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Abstract: The energy consumption pattern dominated by traditional fossil energy has led to global
energy resource constraints and the deterioration of the ecological environment. These challenges
have become a major issue all over the world. At present, the Chinese government aims to
significantly reduce the fossil energy consumption contribution in the terminal energy consumption.
The development of renewable energy in the terminal energy and energy conversion links has
significantly increased the proportion of clean low-carbon energy. In order to accurately get the
proportion of renewable energy terminal power consumption, firstly, this paper selects a primary
influencing-factors set including the gross GDP, fixed investment in renewable energy industry,
total length of cross-provincial and cross-regional high-voltage transmission lines, etc. as influencing
factors of China’s electricity consumption fraction produced by renewable energy based on a
multitude of papers. Secondly, from the perspective of signal decomposition, the data inevitably
has a lot of interference and noise. This paper uses the empirical mode decomposition (EMD)
algorithm to reduce the degree of signal distortion and decomposes the signal into natural modes
including several intrinsic mode functions (IMFs) and a residual term (Res); afterwards, a new
extreme learning machine (ELM) forecasting model optimized by an Inverse Square Root Linear
Units (ISRLU) activation function is proposed, and the ISRLU function is used to replace the implicit
layer activation function in the original ELM algorithm. Then, a new bacterial foraging algorithm
(BFOA) is applied to optimize the parameters of the optimized ELM forecasting model. After multiple
learning and training operations, the optimal parameters are obtained. Finally, we superimpose the
output of each IMF and Res training task to get the amount of China’s power consumption produced
by renewable energy. Some statistical indicators including root mean squard error (RMSE) are applied
to compare the accuracy of several intelligent machine forecasting algorithms. We prove that the
proposed forecasting model has higher prediction accuracy and achieves faster training speed by an
empirical analysis. Finally, the proposed combined forecasting algorithm is applied to predict China’s
renewable energy terminal power consumption from 2018 to 2030. According to the forecasting
results, it is found that China’s renewable energy terminal power consumption shows a gradual
growth trend, and will exceeded 3300 billion kWh in 2030, which will represent a renewable energy
terminal power ratio of about 38% in 2030.
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1. Introduction

At present, China is formulating a national energy strategy calling for the use of a high proportion
of renewable energy as the core means to achieve the national non-fossil energy development goals in
2020 and 2030 and to realize an energy production and consumption revolution. A high proportion of
renewable energy terminal power consumption has become the basic energy structure layout for 2050.
The China Energy Bureau announced that by 2050, China will form an integrated energy system based
on renewable energy and a high proportion of renewable energy in the terminal energy consumption.
The proportion should reach more than 60%, and the proportion of total renewable energy generation
will reach more than 85% in the energy consumption layout, the electrification of the terminal energy
consumption will be above 50%, the total electricity consumption will increase to 13.5~15 trillion
kWh, and the per capita electricity consumption shall be 10,000~11,000 kWh. [1]. The central role of
electricity in achieving a high proportion of renewable energy development is objectively determined
by the characteristics of electricity, resource endowments and energy development. Regardless
of the relationship between electricity and other energy sources, or from the aspects of ensuring
energy security, optimizing energy structure, and promoting ecological civilization construction,
studying the proportion of renewable energy consumption of electricity is crucial to achieving the
government’s strategic goals. As for significance, wind power, solar energy, and electricity have
provided considerable macroeconomic and environmental benefits for achieving high proportions
of renewable energy development. The high proportion of renewable energy development has
also significantly replaced coal consumption. Through the high proportion of renewable energy
development, the continuous reduction of the total emissions of major atmospheric pollutants (SO
and NOx) will be ensured and controlled at 250 in 2050. Within 10,000 tons and 2.7 million tons,
the emission of major pollutants (including heavy metal mercury, etc.) is equal to the emission level in
1980 [2], thus realizing China’s responsibility for environmental protection in the world.

The energy consumption of the whole society is directly or indirectly affected by many factors.
Up to now, many scholars have studied the factors affecting the energy consumption [3–6]. The problem
of electricity consumption is a complex non-linear problem, for which so far scholars have proposed
various prediction models, such as grey theory [7–9], multiple regression [10–12], and time series
models [13–15]; In recent years, various intelligent algorithms have also been applied to power
consumption prediction [16–22].

Meng et al. [3] proposed a three-dimensional decomposition model and a mixed trend
extrapolation model to explore the factors driving the growth of household electricity consumption
in China, predicting the future development trend before 2030, and summarizing some of the main
influencing factors; Akay et al. [4] used the Grey Prediction and Rolling Mechanism (GPRM) method
to predict Turkey’s overall and industrial electricity consumption, and both social and economic
factors were adopted to forecast power consumption. Castillo et al. [5] used a unified data set of 13
income and expenditure household surveys to assess changes in electrical and electricity consumption,
taking into account income distribution, GDP, population, etc. as indicators of impact assessment;
Pablo-Romero [6] analyzed the relationship between electricity consumption and tourism growth in
hotels and restaurants in 11 EU countries between 2005 and 2012, and modelled energy use based on
three variables: energy price, income and climate. The result showed that both income and climate
have a significant impact on increasing electricity consumption, while energy prices have no effect on
electricity consumption.

Meng et al. [7] proposed adding an improved grey model(1,1) ((GM(1,1)) into the method of
residual correction and artificial neural network symbol estimation, and successfully predicted the
power consumption in Taiwan. The example results showed that the improved grey prediction model
had higher prediction accuracy. Wang et al. [8] considered that power consumption prediction stability
is more important than accuracy. Therefore, they proposed a hybrid prediction model based on an
improved grey prediction model optimized by a multi-objective ant colony optimization algorithm
to improve the prediction stability. Chiang et al. [9] combined a neural network with grey theory to
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predict electrical loads. The proposed grey correlation analysis can select high-efficiency influencing
factors, which makes the results better than single scheme and statistical autoregressive methods.

Mikayilov et al. [10] used a time-varying coefficient cointegration method to study the correlation
between electricity demand and the change of income and price in the time dimension, and proposed
policy recommendations for the income and price of electricity consumption in Azerbaijan; Azadeh [11]
estimated and predicted the power consumption in an uncertain environment by an algorithm of fuzzy
regression analysis consisting of 16 fuzzy regression models, and experimented with historical data
from Iran to prove the algorithm’s superiority; Mohamed [12] not the author surname—check selected
economic and demographic variables as influencing factors to analyze the changing characteristics
of New Zealand’s annual electricity consumption, and used a multiple linear regression analysis
development model to predict the changes in New Zealand’s electricity consumption. The experimental
results proved that electricity consumption is effectively related to all variables.

Azadeh et al. [13] used a simulation-based comprehensive fuzzy regression time series model to
estimate and predict the power demand for seasonal and monthly changes in power consumption
in developing countries such as China and Iran. The results of the final example demonstrated the
effectiveness and accuracy of the model. Kumar [14] used three time series models, in which the grey
Markov model has been used to predict crude oil and oil consumption, the grey model uses rolling
mechanisms to predict coal, utility electricity consumption and singularity spectral analysis (SSA)
to predict natural gas consumption, and SSA predicts India’s conventional energy consumption and
compares the results with the Indian Planning Commission’s predictions, indicating that these time
series models can be considered as a viable alternative to energy consumption prediction; Hussain [15]
applied the Holt-Winter and Autoregressive Integrated Moving Average models to time series
secondary data from 1980 to 2011 to predict Pakistan’s overall and component electricity consumption.

In recent years, many scholars in the field of energy research have studied a large number of
predictive machine learning intelligent algorithms. Li et al. [16] used a new meta-heuristic algorithm,
the Drosophila optimization algorithm (DOA), to determine the values of two parameters of the least
squares support vector machine (LSSVM). Based on this, an annual power load was constructed.
Meng et al. [17] considered the importance of monthly power consumption forecasting for planning
power generation and distribution of electric utilities, using discrete wavelet transform to derive
three relatively simple sequences, which are constructed in ascending trend and periodic wave
respectively; Kandananond [18] forecasted power demand according to the population of Thailand,
GDP, stock index, exports, etc. and compared the performance of the prediction models including
autoregressive comprehensive moving average (ACMA), artificial neural network (ANN) and multiple
linear regression (MLR). The results showed that the ACMA and MLR models are better than ANN
due to their simple structure; Zhao [19] proposed a new hybrid power consumption prediction method,
namely the grey model (1,1) (GM(1,1)), which was optimized by the moth flame optimization (MFO)
algorithm with rolling mechanism. The example study proved the proposed better performance of the
method. Ma et al. [20] proposed a new power load forecasting method based on fuzzy reasoning and
artificial neural network, and verified that the method can improve the prediction accuracy. Liang [21]
proposed a prediction model based on the improved fruit fly algorithm to optimize the parameters of
the support vector machine (SVM) to improve the accuracy of the prediction. Wang et al. [22] used
differential evolution algorithm-optimized support vector regression to predict power consumption.

Renewable energy grid-connected operation has been studied by many scholars. The influencing
factors affecting the integration of renewable energy can be divided into technology, operational
cost-effectiveness, and power system planning.

Eissa, et al. [23] considered various renewable energy sources, as well as information and
communication technology components, and the grid will become more complex. Based on this,
a wide area monitoring system (WAMS) based method was developed to solve technical difficulties
in accessing renewable energy to smart grids; Dominguez-Navarro et al. [24] thought that renewable
energy and storage systems can effectively increase the profitability of electric vehicle (EV) and
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reduce the high energy required by the grid. The Monte Carlo method was used to simulate electric
vehicle demand and renewable energy generation. Denholm et al. [25] argued that a large number
of variable power generation (VG) resources can improve system flexibility by changing support
technologies such as grid operation and deployment of energy storage, and simulated three different
proportions of wind and solar power generation scenarios; Bornapour [26] proposed a stochastic
model for coordinated scheduling of renewable heat units for renewable energy power dispatching,
considering proton exchange membrane fuel cells, wind and photovoltaics, etc., and then using the
improved teaching-learning-based optimization (MTLBO) algorithm to solve the problem; Emanuele
et al. [27] believed that the integration of variable renewable energy (VRE) improved the flexibility
and dispersion of power systems, and that electric vehicles (EVs) can increase the integration of
VREs and capture the potential advantages of power systems; Angenendt et al. [28] considered the
economics of grid-connected economics from the economics of residential photovoltaic cell energy
storage. The strategy to evaluate operational strategies by simulating DC-coupled PV and battery
systems was expected to reduce power leveling costs by 12%.

In recent years, more and more scholars have applied the principle of signal decomposition to
the fields of prediction and decision-making, and used the time series decomposition technique of
signal science to decompose the original signal sequence to form several sub-sequences. Among
them, empirical mode decomposition (EMD), wavelet signal decomposition etc. are commonly
used by scholars. An et al. [29] used EMD to decompose wind farm power into several inherent
mode function (IMF) components and a residual component, using different models to predict each
component. The results showed that the decomposed results were more suitable for short-term
wind farms; Kim et al. [30] used feature decomposition for deep learning to decompose the load
profile into a weekly load profile and then trained the long-term short-term memory network
model with three-step regularized three-dimensional input data to predict the demand side load.
The experimental results show the validity of the proposed model; Pang et al. [31] analyzed the
original vibration signal of the rotor by the improved singular spectral decomposition (ISSD) and
Hilbert transform (HT) joint time-frequency method. Xie et al. [32] proposed a method based on
improved set empirical mode decomposition (MEEMD) to decompose deformation time series into a
series of subsequences with significantly different complexity, and then established an approximation
for each new subsequence; Xiao et al. [33] obtained the eigenmode function (IMF) by improving
empirical mode decomposition (IEMD). The Particle Swarm Optimization (PSO) algorithm was used
to optimize the LSSVM algorithm to accurately identify the misalignment type of the large doubly-fed
wind turbine (DFWT); Zhao et al. [34] used the correlation coefficient analysis method to calculate
and determine three improved IMFs, so that they were close to the original signal, and then used the
multi-scale fuzzy entropy to calculate the entropy of the IMF.

With the wide application of intelligent algorithms, more and more scholars apply intelligent
algorithms to forecasting and decision making in various fields. Extreme learning machine (ELM) is
one of the most widely used intelligent prediction algorithms with high accuracy and applicability.
Aiming at the parameter optimization of ELM and the optimization of single hidden layer activation
function, many scholars have conducted research. Li et al. [35] proposed using the kernel function
in SVM instead of the connection weight matrix between the original hidden layer and the output
layer in the ELM algorithm; li et al. [36] proposed a new type of Laplacian bipolar to learning machine
(LapTELM), enabling LapTELM to fully exploit the benefits of large numbers of unlabeled samples
while preserving the learning power and efficiency of the double extreme learning machine (TELM);
Fang et al. [37] introduced a ELM’s multimodal data hierarchical framework which demonstrated that
ELM has better learning efficiency than gradient-based multimodal deep learning methods; shang et
al. [38] developed a classification and regression tree (CART) based on A new predictive model of the
Extreme Learning Machine (EELM) method, which improved the accuracy of PM2.5 concentration
prediction per hour. Ming et al. [39] proposed two parallel changes of ELM including local data and
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model parallel ELM (LDMP-ELM) and global data and model parallel ELM (GDMP-ELM), and used
parallel technology to improve the parallelism and scalability of ELM.

In order to accurately predict the amount and proportion of China’s renewable energy terminal
power consumption, this paper proposes a combined forecasting model. We optimized original ELM
model with Inverse Square Root Linear Units (ISRLU) activation function which named improved
extreme learning machine (IELM) algorithm. Based on EMD and bacterial foraging algorithm (BFO),
the combined EMD-BFO-IELM forecasting model is proposed to predict the amount and proportion
of renewable energy power consumption in China. The main contents of the article are as follows:
The second part introduces the mathematical principles of EMD, BFO and IELM algorithm and the flow
chart of the overall forecasting model is put forward. In the third part, the proposed EMD-BFO-IELM
model is applied to predict China’s renewable energy terminal power consumption. By comparing
with the IELM, BFO-IELM, the accuracy and training speed of EMD-BFO-IELM model has been proved
better than others. Finally, we apply this model to predict China’s renewable energy terminal power
consumption from 2018 to 2030 and mining its change rule. The fourth part presents more discussions
and forward-looking conclusions.

2. Forecasting Model Including Materials and Methods

2.1. E.mpirical Mode Decomposition

The empirical mode decomposition (EMD) algorithm is a form of converting an irregular
frequency wave into a plurality of waves and residual waves of a single frequency. The basic principle
of EMD is to determine the “instantaneous equilibrium position” by using the average of the upper
and lower envelopes to extract the intrinsic eigenmode function (IMF), that is, to decompose a
complex signal into a finite eigenmode function and margin, each IMF The component contains local
characteristic signals of different time scales of the original signal, so as to preserve the characteristics
of the original data as much as possible. IMF is orthogonal to each other, has good performance,
and can express the original signal very well. The residual wave is also an extremely smooth trend
sequence. Therefore, EMD can linearize and smooth the non-stationary data sequence.

The specific steps of the EMD algorithm are as follows:
(1) Firstly, determine all local maxima and minima points on the original signal s1(t); then, use the

cubic spline interpolation function to determine the upper and lower envelopes u1(t), v1(t). Finally,
calculate the average curve of the upper and lower envelopes as:

m1(t) =
u1(t) + v1(t)

2
(1)

Find the difference between the original signal and the envelope mean:

h1(t) = s1(t)−m1(t) (2)

In case h1(t) does not meet the two conditions of IMF, one needs to put h1(t) as the original signal,
repeat the above steps to get:

h11(t) = h1(t)−m11(t) (3)

This step operates k times until h1k(t) becomes an IMF, called the first-order IMF, which is
recorded as:

c1(t) = h1k(t) (4)

(2) Subtracting c1(t) from the original signal yields the first-order residual signal r1(t).
Considering that the first-order residual signal r1(t) still contains longer-period components, the same
filtering is required for r1(t). Thus, the second order IMF, ..., the n-th order IMF and the second order
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residual signal, ..., the n-th order residual signal are sequentially obtained as well. This process can be
expressed as: 

r1(t)− c2(t) = r2(t)
.
.

rn−1(t)− cn(t) = rn(t)

(5)

When rn(t) becomes a monotonous function, the filter ends. Then Equation (6) is obtained:

s1(t) =
n

∑
i=1

ci(t) + rn(t) (6)

In the formula, rn(t) represents the average trend of the signal, which means that the initial
sequence is equal to the sum of several intrinsic mode functions and residual terms.

2.2. Improved Learning Function of theExtreme Learning Machine

ELM is a feedforward neural network learning algorithm. The algorithm has a good global search
ability, and once the parameters of the algorithm are confirmed, no adjustment is needed during the
training. Compared with other machine learning algorithms, ELM has the advantages of high learning
efficiency and good generalization performance.

Training sample in this article (xi, yi) in the middle, let ELM have u input nodes, L hidden layer
nodes, q output nodes, and the activation function is g(x), then xi = [xi1, xi2, . . . , xin] the network
output can be expressed as:

L

∑
j=1

β jg(ωjxi + bj) = yi, i = 1, 2, . . . , n (7)

In the formula, ωj a weight vector representing the j-th implicit node and the input node,
bj represents the threshold of the j-th hidden layer node, βj represents the weight vector between the
j-th implicit node and the output node

The activation function g(x) is a key factor affecting network performance in ELM. Appropriate
activation functions can improve the accuracy and generalization of ELM. In the current research,
the Sigmoid function is commonly used as the traditional hidden layer activation function in ELM,
which is a discriminant function using two-sided suppression. However, when the generalized
Hop-world problem is encountered, the approximation value of the value function is monotonic,
then the double-side suppression method will increase the waste operation [40]. At this time, unilateral
suppression is needed to complete the value discrimination. In addition, a modified linear function
is widely used in the field of deep learning as a new type of activation function [40], and its rectified
linear unit (ReLU) is defined as:

g(x) = max(0, x) (8)

The ReLU function is simple in form, fast in operation, and more generalized than Sigmoid,
but the sparsity of the function will reduce the predictive ability of the function and reduce the average
performance of the network. In this paper, an inverse square root linear units (ISRLU) is proposed as
the activation function of the ELM algorithm, which is a nonlinear smooth representation of ReLU.
The ISRLU function is nonlinear continuous and differentiable, and is closer to the biological activation
model than the Sigmoid function, which can better avoid the forced sparsity of ReLU and improve the
average performance of the network. In this study, the ISRLU function is selected as the activation
function of ELM, and the function is defined as:

g(x) =

{
x√

1+αx2 , x < 0

x , x ≥ 0
(9)
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In the formula, α is the parameter to the ISRLU function.

2.3. Bacterial Foraging Algorithm

The Bacterial Foraging Algorithm (BFOA) was proposed by the scholar Passino in 2002 to classify
biopsies based on the foraging behavior of E. coli in the human large intestine. Passino mentioned in
the initial publication of the algorithm that the algorithm can be used in the field of automatic control
and adaptive control of automatic locomotive. After several years of research, the bacterial foraging
algorithm is now applied to more fields: power system, control engineering, power forecasting, etc.
The solution process for specific problems is generating the initial solution population, calculating
the value of the evaluation function, using the interaction and mechanism of the group to iteratively
optimize, and implementing the three main operators of chemotaxis, reproduction and migration to
achieve the optimal solution. The general bacterial foraging algorithm is divided into four processes:
chemotaxis operation, aggregation operation, copy operation, and migration operation.

2.3.1. Chemotaxis Operation

The chemotaxis operation consists of two basic actions: flipping and swimming. When the
bacteria encounters a favorable area with good nutrition, they will continue to swim. If the area where
the adverse concentration is not as good as the previous step, it will flip and change the direction of
swimming. Each set of bacteria moves to a new area to represent a set of optimization parameters.
Calculate the individual fitness at this point to derive the value j(i, j, k, l) which is used as an indicator
of the next move formula. i represents the number of individuals, and j represents the chemotaxis
operation, k represents the copy operation, l represents the migration operation. The i-th bacterial
trending operation is expressed as follows:

θi(j + 1, k, l) = θi(j, k, l) + c(i)
∆(i)√

∆T(i)∆(i)
(10)

In the formula, c(i) indicates the step size of the bacteria, ∆(i) is the direction vector of the random
direction of the element which value is a random number of [–1,1].

2.3.2. Aggregation Operations

In the process of searching for food in the bacillus community, there is an interaction force between
a bacillus and other bacilli, that is, gravity and repulsion, and the gravitation makes the individual
be “between”. The behavior of the group is held, and the repulsion allows the individual to have
a position, gain energy, and maintain life. There is an attractive function in the bacterial foraging
algorithm to describe this aggregation operation, whose definition function is:

jcc(θ, p(j, k, l)) =
s
∑

i=1
jicc(θ, θi(j, k, l))

=
s
∑

i=1
[−dattract exp(−ωattract

p
∑

m=1
(θm − θi

m)
2
)] +

s
∑

i=1
[hrepellant exp(−ωrepellant

p
∑

m=1
(θm − θi

m)
2
)]

(11)

In the formula: dattract is the depth at which the bacteria release the substance, ωattract is a measure
of the width of the substance that attracts bacteria. hrepellant is the height of rejection, ωrepellant is the
width of the exclusion. These parameters are mainly selected according to the characteristics of food
richness. This aggregation behavior is only to accelerate the convergence rate of the bacterial foraging
algorithm, but the application process is more complicated. Passino introduced the description when
publishing the algorithm. This step can be omitted. Learning and researchers who later explored the
bacterial foraging algorithm rarely applied this step to the algorithm, so there is no discussion of what
principles these parameters should follow in this paper.
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2.3.3. Copy Operation

The process of biological evolution has a rule of survival of the fittest. In the process of bacterial
foraging, the adaptability is strong, and the weak will be eliminated. After the chemotaxis operation
is completed, it is concluded that all individual health values (sum of all function values) and better
healthy bacterial positions represent better optimization parameters. In order to speed up the search,
bacteria need to search in these good positions, then the difference is poor. The location will be
eliminated, this is the copy operation given by k with l for i = (1, 2, . . . s):

jihealth =
Nc+1

∑
j=1

j(i, j, k, l) (12)

The formula calculates each individual’s health value which is ranked from large to small, half of
the health is better, so half of the poor health is eliminated. The formula is sr = s

2 . The surviving
bacteria split into two at the same position, so that the total number of bacteria can be kept constant,
and the optimal position of high nutrition can be found more quickly, which improves the efficiency of
bacterial convergence.

2.3.4. Migration Operation

The migration operation is based on a certain set probability, and each bacterium will randomly
generate a random number rand(). If the probability of a given bacillus’ migration is greater than
the random number, the bacillus will be eliminated, and the bacillus will randomly generate a new
bacillus in the solution area to keep the total bacterial population unchanged. Randomly generated
individuals may be closer to the global optimal position, solving the situation of entering premature
and local optimal stagnation in the chemotaxis operation.

Due to space limitations, only the flow chart of the migration operation in the bacterial foraging
algorithm is shown in Figure 1:
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2.4. Renewable Energy Power Consumption Forecasting Model Design Process

Because the initial parameters of the traditional ELM network model are random, and the
suitability of the activation function is not considered, the bacterial foraging algorithm can solve
the problem of optimal chattering and precocity, and determine the optimal weight and threshold.
The ISRLU function improves the generalization of ELM. The original data for the influencing factors
is easy to homogenize, and the different scale information features of the data cannot fully discover
the time-frequency characteristics of the time series data and affect the performance of the forecasting
model. Based on the above reasons, this paper combines the three algorithms of EMD, BFO and
improved IELM to propose a new forecasting model of renewable energy terminal power consumption.
The overall forecasting steps are as follows:

(1) Time series data decomposition. Decompose x(t) to obtain IMF components and one residual
rn with EMD.

(2) Construct training and test sample sets. In each IMF component, the input and output of each
component training sample set and test sample set are constructed.

(3) Construct an optimized limit learning machine training and forecasting model for each
component. In the bacterial foraging algorithm, the fitness function in the bacterial foraging
algorithm is calculated; the initial population size and the maximum evolution algebra maxgen
are set, and the genetic operations such as selection, improved crossover and mutation are performed
on the individuals in the population, and finally the global excellent fitness; use optimal fitness to
obtain optimal weight abest, and threshold bbest;

(4) Set the activation function of the ELM network to the ISRLU function, and then calculate
the output matrix h and output weight of ELM β with abest and bbest. Determine the IELM network
structure; use the BFO algorithm to iteratively optimize parameters of each IELM model. The IELM
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fitting prediction model of the optimal parameters is established in each IMF component and remainder
rn to obtain the forecasting results of each component:

f =
1
n

N

∑
t=1

(yi(t)−
_
yi(t))

2
(13)

H(a1, . . . , al , b1, . . . , bl , x1, . . . , xn) =


g(a1x1 + b1)

.

.
g(a1xn + b1)

. . .

. . .

. . .

g(a1x1 + b1)

.

.
g(a1xn + b1)


n×l

(14)

β̃ = H+Y (15)

In the formula,yi(t) is the actual value at time t,
_
yi(t) is the predicted value at time t , H+ is the

generalized inverse matrix of the output matrix H.
(5) Output of prediction results. The predicted results of each IMF component and remainder

rn are summed to obtain the final forecasting result of China’s renewable energy terminal
power consumption.

The algorithm flow of the renewable energy terminal power consumption based on
EMD-BFO-IELM proposed in this paper is shown in Figure 3.
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3. Empirical Analysis Including Results and Discussions

3.1. Influencing Factors Screening for Model Input

According to literature research and the China Statistical Yearbook “Energy Consumption”
section data analysis, this paper selects gross national product GDP, total population, primary
industry GDP, secondary industry GDP, tertiary industry GDP, urbanization rate, fixed investment
in renewable energy industry, renewable energy consumption, total installed capacity of power
generation, total installed capacity of wind power generation, total installed capacity of solar power
generation, total investment in fixed assets of power transmission and distribution, total length of
cross-provincial and cross-regional high-voltage transmission lines are used as the primary set of
factors affecting the renewable energy terminal power consumption. The grey relational analysis
(GRA) is used to select 10 main influencing factors with grey correlation degrees greater than 0.5
(the data source is the 2018 China Statistical Yearbook). Since there is no officially published data
on renewable energy terminal power consumption in China, the renewable energy terminal power
consumption in this paper is approximated by the difference between the total consumption of social
energy and the amount of main fossil fuel:

∑ Er = ∑ Et −∑ E f (16)

∑ Er represents renewable energy terminal power consumption, ∑ Et represents the total power
consumption, ∑ E f indicates the main fossil fuel power consumption.

3.2. Grey Relational Analysis (GRA)

Through the GRA [41–45], this paper selects 10 main influencing factors that are related to the
renewable energy terminal power consumption, which aims to reduce the amount of information
input of the EMD-BFO-IELM model, and improve the accuracy of prediction. The calculation steps of
GRA has been introduced in Appendix B part. Finally, a set of factors have been obtained, as shown in
Table 1:

Table 1. Factors affecting renewable energy terminal power consumption.

Influencing Factor Grey Relational Value

Gross national product GDP(A1) 0.845
Total population(A2) 0.754

Secondary industry gross production(A3) 0.712
Total renewable energy consumption(A4) 0.694

Total installed capacity(A5) 0.644
Total installed capacity of grid-connected thermal power generation(A6) 0.638

Total investment in fixed assets of power transmission and distribution(A7) 0.619
total length of cross-provincial and cross-regional high-voltage transmission lines(A8) 0.601

Grid-connected wind power generation capacity(A9) 0.532
Grid-connected photovoltaic power generation total installed capacity(A10) 0.519

3.3. Data Normalization

In order to eliminate the dimensional difference between the data of different metrics, and due
to the fact that some data is missing in some years, China only started reporting installed wind
power capacity statistics in 2011, and photovoltaic installed capacity statistics start from 2014,
therefore, for data availability first, we must make some rational adjustments to supplement the data.
We normalize all the corrected data, and use the Z-score data normalization method to standardize the
N sets of data in the data sets of the M indicators:

Zmn =
xmn − xn

σ
, (m = 1, 2, . . . , j; n= 1, 2, . . . , j) (17)
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Zmn is the normalized data, xmn is the corrected data, xn is the average of xmn, σ is the standard
deviation of xmn. Since the installed capacity of thermal power generation is a negative index, in order
to achieve the forwardization of data, the inverse index forward processing method is adopted:

Xmn =
Zmn −min
max−min

(18)

Xmn refers to the data after the forwardization, max is the maximum value of the normalized data.
min refers to the minimum value of the normalized data. The numerical values of the main influencing
factors set data normalized are shown in Table 2. Due to space limitations, only the data for 2007–2017
is displayed:

Table 2. Influencing factors after normalization.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

2007 −1.37995 −1.561225 −1.4862261 −1.72559 −1.58673 0.91 −1.18795 0.572503 −1.19164 −0.9308
2008 −1.10982 −1.232771 −1.13817201 −1.58573 −1.26339 0.906028 −0.15134 0.932666 −1.07049 −0.88273
2009 −0.94777 −0.951238 −0.9857299 −1.13508 −0.91337 0.817376 −0.11702 1.093559 −0.94934 −0.78659
2010 −0.59727 −0.622784 −0.51627398 −0.56257 −0.62003 0.719858 −0.98715 1.750708 −0.75551 −0.73852
2011 −0.93837 −0.341251 −0.94795029 0.282709 −0.32668 0.625887 −0.82583 −0.65618 −0.56168 −0.49817
2012 0.100671 −0.012797 0.27485777 0.528628 −0.01333 0.521277 −0.39848 −1.48869 −0.19824 −0.16169
2013 0.401454 0.2687355 0.533220369 0.821751 0.330014 0.443262 −0.27663 0.661363 0.116741 −0.06555
2014 0.668542 0.5971901 0.766256784 0.8608 0.706697 0.349291 −0.02606 −0.35684 0.601325 0.222867
2015 0.915616 0.9256446 0.832941161 0.829738 0.756699 0.218085 0.064905 −1.2227 0.625554 0.270936
2016 1.214515 1.3010212 1.049438179 0.746129 1.25672 0.10461 1.832636 −0.70489 1.449346 0.943907
2017 1.67238 1.6294758 1.617638017 0.939212 1.673404 0.10213 2.07291 −0.58149 1.93393 2.626333

3.4. Forecasting Renewable Energy Terminal Power Consumption in China Based on EMD-BFO-IELM Model

This paper decomposes the original historical renewable energy terminal power consumption
sequence by EMD. The data information of 1990–2017 was input into the EMD model, and four IMFs
and the Rseidual are obtained. The decomposition results are shown in Figure 4:
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From Figure 4, it can be found that the time series of renewable energy terminal power
consumption has obvious multi-scale features, and the four IMF components present information
of high and low variations with different fluctuation scales. Among them, the frequency of IMF1
is relatively high, which can reflect the random noise information of the original time series data,
and the residual frequency is low, the change is stable, and the trend information of the renewable
energy terminal power consumption timing can be reflected, showing the renewable energy terminal
power consumption. Regarding overall change characteristics, the number of IMFs obtained by EMD
decomposition is related to the characteristics of the original data time series itself. Through the
nature of these IMF components, we can understand the practical significance of EMD decomposition.
The original renewable energy terminal power consumption sequence and each of the IMF components
decomposed from the original data sequence are independent of each other, and the respective IMF
components are mutually orthogonal. The last term obtained by decomposition is the remainder of the
original sequence after all the IMF components have been removed. In fact, it represents the average
trend of the original renewable energy terminal power consumption. The various IMF components are
trained and tested with res. The main parameters of the BFO-IELM model are shown in Table 3.

Table 3. Main parameters of the BFO-IELM model.

Parameter Value

regularization coefficient C 7
number of node in hidden

layer 150

abest 0.82
bbest 0.91

The normalized values of the main influencing factors derived from 3.3 and the values of each
series are used as inputs to the model training set (1997–2017), and the predicted results of the test sets
are shown in Figure 5.

In order to verify that the proposed model has high prediction accuracy, we also input the sample
data into IELM and BFO-IELM respectively, and the predicted results are shown in Figure 6 and the
detailed data are shown in Table A2 of Appendix A:
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Figure 5. The predicted results of the test sets: (a) the predicted results of IMF1; (b) the predicted
results of IMF2; (c) the predicted results of IMF3; (d) the predicted results of IMF4; (e) the predicted
results of Resdiual.
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In order to objectively compare the accuracy of a variety of models, common statistical indicators
including RMSE, r2, and mre are adopted and the index calculation formula is as follows:

RMSE =

√
1
n

n

∑
i=1

(q̂i − qi)
2 (19)

r2 = 1− ∑n
i=1(q̂i − qi)

2

∑n
i=1(qi − q)2 (20)

mre =
1
n

n

∑
i=1

|q̂i − qi|
qi

× 100% (21)

Among them, q̂i is a predicted value, qi is a sample mean, n is a sample number.
The calculation results for the three models are compared as follows:
As can be seen from Table 4 and Figures 6 and 7, this paper proposes that the EMD-BFO-IELM

model is reliable and can achieve a good predictive effect on renewable energy terminal power
consumption. Through comparative analysis, we can find:

Table 4. The calculation results of the three models.

Model RMSE r2 (100%) mre

IELM 0.5968 98.3 7.42
BFO-IELM 0.5051 99.2 6.68

EMD-BFO-ELM 0.2588 99.8 3.54

(1) The fitting effect of the nonlinear time series combined prediction model after EMD noise
reduction is obviously better than the fitting effect of single mode prediction.

(2) As a complex multi-combination prediction model, EMD-BFO-IELM can realize the
complementary advantages of different algorithms.The EMD-BFO-IELM model proposed in this
paper, through the non-stationary time series of decomposition and denoising, makes more timing
rules eliminate the confusion of the original data.The model continuously optimizes the parameters of
the IELM algorithm through BFO, which improves the prediction accuracy and achieves a reasonable
choice of parameters.Therefore, the prediction model proposed in this paper combines multiple
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prediction methods to make up for the shortcomings of other single algorithm models and shows
strong generalization ability and stability.
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Through the above analysis, the example proves that the EMD-BFO-IELM renewable energy
terminal power consumption prediction model proposed in this paper is both practical and effective.

The time spent on training and prediction is also one of the important indicators for measuring
intelligent machine algorithms. The training speeds of the three models (average time of training
100 times) are shown in Table 5:

Table 5. Comparison of training and prediction time for the three predictive models.

Forecasting Model Average Training Time (s) Average Forecasting Time (s)

IELM 38 20
BFO-IELM 54 35

EMD-BFO-ELM 84 38

Since EMD-BFO-IELM requires more resources and more computation, it takes longer to calculate
during the training process. This is weaker than the other two prediction models, but after the training
is completed, the forecasting speed is faster than other two forecasting models, so the weaknesses in
training time and speed are almost negligible, and the accuracy is much higher than the other two
models, which is practical and superior.

Finally, we applied grey model(1,1)(GM(1,1)) to predict the gross national product GDP,
total population, secondary industry GDP, total renewable energy consumption, total installed power
capacity, and total grid-connected thermal power generation Installed capacity, total investment in
fixed assets of power transmission and distribution, total length of cross-provincial and cross-regional
high-voltage transmission lines, total installed capacity of grid-connected wind power generation,
total installed capacity of grid-connected photovoltaic power generation from 2018 to 2030, which has
been shown in Table A1 of Appendix A. The data were used as input data of EMD-BFO-IELM
forecasting model. Meanwhile, the calculation steps to GM(1,1) also has been shown in Appendix B.
Finally, we calculate the amount of China’s renewable energy terminal power consumption from 2018
to 2030, which has been shown in Figure 8:

This paper comprehensively uses the predicted values of China’s total power consumption
from 2018–2030 obtained in [46,47], combined with the predicted renewable energy terminal power
consumption, and finally obtains China’s future terminal power renewable energy terminal proportion,
as shown in Figure 9:
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According to the trend in the figure, China’s renewable energy terminal power is gradually
increasing, and is expected to break through 38% in 2030.

4. Conclusions

In this paper, the grey relational analysis (GRA) theory is applied to screen the influencing
factors affecting China’s renewable energy terminal power consumption. On this basis, a new
EMD-BFO-IELM renewable energy terminal power consumption forecasting model is proposed. Firstly,
we use EMD to decompose and denoise the data of the original historical renewable energy terminal
power consumption in series, and remove the noise sequence, which improved the quality of the
original data and successfully increased the data of training sets and test sets. Therefore, the data series
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met the data-level requirements of the machine intelligence algorithm, and successfully realized the
realization of the machine intelligent algorithm prediction of China’s renewable energy terminal power
consumption. Then, we use BFO algorithm to optimize the parameters of the ELM algorithm including
optimal weight abest, and threshold bbest. This novel BFO-IELM forecasting model is applied to predict
the sub-sequences after EMD denoising. Finally, we reconstruct the prediction series and superimpose
the predicted values of each subsequence to obtain the prediction results of renewable energy
terminal power consumption. In order to show the effectiveness of the proposed forecasting model,
some commonly used statistical indicators are used to compare the accuracy of IELM, BFO-IELM and
EMD-BFO-IELM models. The comparison results verify that the EMD-BFO-IELM forecasting model
proposed in this paper is far better than the others. The generalization ability and robustness are proved
by empirical analysis. After analysis, the main reason for the improvement of prediction accuracy
is that China’s renewable energy terminal power consumption is a complex non-linear prediction
problem, and it is a new research field. The lack of historical data makes the traditional methods
useless. Because the training process of any intelligent algorithm needs a multitude of data, this paper
introduces signal decomposition in the issue of renewable energy terminal power consumption,
and the original data volume has been upgraded, increasing the reliability of the training process,
so the proposed combined model enables machine intelligence algorithms to be applied to the issue of
China’s renewable energy terminal power consumption, which is the main advantages of the proposed
prediction model. Although some of the computational speed advantages are lost, the novel forecasting
model can ultimately achieve higher prediction accuracy. Finally, the EMD-BFO-IELM forecasting
model proposed in this paper is applied to predict the amount of renewable energy terminal power
consumption in China from 2018 to 2030. The results show that China will realize 3.30 billion kWh of
renewable energy terminal power consumption in 2030, and China’s renewable energy terminal power
consumption ratio will exceed 38%, which indicates that China has great potential of renewable energy
terminal power consumption, and can fulfill non-fossil energy development goals in 2030, and achieve
the goal of energy production and consumption revolution. A high proportion of renewable energy
terminal energy consumption can transform China’s current unsustainable energy consume and
supply mode, and stop relying on heavy energy consumption of fossil energy. A high proportion of
renewable energy terminal energy consumption mode brings China pressures on cost-benefit costs to
a certain extent, including grid-connected infrastructure for renewable energy generation, renewable
energy generation, and energy storage technology upgrades, which all require large investments.
This will lead to an increase in China’s overall average cost of power generation in the short term,
but the cost will also bring high external benefits, including upgrading and transformation of the
power and energy industries, and reducing environmental pollution. From an economic perspective,
the transformation of investment in terminal power and energy indicates that a large number of
employment opportunities will be created in the future, thus making up for the current reduction of
employment opportunities in China’s traditional coal industry supply chain. In generally, all results
proposed in the paper are in line with China’s current active energy innovation strategy.
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Appendix A

Table A1. The predicted results of the test sets by the proposed model.

Year
IMF1 IMF2 IMF3 IMF4 Res

o f er o f er o f er o f er o f er

1997 −48.05 −69.3 −0.44225 −1764.5 −1500.3 −0.14973 −1647.3 −1400.3 −0.14994 −905.2 −793.4 −0.12351 6415.6 6202.2 0.033263
1998 1741 1890 0.085583 123 200 0.626016 −941.1 −1234.5 −0.31176 −1117.3 −1003.4 −0.10194 6415.7 6283.4 0.020621
1999 −564.7 −760.3 −0.34638 2000 2500 0.25 235.2 156.3 0.335459 −1329.4 −1196.5 −0.09997 6426.6 6303.4 0.01917
2000 −941.1 −790.2 −0.16034 588.2 630.3 0.071574 1411.3 1490.4 0.056048 −1329 −1249.6 −0.05974 6548.6 6323.3 0.034404
2001 752.9 772.2 0.025634 −1058.4 −984.3 −0.07001 2235.6 2500.4 0.118447 −1329 −1399.4 −0.05297 6615.6 6454.3 0.024382
2002 −96.1 −100 −0.04058 −1058.2 −920.3 −0.13032 2117.3 1934.6 0.086289 −1329 −1356.4 −0.02062 6681.8 6534.3 0.022075
2003 188.2 218.2 0.159405 −470.5 −317.4 −0.3254 2000 1859.5 0.07025 −1329 −1267.5 −0.04628 6881.8 6892.4 0.00154
2004 −235.2 −200.3 −0.14838 235.2 298.5 0.269133 1647.8 1896.5 0.150929 −1329 −1134.5 −0.14635 7014.5 7000.4 0.00201
2005 188.2 235.3 0.250266 823.5 934.5 0.134791 705.8 586.3 0.169311 −1117 −994.5 −0.10967 7214.7 7324.4 0.015205
2006 11 18 0.636364 111 102 0.081081 −352.9 −399.3 −0.13148 −694.1 −603.5 −0.13053 7413.6 7365.4 0.006502
2007 −235.2 −270.4 −0.14966 −823.5 −800.3 −0.02817 −1411.8 −1503.4 −0.06488 −200 −103 −0.485 7746.8 7640.3 0.013748
2008 376.4 470.9 0.251063 −352.9 −350.1 −0.00793 −2588.7 −2356.6 −0.08966 152.9 245.5 0.605625 8145.7 7994.5 0.018562
2009 −470.5 −410.5 −0.12752 588.2 604.5 0.027712 −3176.3 −3002.4 −0.05475 647 794.5 0.227975 8610.8 8539.5 0.00828
2010 564.7 500.3 0.114043 −117.6 −99.3 −0.15561 −3058.7 −2760.5 −0.09749 1141 1423.4 0.247502 9009.5 8945.4 0.007115
2011 −94.11 −100.4 −0.06684 −705.8 −680.3 −0.03613 −2235.6 −2006.7 −0.10239 1635 1794.5 0.097554 9475.7 9130.5 0.03643
2012 −432.5 −490.2 −0.13341 588.2 732.4 0.245155 −1411.6 −1295.6 −0.08218 1847 1996.5 0.080942 9941.7 9645.5 0.029794
2013 −376.4 −390.5 −0.03746 1529.3 1864.4 0.21912 −470.5 −408.4 −0.13199 2058 2230.5 0.083819 10340 9995.3 0.033337
2014 894.1 800.2 0.105022 −352.9 −284.5 −0.19382 823.5 965.4 0.172313 2270 2356.6 0.03815 10739 10503.4 0.021939
2015 −141.1 −139.4 −0.01205 −2235.5 −2045.3 −0.08508 1882.5 2004.5 0.064807 2058 2194.5 0.066327 11079 11056.6 0.002022
2016 −752.1 −720.4 −0.04215 −117.6 −100.3 −0.14711 2823.2 2507.7 0.111753 1776 1934.5 0.089245 11475 11685.4 0.018336
2017 −329.4 −300.4 −0.08804 1882.4 1903 0.010943 3179.4 3004.4 0.055042 1352 1404.5 0.038831 11936 12095.6 0.013371



Energies 2019, 12, 1331 20 of 24

Table A2. The forecasting results of 3 intelligent machine algorithms.

Year Original Data IELM BFO-IELM EMD-BFO-IELM

1997 1781 1089 1389 1389
1998 6311 6610 6010 6010
1999 7191 7991 7591 7291
2000 6400 6201 6901 6501
2001 7299 7531 7831 7431
2002 6571 6821 6021 6321
2003 7155 6423 6323 7023
2004 7245 6589 6789 7189
2005 7916 7220 7420 7847
2006 6693 6943 6243 6843
2007 5251 4823 4823 4923
2008 6238 6298 6798 6508
2009 6313 5842 5842 6199
2010 7757 7843 7043 7543
2011 8019 8623 8323 8323
2012 10549 10385 10085 10085
2013 13210 12894 12394 12994
2014 14179 13332 13632 14032
2015 12757 12994 12034 12434
2016 15240 14933 14033 14833
2017 18404 17564 17764 18764

Appendix B

The specific calculation steps of the grey correlation analysis are as follows:

Step 1: Determine the analysis series

Determine the reference and the comparison series that reflects the behavior of the system series.
A sequence of data that reflects the behavioral characteristics of the system, called the reference
sequence. A sequence of data that is a component of factors affecting system behavior, called a
comparison series. Assume that the reference number is Y = {y(k)|k = 1, 2, . . . n}, and compare
series as

Xi = {xi(k)|k = 1, 2, . . . n},i= 1, 2, . . . , m (A1)

Step 2: Dimensionlessness of variables

Since the data in the various factor columns in the system may be different in dimension, it is not
convenient to compare or it is difficult to get a correct conclusion when comparing. Therefore, in the
gray correlation analysis, the data is generally dimensionless:

xi(k) =
Xi(k)
Xi(l)

, k= 1, 2, . . . n; i= 1, 2, . . . , m (A2)

Step 3: Calculate correlation coefficient

Calculate correlation coefficient of x0(k) and xi(k):

ξi(k) =
min

i
min

k
|y(k)− xi(k)|+ ρmax

i
max

k
|y(k)− xi(k)|

|y(k)− xi(k)|+ ρmax
i

max
k
|y(k)− xi(k)|

(A3)

Let ∆i(k) = |y(k)− xi(k)|, and then

ξi(k) =
min

i
min

k
∆i(k) + ρmax

i
max

k
∆i(k)

∆i(k) + ρmax
i

max
k

∆i(k)
(A4)
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ρ ∈ (0, ∞) is called the resolution coefficient. The smaller ρ, the greater the resolution. Generally,
the value range of ρ is (0, 1), and the specific value may depend on the situation. When ρ ≤ 0.5463,
the resolution is best, and we take ρ = 0.5 in this paper.

Step 4: Calculate relevance

Because the correlation coefficient is the degree of correlation between the comparison series and
the reference sequence at each moment (i.e., each point in the curve), it has more than one number,
and the information is too scattered to facilitate the overall comparison. Therefore, it is necessary to
concentrate the correlation coefficients at various moments (i.e., points in the curve) into one value,
that is, to find the average value thereof, as the quantity representation of the degree of correlation
between the comparison series and the reference series. The formula of relevance ri is as follows:

ri =
1
n

n

∑
k=1

ξi(k), k = 1, 2, . . . , n (A5)

Step 5: Relevance ranking

Sort the relevance by size. If r1 < r2, the reference sequence y is similar to the comparison
sequence X2. After calculating the correlation coefficient between the Xi(k) sequence and the Y(k)
sequence, the average value of each type of correlation coefficient is calculated, and the average value
ri is called the degree of association between Y(k) and Xi(k). The mathematical model of GM(1,1)
forecasting model is shown:

The specific calculation steps of the grey model(1,1) are as follows:
Assuming a raw sequence:

x0 = (x0
1, x0

2, . . . x0
n) (A6)

where x0
k ≥ 0, k = 1, 2, . . . , n

Adding raw arrays:
x1 = (x1

1, x1
2, . . . , x1

n) (A7)

where x1
k =

k
∑

i=1
x0

i

Make an equal-valued equal-weight generation sequence of x1:

z1 = (z1
1, z1

2, . . . , z1
n) (A8)

where z1
k = 1

2 (x1
k + x1

(k−1))

Therefore, the original differential equation of GM(1,1) forecasting model is:

x0
k + az1

k = b (A9)

where a is a development coefficient and b is ash action, so the whitening differential equation of
Equation (A9) is:

dx1

dt
+ ax1 = b (A10)

The least-squares parameter estimates for a and b are:

â = (a, b)T = (BT , B)
−1

BTY (A11)
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where:

B =


−z1

2 1
−z1

3 1
...

...
−z1

n 1

, Y =


x0

2
x0

3
...

x0
n


The time response sequence of the differential Equation (A9) in the GM(1,1) model is:

x̂1
k+1 = (x1

1 −
b
a
)e(−ak) +

b
a

(A12)

Similarly, the whitening response function of the whitening equation is:

x̂1
t+1 = (x1

1 −
b
a
)e(−at) +

b
a

(A13)

Substituting initial conditions x̂1
1 = x1

1 = x0
1 to get:

x̂1
k+1 = (x1

0 −
b
a
)e−ak +

b
a

(A14)

The GM(1,1) forecasting model of the original sequence x0 can be obtained according to the
cumulative reduction by Equation (A13):

x̂0
k = x̂1

k − x̂1
k−1 (A15)
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