modes. The marks are given for the first 10 modes and then in
intervals of 2 modes.
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Figure 12. NACA64: Relative H1 seminorm for velocity and relative L2 error for pressure. Increasing
number of modes to the left. The marks are given for the first 10 modes and then in intervals of 2 modes.
The triangle represents the assumed correlation rate between expected error and the relative error.
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4.5. Accuracy of the Mixed and Uniform Methods

In Figure 13 the relative H1-seminorm for velocity and relative L2-error for pressure versus the
number of reduced-order modes (equivalent to the number of DOFs in the reduced-order model) are
displayed. The relative H1-seminorm error in the velocity decay rapidly towards 5% at 5 modes for
both the uniform and the mixed methods. The convergence rate for the uniform method is unchanged
for a higher number of modes, whereas the mixed method just slowly reduces to 3% at 20 modes.
We observe similar behavior for the relative L2-error in the pressure, but here we see a drastic change in
convergence rate starting after using 8 modes (with 6% relative error) and then very slow convergence
down to 5% relative error using 20 modes.
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Uniform method (p)
Mixed method (p)

Figure 13. NACA64: Illustration of Error vs degree of freedoms for pressure and velocity for both
mixed and uniform methods. The marks are given for the first 10 modes and then in intervals of
2 modes.

In Figure 14 we have reported the relative error in aerodynamic lift and drag versus DOFs obtained
by integrating the tractions derived from the computed reduced-order model solutions. The computed
drag is quite similar for the uniform and mixed method, whereas the error in the computed lift is
nearly one order lower for the uniform than the mixed method. We see that the relative error in both
lift and drag is about 3% for the mixed method when using 20 modes.

To explain the saturation of the results obtained using the higher number of modes in the mixed
method we report in Figure 15 the relative errors between the POD modes obtained from mixed and
uniform methods. We clearly see that for velocities the relative error in each POD mode increases
steadily up to 18 modes and then flatten outs, whereas for the pressure it flattens out around 8 modes.
As the accumulated energy converge rapidly towards unity for the first 10 modes for the velocity and
the first 5 modes for pressure the high relative difference in the POD modes higher than 18 and 8
modes for velocity and pressure respectively, results in saturation at acceptable level (i.e., around 3–5%
relative error in the investigated quantities).

As mentioned in Section 2.2 we must expect an inconsistency error in the mixed method.
Even though that the inconsistency error and the error due to the use of a reduced basis are not
necessarily orthogonal to each other (in the proper norms) we may expect that relative error of a
quantity computed by the presented mixed method to be bounded by the relative difference in the
corresponding high-fidelity FE and FV quantity:

ε '
1
|P|

∫
P

‖FE(µ)− FV(µ)‖
‖FE(µ)‖ (23)
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Figure 14. NACA64: Relative error of aerodynamic lift and drag error computed as a function of DOFs
(i.e., number of modes).
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Figure 15. NACA64: Relative error between POD modes obtained from mixed and uniform methods
for velocity and pressure. (Relative H1 seminorm for velocity and relative L2 error for pressure.)

While the error of the “mixed” methods is bounded, the “uniform” methods continue to converge.
However, it must be noted that the errors reported are those between the reduced-order models and
the high-fidelity counterparts, which are not necessarily indicative of the true error of the method (as
compared to the analytical solution of the PDE). Indeed, one may claim that there is no desire to create
reduced models that approximate the high-fidelity model better than that model approximates reality.
Since we have that

‖True(µ)− ROM(µ)‖ ≤ ‖True(µ)−HiFi(µ)‖+ ‖HiFi(µ)− ROM(µ)‖

one should aim for the compromise

‖HiFi(µ)− ROM(µ)‖ ≈ ‖True(µ)−HiFi(µ)‖
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Assuming that the two methods given the same number of DOFs are comparable in accuracy, one
can expect the following a posteriori error estimate to roughly hold.

‖ROMUniform(µ)− ROMMixed(µ)‖ ≤ 2‖True(µ)−HiFi(µ)‖.

Given these considerations, it can be seen that the error bound given by Equation (23) does
not impose undue problems for “mixed” methods, and that it is only a natural consequence of the
reduction process.

In Figure 16, the parametric dependency of the difference between the snapshots generated by the
two methods is investigated. It is observed that the differences are not particularly dependent on ϕ,
but that higher differences are reported for slower flows compared to rapid ones. The same behavior
is observed in both velocity and pressure norms. An unsymmetrical shape of the profile is observed
for the positive and negative values of ϕ, which is due to the unsymmetrical shape of the airfoil used
in the analysis.
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Figure 16. NACA64: Illustration of the relative FE - FV errors against the parametric space (ϕ, g).

4.6. Computational Speedup

The Table 2 illustrates speedups achieved from ROM using the different number of modes
(i.e., DOFs). By employing 5 DOF’s, massive speedup of 25,981 is observed for the mixed method,
whereas uniform methods show a speedup of 15,370. However, the accuracy is about 10% in relative
H1-seminorm of the velocity, about 10% in relative L2-norm for the pressure and more than 40%
relative error in drag and lift. Thus, only 5 reduced-order modes are not acceptable in this case.

If we use 15 modes we observe a speedup of approximately 2000 for the uniform method and close
to 3000 for the mixed method. The corresponding relative errors for the four quantities investigated
herein are all approximately 5%, which is within the aim for our desired level of accuracy.
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Table 2. NACA64: Illustration for the speed gains for mixed and uniform methods. Speedup
is, time taken for high-fidelity divided by the time taken for the reduced solution on average.
Relative error is absolute H1 seminorm error divided by H1 seminorm of the velocity of the
reference/high-fidelity solution.

] DoFs Speedup Relative Error (Velocity) Relative Error (Pressure)

High-fidelity 110 1 0 0

Uniform method

5 15,370 1.0× 10−1 1.1× 10−1

10 4122 3.3× 10−2 4.9× 10−2

15 1972 1.0× 10−2 1.5× 10−2

20 1011 3.1× 10−3 3.7× 10−3

Mixed method

5 25,981 1.1× 10−1 1.2× 10−1

10 6902 4.8× 10−2 8.8× 10−2

15 2936 3.5× 10−2 7.2× 10−2

20 1764 3.2× 10−2 4.2× 10−2

5. Conclusions

In this paper, a nonintrusive approach for combining high-fidelity simulations using FV methods
with POD and Galerkin Reduced-Order Modeling (ROM) methodology is explored. The key ingredient
is to project the FV velocity and pressure results onto suitable FE spaces and then use the classical POD
Galerkin ROM framework.

The main finding from our study is that the use of FV high-fidelity snapshots and FE-based ROM,
herein denoted mixed method, compute results with an error measured in relative H1-norm for the
velocity and relative L2-norm for the pressure as well as relative error in lift and drag that are all about
5%. The corresponding computational speedup of the mixed method to achieve this level of accuracy
was 3000 compared to the FV high-fidelity simulation.

The inherent inconsistency in the mixed method due to the projection of FV results onto the
FE Taylor–Hood spaces shows up in higher-order modes but does not preclude the aim of reaching
accuracy in the range of 1–10% relative error of the typical quantity of interests for laminar flow
problems studied herein.

A natural extension of this work is to develop a mixed method for high Reynolds flow problems,
and that will be pursued in future studies.
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