Thermodynamic-Based Exergy Analysis of Precious Metal Recovery out of Waste Printed Circuit Board through Black Copper Smelting Process
Abstract
:1. Introduction
2. Exergy Perception
Measurement of Exergy Losses in Recycling Process
3. Process Description
4. Methodology
Databases
5. Results and Discussion
5.1. Effect of Metal and Oxide Dust
5.2. Effect of Off-Gas Emission
5.3. Effect of Solid Waste in Slag
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rosen, M.A.; Dincer, I. On Exergy and Environmental Impact. Int. J. Energy Res. 1997, 21, 643–654. [Google Scholar] [CrossRef]
- Szargut, J.; Morris, D.R.; Steward, F.R. Exergy Analysis of Thermal, Chemical, and Metallurgical Processes; Hemisphere Publishing Corporation: New York, NY, USA, 1988. [Google Scholar]
- Edgerton, R.H. Available Energy and Environmental Economics; D.C. Heath: Toronto, Canada, 1982. [Google Scholar]
- Ayres, R.U.; Ayres, L.W.; Martinas, K. Eco-Thermodynamics: Exergy and Life Cycle Analysis; INSEAD: Fontainebleau, France, 1996; Volume 19. [Google Scholar]
- Ayres, R.U.; Ayres, L.W.; Martinás, K. Exergy, waste accounting, and life-cycle analysis. Energy 1998, 23, 355–363. [Google Scholar] [CrossRef]
- Ayres, R.U.; Ayres, L.W.; Warr, B. Is the US economy dematerializing? Main indicators and drivers. In Economics of Industrial Ecology: Materials; Structural Change and Spatial Scales MIT Press: Cambridge, MA, USA, 2004. [Google Scholar]
- Rosen, M.A.; Dincer, I.; Kanoglu, M. Role of exergy in increasing efficiency and sustainability and reducing environmental impact. Energy Policy 2008, 36, 128–137. [Google Scholar] [CrossRef]
- Rosen, M.A.; Dincer, I. Exergy–Cost–Energy–Mass analysis of thermal systems and processes. Energy Convers. Manag. 2003, 44, 1633–1651. [Google Scholar] [CrossRef]
- Daniel, J.J.; Rosen, M.A. Exergetic environmental assessment of life cycle emissions for various automobiles and fuels. Exergy Int. J. 2002, 2, 283–294. [Google Scholar] [CrossRef]
- Dincer, I. Thermodynamics, Exergy and Environmental Impact. Energy Sources 2000, 22, 723–732. [Google Scholar] [CrossRef]
- Dincer, I. The role of exergy in energy policy making. Energy Policy 2002, 30, 137–149. [Google Scholar] [CrossRef]
- Dincer, I. Technical, environmental and exergetic aspects of hydrogen energy systems. Int. J. Hydrogen Energy 2002, 27, 265–285. [Google Scholar] [CrossRef]
- Crane, P.; Scott, D.; Rosen, M. Comparison of exergy of emissions from two energy conversion technologies, considering the potential for environmental impact. Int. J. Hydrogen Energy 1992, 17, 345–350. [Google Scholar] [CrossRef]
- Creyts, J.C. Extended Exergy Analysis: A Tool for Assessment of the Environmental Impact of Industrial Processes; University of California: Berkeley, CA, USA, 1998. [Google Scholar]
- Gong, M.; Wall, G. On exergy and sustainable development—Part 2: Indicators and methods. Exergy Int. J. 2001, 1, 217–233. [Google Scholar] [CrossRef]
- Ukidwe, N.U.; Bakshi, B.R. Thermodynamic Accounting of Ecosystem Contribution to Economic Sectors with Application to 1992 U.S. Economy. Environ. Sci. Technol. 2004, 38, 4810–4827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ukidwe, N.U.; Bakshi, B.R. Industrial and ecological cumulative exergy consumption of the United States via the 1997 input–output benchmark model. Energy 2007, 32, 1560–1592. [Google Scholar] [CrossRef]
- Ji, X.; Chen, G.Q.; Chen, B.; Jiang, M.M. Exergy-based assessment for waste gas emissions from Chinese transportation. Energy Policy 2009, 37, 2231–2240. [Google Scholar] [CrossRef]
- Chen, G.Q. Scarcity of exergy and ecological evaluation based on embodied exergy. Commun. Nonlinear Sci. Numer. Simul. 2006, 11, 531–552. [Google Scholar] [CrossRef]
- Dincer, I.; Rosen, M.A. Thermodynamic aspects of renewables and sustainable development. Renew. Sustain. Energy Rev. 2005, 9, 169–189. [Google Scholar] [CrossRef]
- Ayres, R.U.; Ayres, L.W.; Martinas, K. Eco-Thermodynamics: Exergy and Life Cycle Analysis. 1996. Available online: https://flora.insead.edu/fichiersti_wp/inseadwp1996/96-04.pdf (accessed on 4 April 2019).
- Amini, S.H.; Remmerswaal, J.A.M.; Castro, M.B.; Reuter, M.A. Quantifying the quality loss and resource efficiency of recycling by means of exergy analysis. J. Clean. Prod. 2007, 15, 907–913. [Google Scholar] [CrossRef]
- Ignatenko, O.; van Schaik, A.; Reuter, M.A. Exergy as a tool for evaluation of the resource efficiency of recycling systems. Miner. Eng. 2007, 20, 862–874. [Google Scholar] [CrossRef]
- Castro, M.B.G.; Remmerswaal, J.A.M.; Brezet, J.C.; Reuter, M.A. Exergy losses during recycling and the resource efficiency of product systems. Resour. Conserv. Recycl. 2007, 52, 219–233. [Google Scholar] [CrossRef]
- Ghodrat, M.; Rhamdhani, M.A.; Khaliq, A.; Brooks, G.; Samali, B. Thermodynamic analysis of metals recycling out of waste printed circuit board through secondary copper smelting. J. Mater. Cycles Waste Manag. 2017, 20, 386–401. [Google Scholar] [CrossRef]
- Bale, C.W.; Bélisle, E.; Chartrand, P.; Decterov, S.A.; Eriksson, G.; Hack, K.; Jung, I.-H.; Kang, Y.-B.; Melançon, J.; Pelton, A.D.; et al. FactSage thermochemical software and databases—Recent developments. Calphad 2009, 33, 295–311. [Google Scholar] [CrossRef]
- Cornelissen, R.L. Thermodynamics and sustainable development. In The Use of Exergy Analysis and the Reduction of Irreversibility; Universiteit Twente: Enschede, The Netherlands, 1997; ISBN 9036510538. [Google Scholar]
- Hait, J.; Jana, R.K.; Sanyal, S.K. Processing of copper electrorefining anode slime: A review. Miner. Process. Extr. Metall. 2009, 118, 240–252. [Google Scholar] [CrossRef]
- Kulczycka, J.; Lelek, Ł.; Lewandowska, A.; Wirth, H.; Bergesen, J.D. Environmental impacts of energy-efficient pyrometallurgical copper smelting technologies: The consequences of technological changes from 2010 to 2050. J. Ind. Ecol. 2016, 20, 304–316. [Google Scholar] [CrossRef]
- Forsén, O.; Aromaa, J.; Lundström, M. Primary Copper Smelter and Refinery as a Recycling Plant—A System Integrated Approach to Estimate Secondary Raw Material Tolerance. Recycling 2017, 2, 19. [Google Scholar] [CrossRef]
- Klemettinen, L.; Avarmaa, K.; O’Brien, H.; Taskinen, P.; Jokilaakso, A. Behavior of Tin and Antimony in Secondary Copper Smelting Process. Minerals 2019, 9, 39. [Google Scholar] [CrossRef]
- Ghodrat, M.; Rhamdhani, M.A.; Brooks, G.; Masood, S.; Corder, G. Techno economic analysis of electronic waste processing through black copper smelting route. J. Clean. Prod. 2016, 126, 178–190. [Google Scholar] [CrossRef]
Metal Oxide | Cu | Cu2O | SnO2 | PbO | ZnO | NiO |
---|---|---|---|---|---|---|
wt% | 70 | 7 | 5 | 8 | 5 | 5 |
Metallurgical coke elements | C | H2O | S | Al2O3 | FeO | |
wt% | 90 | 5 | 0.8 | 2 | 2.2 | |
slag | FeO | CaO | SiO2 | |||
wt% | 45 | 17 | 38 |
Element | Cu | Ag | Au | Al | Zn | Pb | Fe | Sn | Ni | Br | N | C | Al2O3 | SiO2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
wt% | 20.6 | 0.2 | 0.1 | 5 | 4 | 6 | 8.6 | 4 | 2 | 4 | 5 | 10 | 6 | 23.5 |
Reduction | |||
Solid/Gas | Gaseous | Solid | Liquid |
Metal and Oxide dust | Exhaust Gas | Slag | Black Copper |
Zn, Pb, CuBr, PbBr(g) | CO2(g), N2(g) | Al2O3(l), SiO2, CaO, FeO | Ni, Pb, Cu(l) |
PbO, SnO, HBr(g), PbS | CO(g), H2O(g) | Fe2O3, PbO, ZnO, NiO, SnO(l), Cu2O(l), FeS, PbS | Sn, Zn, Fe |
Au, NiBr(g), NiBr2, AgBr | SO2(g), H2(g) | Au, Ag, In | |
FeBr2, InBr, GeO, SnS, Br | SO(g) | ZnS, NiS, Cu2S, SnS, GeO2 | Ge, Pd |
ZnBr2, PbBr2, SnBr2 | AgO, Ta | ||
Solid Spinel Oxide | |||
NiO, ZnO, Fe3O4 | |||
Al2O3 | |||
Oxidation | |||
Solid/Gas | Gaseous | Solid | Liquid |
Metal and Oxide Dust | Exhaust Gas | Slag | Anode Copper to Fire Refining |
Zn, Pb, PbO, SnO, PbS, Au, GeO, SnS | CO2(g), N2(g) | FeO, CaO, SiO2, Fe2O3 | Ni, Pb, Cu(l), Sn, Zn |
CO(g), H2O(g) | PbO, ZnO, NiO(l), SnO(l) | Fe, Au, Ag, In, Ge, Pd | |
SO2(g), H2(g) | Cu2O(l), GeO2, AgO | ||
SO(g), O2(g) | |||
Solid Monoxide | |||
Fe3O4, CaO | |||
ZnO, NiO | |||
SnO2 | |||
Fire Refining | |||
Solid/Gas | Gaseous | Solid | Liquid |
Off Gas | Anode Cu to Electro Refining | ||
H2(g), Co(g), H2O(g) | Ag, Au, C | ||
Cu(l), Fe, Ge | |||
CO2(g), Pb, Cu, Ag, Zn | In, Ni, Pb, Pd | ||
CH4(g), SnO(g), GeO(g), Ni, Fe, N2(g) | Sn, Zn | ||
Electrorefining | |||
Solid/Gas | Gaseous | Solid | Liquid |
Impure Electrolyte | Cathode Cu 99.9% | ||
H2O, H2SO4, Ni, As Ag, Au, C, Cu, Fe, Ge In, Pb, Pd, Sn, Zn | Ag, Au, C, Cu(l), Fe, Ge, In, Ni, Pb, Pd, Sn, Zn, S | ||
Slimes | |||
Ag, Au, C | |||
Cu, Fe, Ge, In | |||
Ni, Pb, Pd, Sn | |||
Zn, As | |||
Precious Metal Refining | |||
Solid/Gas | Gaseous | Solid | Liquid |
Gangue | Precious Metals | ||
Ag, Au, C, Cu, Fe, Ge, In, Ni, Pb, Pd, Sn, Zn, As | Ag, Au |
Inlet Exergies | Outlet Exergies | |||||
---|---|---|---|---|---|---|
Source | Exergy (Total) (kWh)-50% | Exergy (Total) (kWh)-30% | Source | Exergy (Total) (kWh)-50% | Total Exergy (kWh)-30% | |
Reduction | E-waste | 13,902 | 8776 | Metal and oxide dust | 228.33 | 129 |
Copper scrape | 2655 | 3651 | Exhaust gas | 791.40 | 529 | |
FCS (ferrous-calcia-silica) Slag | 143 | 143 | Slag | 1135.29 | 716 | |
Coal | 688 | 688 | Solid spinel oxide | 35.96 | 51 | |
O2 | 79 | 46 | ||||
Oxidation | Carbon | 17,078 | 17,078 | Slag | 542.83 | 610 |
O2 enriched air | 196 | 197 | Solid monoxide | 12.91 | 12 | |
Flux (FCS) | 163 | 164 | Exhaust | 958.36 | 958 | |
Metal and oxide dust | 14.92 | 16 | ||||
Fire refining | Hydrocarbon | 14,701.78 | 11,523 | Off gas | 3956.67 | 3881 |
Air | 128.27 | 128 | ||||
Electrorefining | Electrolyte | 360.23 | 482 | Impure electrolyte | 545.72 | 833 |
Cathode Cu 99.9% | 2914.09 | 3825 | ||||
Precious metal refining | Slimes | 58.27 | 31.60 | Ag, Au | 1.67 | 1.2 |
Gangue | 56.61 | 30.52 |
Chemical Component | Chemical Exergy (kWh)-50% | Chemical Exergy (kWh)-30% | Chemical Component | Chemical Exergy (kWh)-50% | Chemical Exergy (kWh)-30% |
---|---|---|---|---|---|
Cu (E-waste stream) | 722.49 | 456.12 | Cu2O | 97.14 | 133.57 |
Cu (copper scarp stream) | 2432.62 | 3344.85 | SnO2 | 22.29 | 30.65 |
Ag | 1.52 | 0.96 | PbO | 37.42 | 51.45 |
Au | 0.21 | 0.13 | ZnO | 29.22 | 40.18 |
Al | 2715.80 | 1714.52 | NiO | 36.71 | 50.47 |
Zn | 347.97 | 219.68 | FeO (FCS slag stream) | 96.54 | 96.54 |
Pb | 119.12 | 75.20 | CaO | 45.20 | 45.20 |
Fe | 977.73 | 617.26 | SiO2 | 1.79 | 1.79 |
Sn | 306.84 | 193.71 | C | 683.16 | 683.16 |
Ni | 136.34 | 86.08 | H2O | 0.06 | 0.06 |
Br | 41.80 | 26.39 | S | 3.38 | 3.38 |
C | 5636.05 | 3558.11 | Al2O3 | 0.87 | 0.87 |
SiO2 | 16.00 | 10.10 | FeO (Coal stream) | 0.90 | 0.90 |
In | 0.13 | 0.08 | O2 | 69.07 | 40.16 |
Ge | 0.25 | 0.16 | N2 | 10.09 | 5.87 |
Ta | 0.18 | 0.11 | |||
Pd | 0.06 | 0.04 |
Chemical Component | Chemical Exergy (kWh)-50% | Chemical Exergy (kWh)-30% | Chemical Component | Chemical Exergy (kWh)-50% | Chemical Exergy (kWh)-30% |
---|---|---|---|---|---|
O2(g) (O2 enriched Air stream) | 171.81 | 172.05 | Cu(l) (black copper stream) | 3155.42 | 4056.26 |
N2(g) (O2 enriched Air stream) | 25.09 | 24.98 | Sn (black copper stream) | 593.65 | 604.12 |
FeO | 55.29 | 55.29 | Zn (black copper stream) | 23.13 | 16.22 |
CaO | 104.93 | 104.93 | Fe (black copper stream) | 4.39 | 5.36 |
SiO2 | 3.51 | 3.51 | Au (black copper stream) | 0.21 | 0.13 |
C | 17,078.94 | 17,078.94 | Ag (black copper stream) | 1.49 | 0.96 |
Ni (black copper stream) | 378.41 | 437.47 | In (black copper stream) | 0.04 | 0.04 |
Pb (black copper stream) | 64.06 | 86.79 | Ge (black copper stream) | 0.15 | 0.12 |
Pd (black copper stream) | 0.06 | 0.04 |
Chemical Component | Chemical Exergy (kWh)-50% | Chemical Exergy (kWh)-30% | Chemical Component | Chemical Exergy (kWh)-50% | Chemical Exergy (kWh)-30% |
---|---|---|---|---|---|
CH4(g) | 11,523.72 | 11,523.72 | Zn | 0.23 | 0.05 |
O2(g) | 76.25 | 76.11 | Fe | 0.03 | 0.02 |
N2(g) | 52.02 | 51.93 | Au | 0.21 | 0.13 |
Ni (Anode copper stream) | 75.68 | 170.61 | Ag | 1.46 | 0.95 |
Pb | 6.41 | 12.76 | In | 0.04 | 0.04 |
Cu(l) | 2887.21 | 3731.76 | Ge | 0.09 | 0.05 |
Sn | 78.36 | 44.71 | Pd | 0.06 | 0.04 |
Chemical Component | Chemical Exergy (kWh)-50% | Chemical Exergy (kWh)-30% | Chemical Component | Chemical Exergy (kWh)-50% | Chemical Exergy (kWh)-30% |
---|---|---|---|---|---|
H2SO4(l) | 191.04 | 242.81 | C | 113.66 | 113.66 |
CuSO4 | 38.83 | 57.82 | Cu | 2887.21 | 3731.76 |
H2O | 30.03 | 37.64 | Ge | 0.09 | 0.05 |
Ni | 48.58 | 77.25 | In | 0.04 | 0.04 |
As | 51.75 | 66.36 | Ni | 22.70 | 170.61 |
Ag | 1.46 | 0.95 | Pb | 0.64 | 7.58 |
Au | 0.21 | 0.13 | Pd | 0.06 | 0.04 |
Zn | 0.02 | 0.01 | Sn | 39.18 | 44.71 |
(a) | ||
Output Streams | Chemical Ex (kWh) | |
Metal and Oxide Dust | Chem Ex (kWh)-50% | Chem Ex (kWh)-30% |
Total | 228.33 | 129.82 |
Zn(g) | 162.99 | 26.03 |
Pb(g) | 13.09 | 59.61 |
PbBr(g) | 1.20 | 5.45 |
PbO | 0.23 | 1.05 |
SnO | 3.82 | 0.19 |
HBr(g) | 0.09 | 0.07 |
PbS | 0.70 | 4.75 |
FeBr2 | 0.40 | 2.27 |
InBr | 0.06 | 0.03 |
GeO | 0.03 | 0.01 |
SnS | 1.87 | 0.13 |
Br | 40.45 | 16.01 |
ZnBr2 | 0.13 | 0.02 |
PbBr2 | 0.05 | 0.20 |
SnBr2 | 3.22 | 0.14 |
Exhaust Gas | Chem Ex kWh-50% | Chem Ex (kWh)-30% |
Total | 791.40 | 529.56 |
CO2(g) | 269.28 | 180.73 |
N2(g) | 12.21 | 7.20 |
CO(g) | 508.42 | 341.24 |
H2O(g) | 0.05 | 0.05 |
SO2(g) | 0.71 | −0.32 |
H2(g) | 0.72 | 0.66 |
SO(g) | 0.01 | −0.01 |
Slag (Reduction) | Chem Ex (kWh)-50% | Chem Ex (kWh)-30% |
Total | 1135.29 | 716.26 |
Al2O3(l) | 491.01 | 288.13 |
SiO2(l) | 17.79 | 11.89 |
CaO(l) | 45.20 | 45.20 |
FeO(l) | 402.06 | 284.07 |
Fe2O3(l) | 0.22 | 0.13 |
PbO(s) | 47.41 | 30.95 |
ZnO(s) | 29.24 | 40.85 |
NiO(l) | 1.32 | 0.87 |
SnO(l) | 3.35 | 4.70 |
Cu2O(l) | 96.99 | 9.21 |
FeS(l) | 0.27 | 0 |
PbS(l) | 0.06 | 0.04 |
ZnS(l) | 0.08 | 0.11 |
Cu2S(l) | 0.06 | 0.01 |
AgO(l) | 0.04 | 0 |
Ta(s) | 0.18 | 0.11 |
Black Copper | Chem Ex (kWh)-50% | Chem Ex (kWh)-30% |
Total | 4221.02 | 5207.51 |
Ni | 378.41 | 437.47 |
Pb | 64.06 | 86.79 |
Cu(l) | 3155.42 | 4056.26 |
Sn | 593.65 | 604.12 |
Zn | 23.13 | 16.22 |
Fe | 4.39 | 5.36 |
Au | 0.21 | 0.13 |
Ag | 1.49 | 0.96 |
In | 0.04 | 0.04 |
Ge | 0.15 | 0.12 |
Pd | 0.06 | 0.04 |
Solid Spinel Oxide | Chem Ex (kWh)-50% | Chem Ex (kWh)-30% |
Total | 35.96 | 51.91 |
NiO | 2.54 | 1.86 |
ZnO | 13.35 | 14.01 |
Fe3O4 | 10.06 | 7.54 |
Al2O3 | 10.02 | 28.50 |
(b) | ||
Slag (Oxidation) | Chem Ex (kWh)-50% | Chem Ex (kWh)-30% |
Total | 542.83 | 610.36 |
FeO(l) | 26.94 | 22.98 |
CaO(l) | 104.93 | 104.93 |
SiO2(l) | 3.51 | 3.51 |
Fe2O3(l) | 1.20 | 1.39 |
PbO(s) | 7.73 | 13.09 |
ZnO(s) | 1.78 | 1.27 |
NiO(l) | 34.14 | 26.41 |
SnO(l) | 241.99 | 290.88 |
Cu2O(l) | 120.58 | 145.89 |
AgO(l) | 0.03 | 0.00 |
Exhaust | Chem Ex (kWh)-50% | Chem Ex (kWh)-30% |
Total | 958.36 | 958.24 |
CO2(g) | 818.75 | 818.75 |
N2(g) | 25.09 | 24.98 |
CO(g) | 114.51 | 114.51 |
Metal and Oxide Dust (Oxidation) | Chem Ex (kWh) | Chem Ex (kWh)-30% |
Total | 14.92 | 16.43 |
Zn | 1.16 | 0.25 |
Pb | 6.73 | 4.39 |
PbO | 5.07 | 4.41 |
SnO | 1.95 | 7.37 |
GeO | 0.01 | 0.01 |
Solid Monoxide (oxidation) | Chem Ex (kWh)-50% | Chem Ex (kWh)-30% |
Total | 12.91 | 11.74 |
Fe3O4 | 0.88 | 0.85 |
ZnO | 0.02 | 0.05 |
NiO | 6.93 | 9.79 |
SnO2 | 5.07 | 1.05 |
Anode Copper to FR (Fire Refining) | Chem Ex (kWh)-50% | Chem Ex (kWh)-30% |
Total | 3049.79 | 3961.13 |
Ni | 75.68 | 170.61 |
Pb | 6.41 | 12.76 |
Cu(l) | 2887.21 | 3731.76 |
Sn | 78.36 | 44.71 |
Zn | 0.23 | 0.05 |
Fe | 0.03 | 0.02 |
Au | 0.21 | 0.13 |
Ag | 1.46 | 0.95 |
In | 0.04 | 0.04 |
Ge | 0.09 | 0.05 |
Pd | 0.06 | 0.04 |
(c) | ||
Off Gas | Chem Ex (kWh)-50% | Chem Ex (kWh)-30% |
Total | 3956.67 | 3881.38 |
H2(g) | 1334.30 | 1334.30 |
Co(g) | 0.00 | 0.00 |
H2O(g) | 15.52 | 15.52 |
CO2(g) | 215.75 | 215.75 |
Pb | 5.77 | 5.18 |
Zn | 0.21 | 0.05 |
CH4(g) | 2258.65 | 2258.65 |
SnO(g) | 21.44 | 0.00 |
Ni | 52.98 | 0.00 |
Fe | 0.03 | 0.00 |
N2(g) | 52.02 | 51.93 |
Anode Cu to ER (Electro Refining) | Chem Ex (kWh)-50% | Chem Ex (kWh)-30% |
Total | 3065.28 | 4069.55 |
Ag | 1.46 | 0.95 |
Au | 0.21 | 0.13 |
C | 113.66 | 113.66 |
Cu | 2887.21 | 3731.76 |
Ge | 0.09 | 0.05 |
In | 0.04 | 0.04 |
Ni | 22.70 | 170.61 |
Pb | 0.64 | 7.58 |
Pd | 0.06 | 0.04 |
Sn | 39.18 | 44.71 |
Zn | 0.02 | 0.01 |
(d) | ||
Impure Electrolyte | Chem Ex (kWh)-50% | Chem Ex (kWh)-30% |
Total | 545.72 | 833.19 |
H2O | 29.62 | 37.02 |
H2SO4 | 263.40 | 350.21 |
Ni | 69.86 | 242.91 |
As | 38.81 | 49.77 |
C | 113.66 | 113.66 |
Cu | 29.46 | 38.19 |
Pb | 0.01 | 0.02 |
Zn | 0.02 | 0.01 |
O2(g) | 0.88 | 1.32 |
Slimes | Chem Ex (kWh) | |
Total | 58.27 | 31.60 |
Ag | 1.46 | 0.95 |
Au | 0.21 | 0.13 |
Cu | 2.95 | 0.00 |
Ge | 0.09 | 0.05 |
In | 0.04 | 0.04 |
Ni | 0.71 | 2.48 |
Pb | 0.63 | 7.50 |
Pd | 0.06 | 0.04 |
Sn | 39.18 | 0.00 |
As | 12.94 | 16.59 |
Cathode Cu 99.9% | Chem Ex (kWh)-50% | Chem Ex (kWh)-30% |
Total | 2914.09 | 3825.45 |
Cu | 2913.37 | 3776.96 |
Ni | 0.71 | 2.48 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghodrat, M.; Samali, B.; Rhamdhani, M.A.; Brooks, G. Thermodynamic-Based Exergy Analysis of Precious Metal Recovery out of Waste Printed Circuit Board through Black Copper Smelting Process. Energies 2019, 12, 1313. https://doi.org/10.3390/en12071313
Ghodrat M, Samali B, Rhamdhani MA, Brooks G. Thermodynamic-Based Exergy Analysis of Precious Metal Recovery out of Waste Printed Circuit Board through Black Copper Smelting Process. Energies. 2019; 12(7):1313. https://doi.org/10.3390/en12071313
Chicago/Turabian StyleGhodrat, Maryam, Bijan Samali, Muhammad Akbar Rhamdhani, and Geoffrey Brooks. 2019. "Thermodynamic-Based Exergy Analysis of Precious Metal Recovery out of Waste Printed Circuit Board through Black Copper Smelting Process" Energies 12, no. 7: 1313. https://doi.org/10.3390/en12071313
APA StyleGhodrat, M., Samali, B., Rhamdhani, M. A., & Brooks, G. (2019). Thermodynamic-Based Exergy Analysis of Precious Metal Recovery out of Waste Printed Circuit Board through Black Copper Smelting Process. Energies, 12(7), 1313. https://doi.org/10.3390/en12071313