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Abstract: The condition of synchronous generators (SGs) is a matter of great attention, because they
can be seen as equipment and also as fundamental elements of power systems. Thus, there is a
growing interest in new technologies to improve SG protection and maintenance schemes. In this
context, electrical signature analysis (ESA) is a non-invasive technique that has been increasingly
applied to the predictive maintenance of rotating electrical machines. However, in general, the works
applying ESA to SGs are focused on isolated machines. Thus, this paper presents a study on the
condition monitoring of SGs in bulk electric systems by using ESA. The main contribution of this
work is the practical results of ESA for fault detection in in-service SGs interconnected to a power
system. Two types of faults were detected in an SG at a Brazilian hydroelectric power plant by using
ESA, including stator electrical unbalance and mechanical misalignment. This paper also addresses
peculiarities in the ESA of wound rotor SGs, including recommendations for signal analysis, how to
discriminate rotor faults on fault patterns, and the particularities of two-pole SGs.

Keywords: bulk electric system; condition monitoring; electrical signature analysis; fault diagnosis;
predictive maintenance; synchronous generator

1. Introduction

Electrical power systems consist of a large number of interconnected synchronous generators
(SGs) operating in parallel, connected to transmission and distribution networks to supply large load
centers. These machines are fundamental elements of power systems, and their condition affects
network reliability and stability [1]. The parallel operation of SGs presents several advantages such as
the increase of supply reliability, the improvement of efficiency, and lower cost. However, it increases
the complexity of the stability control of the SGs when a fault occurs [2]. Thus, there is a growing
interest in new technologies to improve SG protection and maintenance schemes [3–5].

Among the maintenance philosophies that have been applied to SGs, condition-based maintenance
(CBM) is highlighted. This type of maintenance is based on the continuous monitoring of a condition
parameter in a machine (vibration, temperature, electrical signals, etc.) [6]. CBM consists of the analysis
of the monitored parameters to evaluate if certain indicators present signs of decreasing performance
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or incipient fault. Thus, the actual condition of the asset is evaluated, and it is possible to decide what
and when the maintenance action must be done [7].

In the context of CBM, electrical signature analysis (ESA) has been increasingly applied to rotating
electric machines fault diagnostics. In ESA, the monitored parameters are the electrical signals of
the machine in the frequency domain. This is performed by using a Fast Fourier Transform (FFT)
algorithm and other signal processing procedures. The faults are detected and identified by analyzing
fault patterns on voltage and current spectra, which are frequency components whose magnitudes
vary when a fault happens. Moreover, faults can be detected at an early stage and the frequency
components’ magnitudes are generally related to the fault severity. The main advantages of ESA
are no intrusiveness, dependence on only electrical quantities, technical and economic viability, and
possibility of obtaining fault patterns applicable for all types of wound rotor SGs [6,8–10].

There are several published works about ESA-based methodologies for fault detection in
synchronous machines. ESA has been used mainly for detection of stator winding inter-turn short
circuit [11–16], rotor winding inter-turn short circuit [11,13,17–20], air-gap eccentricity [21–25], and
rotating diode failure [26,27]. There are also works approaching various electrical and mechanical
faults in SGs [28].

Despite the increasing use of ESA in CBM, it is important to highlight that some particularities
arise when this technique is applied to SGs. Firstly, the choice of signals to be analyzed must be
considered, because both current and voltage are outputs of these machines. There is also an issue
related to faults that coincide in the same fault pattern. For instance, the rotor rotation frequency fault
pattern is indicative of rotor winding inter-turn short circuit and rotor mechanical faults [9,11,13,19,29].
Thus, the analysis of only the rotation frequency components allows the detection of rotor problems.
However, this is not sufficient to identify the type of fault (electrical or mechanical). There is also
an issue related to two-pole type SGs. In these machines, the rotor rotation frequency matches the
power line frequency. Therefore, the fault patterns and the power system harmonics match the same
components. Thus, the ESA-based fault diagnostic can be obscured because of the SGs intrinsic
harmonics or harmonics related to non-linear loads [30–34]. Finally, in general, the works found
in literature present ESA application to isolated SGs, both in a laboratory environment and in SGs
onboard ships [13,15,24]. However, large SGs are usually interconnected to power systems, so ESA
should also be applied to SGs in this condition.

Given this scenario, this paper presents a study on fault diagnosis of SGs in bulk electric systems
using ESA. Firstly, a methodology for SG fault detection using ESA is proposed, addressing ESA
fault patterns and the mentioned peculiarities of this technique for fault detection in SGs. Then, as
the main contribution of this work, case studies of fault detection using ESA in an in-service SG
in a Brazilian hydroelectric power plant are presented. The results show the potential of ESA for
condition monitoring of SGs interconnected to power systems and are valuable, since SGs in this
context are concerned with monitoring and are subjected to diverse conditions of the bulk power
system. As mentioned previously, other works usually present results in a laboratory environment
with isolated SGs and controlled conditions, which do not fully depict the SGs in practical situations.

As a note, it is known that SGs conditions might include normal condition, oil-membrane oscillation,
imbalance, no orderliness, short circuit, and so on. However, this work focuses on conditions covering
healthy and faulty situations, including fault detection and identification. Moreover, it is worth noting
that artificial intelligence-based methodologies have been increasingly applied to rotating machinery
fault detection and condition monitoring nowadays [35–37]. These techniques can be used in future
works as auxiliary tools to complement the fault diagnosis by using the proposed methodology, being
not in the scope of the present work.

The rest of the paper is divided as follows. Section 2 presents the ESA background. Section 3
presents ESA fault patterns for SGs. Section 4 approaches the peculiarities of ESA application to
SGs. Section 5 presents the proposed methodology for fault detection in SGs in interconnected power
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systems. Section 6 presents results of fault detection in SG in a power plant. Finally, Section 7 presents
the conclusions.

2. Electrical Signature Analysis Background

ESA consists of the frequency-domain representation, processing, and analysis of electrical signals
and has been usually applied in electric machinery condition monitoring. In general, ESA comprises of
an FFT (Fast Fourier Transform) algorithm to represent the time-domain signals in the shape of spectra,
which are referred in this work as electrical signatures. ESA is based on the assumption that a significant
change in a machine condition results in the change of its electrical signature. Moreover, there are
specific frequency components whose magnitudes change in the presence of faults. These frequency
components are related to the type and location of fault, being dependent on the power line frequency
and structural characteristics of the motor or generator. Thus, it is possible to obtain a set of ESA fault
patterns for fault detection and identification in electrical machines [38]. Moreover, the fault patterns
can be applicable to all types of wound rotor SGs.

The ESA techniques used in this work are current (CSA) and voltage signature analysis (VSA),
and extended Park’s vector approach (EPVA), which will be explained in the next sections.

2.1. Current and Voltage Signatures

CSA and VSA consist purely of the frequency-domain analysis of the current and voltage signals
from the machine stator. The electrical signatures are obtained through the application of FFT to
voltage and current signals. FFT is an algorithm with the purpose of computing the Discrete Fourier
Transform (DFT) in a faster way. Considering a list of complex numbers, the DFT transforms that into a
list of coefficients of a finite combination of complex sinusoids. Each DFT component is given by [39]:

Xm =
N−1∑
n=0

xn·e− j2πmn/N, m ∈ Z (1)

where m is the DFT index (harmonic order), n is the time-domain index, N is the number of samples,
Xm is the mth DFT coefficient, and xn is the time-domain list of equally-spaced complex samples.

FFT decomposition allows the determination of the magnitude and the phase of each frequency
component of the electrical signal under analysis. As mentioned previously, these components
can compose a set of fault patterns for machine diagnosis, and generally the magnitudes of these
components increase according to the fault severity.

In practice, the spectral components’ magnitudes are usually presented normalized in relation to
the fundamental component magnitude (line frequency), due to the changes of current in function of
load. Moreover, the use of a logarithm scale (in general, dB) is common, because of the big difference
between the magnitudes and the exponential characteristic of the evolution presented for several
known faults [7].

In general, the fault components are expressed in the frequency spectrum as:

fe = f1 ± k· fc (2)

where fe is the fault frequency as it appears in the spectrum, considering the power line frequency
modulation; f 1 is the power line frequency; k is a positive integer value, indicating the harmonic order;
and fc is the specific fault characteristic frequency.

2.2. Extended Park’s Vector Approach

EPVA is a technique based on a quantitative analysis of the Park circle distortion, whose main
characteristic is considering information of the three phases of electrical signals. It is specifically used



Energies 2019, 12, 1506 4 of 16

as a fault indicator of stator electrical unbalance. A brief explanation of this technique is provided
below [12,40].

The components of Park’s vector (iD and iQ) for a set of three phase balanced currents are computed
by applying the Clarke transformation and given by:

iD =
( √
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(3)

where iD and iQ are the current components of Park’s vector in direct and quadrature axes, respectively;
and iA, iB, and iC are balanced line currents in phases A, B and C, respectively.

When the conditions are ideal, the resultant Park circle is a perfect circle, whose center locates at
the origin of the coordinates. Considering the wave shape parameters of the balanced line currents A,
B and C, it is obtained:

iD =
( √

6
2

)
iM cos(ωt− θ)

iQ =
( √

6
2

)
iM sin(ωt− θ)

(4)

where iM is the peak value of the line current; ω is the angular frequency, in (rad/s); θ is the initial
phase angle, in (rad); and t is the time variable.

When the conditions are not ideal, for instance, when an electrical unbalance is present, the Park
circle presents some distortion. Thus, the currents contain direct and inverse sequence components,
which can be represented as:

iA = id cos(ωt− θd) + ii cos(ωt− γi)

iB = id cos
(
ωt− θd −

2π
3

)
+ ii cos

(
ωt− γi +

2π
3

)
iC = id cos

(
ωt− θd +

2π
3

)
+ ii cos

(
ωt− γi −

2π
3

) (5)

where id is the maximum value of the direct sequence current; ii is the maximum value of inverse
sequence current; θd is the initial phase angle of the direct sequence current, in (rad); and γi is the
initial phase angle of the inverse sequence current, in (rad). By substituting (5) in (3), it is obtained:

iD =
( √

3
√

2

)
(id cos(ωt− θd) + ii cos(ωt− γi))

iQ =
( √

3
√

2

)
(id sin(ωt− θd) − ii sin(ωt− γi))

(6)

In order to obtain the resultant signal for analysis, the computation of the square of Park’s vector
module is executed:

i2D + i2Q =
(3

2

)(
id2 + ii2

)
+ 3idii cos(2ωt− θd − γi) (7)

Finally, the FFT algorithm is applied to the square of the Park’s vector module. In the presence of
electrical unbalance, the resulting spectrum contains a DC level and a component located at twice the
power line frequency. This component is defined as the EPVA electrical unbalance fault pattern.

As a final comment, the procedure has been explained for current signals, but the same can be
used for voltage signals.

3. ESA Fault Patterns for Synchronous Generators

This section presents ESA fault patterns for SGs that will be used in the proposed methodology of
this work. These patterns are valid for different types of SGs and have been presented in the literature
and proved experimentally [41]. An observation is that both voltage (VSA or EPVA) and current (CSA
or EPVA) signatures must be analyzed.
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3.1. Rotor Winding Inter-Turn Short Circuit

SG rotor winding inter-turn short circuit fault presents the characteristics: increase of rotor current,
an increase of winding temperature, distortion of voltage waveform, unusual vibration, and possibility
of mechanical faults occurring.

The proposed ESA fault patterns are rotor rotation frequency pattern and even harmonics on the
electrical signature.

The rotor rotation frequency is defined by the monitoring of line frequency with sidebands in
integer multiples of rotor rotation frequency. The rotor rotates at synchronous speed. Thus, the rotor
rotation frequency is given by:

fr =
f1
P

(8)

where fr is the rotor rotation frequency, f 1 is the line frequency, and P is the number of pole pairs. A
note is that the expression “pole pairs” is used to refer to the “physical” number of pole pairs in the
rotor of the SG and this is valid for all the times this expression appears in this paper. Thus, the rotation
frequency pattern is given by [6,13,19,38]:

fp f r = f1 ± k· fr (9)

where fpfr are the spectral components analyzed for SG rotor mechanical problems and k is a
positive integer.

Figure 1a illustrates the rotor rotation frequency, which must be analyzed on voltage and
current signatures.
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Figure 1. Fault patterns: (a) rotor rotation frequency (pattern for rotor winding inter-turn short
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inter-turn short circuit—electrical fault).

Another proposed fault pattern for this type of fault is the analysis of even harmonics (fphp) in the
electrical signature, which are given by [13,19,33,34]:

fphp = 2·k· f1 (10)

This pattern must be analyzed on voltage and current signatures and is illustrated in Figure 1b.

3.2. Stator Winding Inter-Turn Short Circuit

Another type of fault that SGs can suffer is stator winding inter-turn short circuit, whose
characteristics are: the emergence of pulsating currents and generation of rotating fields in the opposite
direction of the original one.

The proposed fault patterns for this fault are the zero sequence harmonics (mainly the third
harmonic) in the electrical signature, and the EPVA electrical unbalance pattern [12,13].

The zero sequence harmonics fault pattern (fphsz) is given by:

fphsz = 3·k· f1 (11)

This fault pattern must be analyzed in voltage and current signatures and is illustrated in Figure 2a.
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The EPVA electrical unbalance pattern (fepva) is defined as the component of twice the line
frequency in the EPVA spectrum of voltage and current, being represented as:

fepva = 2· f1 (12)

Figure 2b illustrates this pattern, which must be analyzed on EPVA voltage and current signatures.
As a note, these patterns are also valid for other faults that result in stator electrical unbalance

(phase-to-neutral short circuit, phase-to-phase short circuit, open circuit fault).

3.3. Rotor Mechanical Faults

Rotor mechanical faults include mechanical misalignment, mechanical unbalance, static airgap
eccentricity, and dynamic airgap eccentricity. Some effects of these faults include: an increase in
vibration, higher electromagnetic stress, an increase of unbalanced magnetic pull (UMP), increase of
bear wear, and rotor and stator rubbing.

The fault pattern proposed for these faults is the rotor rotation frequency on voltage and current
signatures, as illustrated in Figure 1a, because these faults also cause an increase in the magnitude of
this component [25,29,38].

4. Peculiarities of Electrical Signature Analysis of Synchronous Generators

The last section presented ESA fault patterns for SGs. However, it is important to contextualize
that ESA has been largely applied to fault detection of induction motors in an industrial environment
and the application to SGs is more recent and entails some peculiarities. Thus, this section compiles
some important issues related to ESA application to SGs condition monitoring.

4.1. Signal Analysis

The first peculiarity of ESA application to fault detection of SGs is related to the choice of signals
to be analyzed because both voltages and currents are outputs of these machines. In the literature, ESA
experts recommend to analyze the stator voltage and current signals. In the case of isolated SGs, the
analysis should focus on the voltage signature (VSA and EPVA) and relate to the current signature
(CSA and EPVA). If the component magnitude under analysis is greater in voltage than in current (in
dB), one may suppose that there is an incipient fault in the SG. Otherwise, one may suppose that the
incipient fault is in the load [28].

These considerations are valid for isolated SGs. This work assumed that for SGs interconnected to
power systems, the focus should be on current signature (CSA and EPVA). This because if an SG is
connected to an infinite bus, then the system voltage would prevail over the SG generated voltage.

4.2. Discrimination of Mechanical and Electrical Rotor Faults on Fault Patterns

A second peculiarity is related to the discrimination of faults whose effects occur in the same
fault pattern. As one may note, the rotor rotation frequency pattern is indicative of rotor mechanical
problems, and rotor winding inter-turn short circuit [11,13,19,25,29]. Thus, by analyzing only this fault
pattern, it is possible to detect rotor problems, but not to distinguish if it is an electrical or a mechanical
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problem. In order to get a reliable fault diagnosis for SGs based on ESA, it would be necessary to
separate the effects of electrical and mechanical faults in the rotation frequency components.

A methodology based on the analysis of symmetrical components to distinguish SG rotor faults
has been proposed in [9]. This approach focused on the first right sideband of the rotation frequency,
presenting a theoretical analysis and experimental results. The cited work found that the rotor winding
inter-turn short circuit fault caused the increase of positive (mainly), negative, and zero sequence
magnitudes of the rotation frequency’s first right sideband. On the other hand, the rotor mechanical
unbalance caused the increase only of the positive sequence magnitude of the rotation frequency’s
first right sideband. Thus, these findings should be associated with the rotor rotation frequency fault
pattern, to provide a better fault diagnosis using ESA.

4.3. Two-Pole Synchronous Generators

The SGs at hydroelectric power plants are usually built with a salient pole for two or more pole
pairs (low-speed or hydrogenerators), and SGs at thermal and nuclear power plants are normally built
with a non-salient pole for one or two pole pairs (high speed or turbogenerators) [42]. As the proposed
ESA methodology is applicable for both types of SGs, a last peculiarity emerges for the specific case of
two-pole SGs. In this case, the rotation frequency is equal to the line frequency (fundamental frequency).
Thus, the fault patterns match the harmonics of the fundamental frequency. The harmonics in an SG
include the intrinsic harmonics due to the structural characteristics of the SGs and the magnetomotive
force waveform, harmonics due to non-linear loads fed by the SG (they reflect in the SGs signals because
of the armature reaction effect), and harmonics due to possible internal faults of the SGs (for instance,
the second harmonic as indicative of rotor faults). In practice, even healthy machines may present
even harmonics, and this can confuse the fault diagnosis when using ESA [30–33]. Even harmonics
are indicative of rotor winding short circuit and the second harmonic matches the rotation frequency
pattern’s first right sideband. For a correct fault diagnostic, it is necessary to do an in-depth study
about the different harmonics in SG signals and the interactions among them.

A previous study [34] on this issue concluded that the SG intrinsic even harmonics (due to
possible internal asymmetry in the machine or mechanical misalignment condition) did not confuse the
diagnosis of rotor winding inter-turn short circuit fault by using ESA. The cited work was substantiated
by experimental results. However, for future works, it is important to perform experimental tests with
non-linear loads at the SG output to analyze the effect of harmonics in ESA fault patterns and their
influence on fault detection.

Finally, it is not the scope of this work to approach in depth each cited peculiarity. The main
objective was to point them out and show how they have been approached. Moreover, the influence of
saturation and power factor in SG fault detection is not addressed, being proposed for future works.

5. Proposed Methodology for Fault Diagnosis of SGs in Bulk Electric Systems

This section describes the proposed ESA-based methodology for condition monitoring of SGs,
considering the ESA fault patterns and the SGs peculiarities presented in the last sections.

A system has been developed for SGs CBM based on ESA. The system includes two PS TTD-01
differential AC voltage transducers, 2.5% peak-to-peak error, used to measure two phase-to-phase
voltages. Two TT 50-SD differential AC current transducers, 2.0% peak-to-peak error are used to
measure two line-currents. The transducers are installed at the secondary side of the SGs voltage and
current transformers, and are accessed through the panels of the generating units (GUs).

The transducers are connected to an acquisition system by National Instruments composed by the
Ethernet cDaq-9181 carrier and the NI-9239 module for data acquisition. This system is provided with
four channels for simultaneous signal acquisition, and the acquisitions are accomplished with 131072
points each one and 16.67 kHz sample frequency. The analog-to-digital converter resolution is 24 bits.

The acquisition system communicates with a personal computer through a signal analysis software
(SAS) developed in C# to command the acquisitions and perform the signal analysis and the machine
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diagnosis. The set of fault patterns presented in (9)–(12), including the symmetrical components
approach described previously, is implemented in the SAS. The SAS is the heart of the proposed
system, being the part of the system where the fault patterns and rules presented in Sections 3 and 4
are implemented to perform fault detection and identification, even for an SG connected to the grid.

The first step of the proposed methodology is the acquisition of the machine’s electrical signals.
Once acquired, the signals are processed, the FFT algorithm is applied to get the signal spectral
components, other signal processing techniques or post-processing analysis are performed, the
database is fed with this information, and the SAS performs the analysis. Thus, the electrical signatures
can be analyzed in a qualitative and quantitative way, especially considering the predefined fault
patterns. Figure 3 presents a schematic diagram of the described ESA-based methodology for SGs CBM.
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Figure 3. Electrical signature analysis (ESA) based methodology for condition-based maintenance of
synchronous generators (SGs).

The described process is performed continuously over time. The system can be programmed
to acquire a number of signals in predefined time intervals, each day. Then, a database is created
and continuously fed. The analysis for fault detection is performed considering the database stored
from the system installation time until the moment of analysis. This is performed by analyzing the
trend curves of the fault patterns magnitudes. Thus, it is possible to note any abnormal increase in a
component magnitude and its evolution over time.

The analysis is accomplished by setting alarms for the fault pattern’s component’s magnitudes.
The alarm levels are obtained empirically, according to maintenance specialist expertise. For means
of complementation, the analysis can also be comparative. When there are data of the machine in a
healthy condition (baseline), the analysis is comparative with the baseline condition. However, when
the baseline is not available, and there are equal machines (of the same model and nameplate data)
being monitored, the analysis can be comparative between the machines. In both cases, the selected
data for analysis must be in the same operation range, considering the machine voltage and load level.

The SAS presents features so that the user can access screens with the fault pattern’s trend curves
and spectrum of a selected electrical signal in order to perform an in-depth analysis. The SAS also
provides a report containing the general condition of the SG, including a traffic light (red, yellow or
green) indicating the condition regarding the monitored faults. This is automatically updated when
the database receives a new signal acquisition, including the summary of the report, which can be
accessed on the main screen of the SAS.

It is important to reinforce that the fault types are detected and identified considering the
fault patterns and recommendations presented in the Sections 3 and 4, and these fault patterns are
comprehensive and include faults normally able to be detected in a predictive maintenance system.
The approach of other faults in these systems can be proposed for future works. Finally, with the
support of the described system, the decision to stop a machine or not due to indications from the
electrical signature will be performed by the maintenance staff and requires some experience and
knowledge of the process and the machine’s behavior history [7].
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6. Results of Fault Detection in In-Service SGs in Bulk Electric Systems by Using ESA

This section presents results of fault detection in in-service SGs in a bulk electric system by
using ESA.

The developed methodology of SG CBM based on ESA has been applied to in-service generating
units (GUs) of a Brazilian hydroelectric power plant called Goiandira. This power plant is located
at Brazilian state of Goias and has two GUs (GU#1 and GU#2) with the following ratings: power =

15 MW, stator voltage = 13,800 V, stator current = 627.6 A, frequency = 60 Hz, 26 poles (salient-pole
rotor), excitation voltage = 190 V, excitation current = 480 A, rotor rotation speed = 276.9 rpm.

Two types of faults were detected in this power plant by using the proposed ESA based
methodology, as described as follows.

6.1. Early Stage of Stator Phase-to-Phase Short Circuit

Firstly, the power plant personnel had reported that GU#1 presented a covered winding coil.
This is because a short circuit had occurred between turns 179 of phase 1 and 184 of phase 2 (the level
of severity had not been informed) and the solution adopted to mitigate the problem was the isolation
of the stator coils, which caused stator electrical unbalance. Figure 4 presents the part of the GU#1
stator winding where the fault happened. Thus, the electrical signatures were analyzed to search for
fault indicators for this type of fault. The fault pattern of EPVA electrical unbalance, as described in
(12), has been analyzed.
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Figure 4. Fault indication and mitigation in the stator winding of generating unit (GU) #1: (a) fault
indication; (b) fault mitigation.

Here it is important to point out that as a data history of GU#1 and GU#2 before the fault was
not available, the analysis was accomplished as a comparison between the two GUs, considering the
database stored from the installation time until the analysis moment. As explained in the last section,
the data used in this analysis must be in the same operation range, considering the load condition.
The data of the GUs were selected in a range between 89.2% and 92.4% of the rated load, considering
the current as reference, and the levels of voltage were similar between the GUs. As the GUs were in a
similar level of operation, considering the load condition, the selected data were appropriate for an
ESA comparative analysis.

Considering the current and voltage signals in the database and the EPVA computed for them by
the SAS, Figure 5 presents the trend curves of the EPVA electrical unbalance in voltage and current
signatures of the GUs at Goiandira. For this analysis, the daily average of data has been considered,
and this has also been performed for all the trend curves presented in this section. It can be noticed
that, for both GUs, the voltage unbalance was about 0.4%. The current unbalance was between 0.5%
and 1.5% for GU#2 and between 2.5% and 3.0% for GU#1. Thus, GU#1 presented a larger electrical
unbalance at the EPVA current signature than GU#2. Thus, the fault indicator of the covered coil was
detected in the EPVA electrical unbalance fault pattern.

In order to verify if the data sets of EPVA electrical unbalance of current signature of the GUs
were statistically different and reinforce the ESA diagnosis effectiveness, a two-sample t-test has been
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performed [43] using Minitab software. The data used for the hypothesis testing were the percentage
values of electrical unbalance of current signals in the period of analysis. Table 1 presents the results
from the two-sample t-test for the fault pattern in analysis.Energies 2019, x, y FOR PEER REVIEW  10 of 16 
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Figure 5. Trend of the Extended Park’s vector approach (EPVA) electrical unbalance of voltage (lower
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Table 1. Results of the two-sample t-test for the EPVA electrical unbalance at current signature.

GU Number of
Samples Mean Standard

Deviation Standard Error of the Mean

GU#1 117 2.535 0.329 0.030
GU#2 46 1.35 0.410 0.060

Estimated difference: 1.1842
Confidence interval of 95% for the difference: (1.0493; 1.3191)

t-Test of the difference = 0 (vs not =): p-value = 0.000

From Table 1, it can be concluded that the data set of the EPVA electrical unbalance at current
signature of GU#1 is statistically different from the corresponding data set of GU#2, because p-value <

0.05. The estimated difference is that the mean of the component magnitudes of GU#1 is 1.1842% above
the mean of the component magnitudes of GU#2. This result evidences the fault indicator of covered coil.

Figure 6 presents, for illustration purposes, examples of the EPVA electrical unbalance of current
and voltage signatures of GUs #1 and #2 of Goiandira power plant. This was performed by choosing an
arbitrary signal acquisition for each GU and considering the FFT computed by the SAS. The components
are normalized in relation to the fundamental frequency magnitude. By comparing the spectra of
Figure 6a,b, one can notice a significant difference between the component magnitudes of GUs #1 and
#2, mainly in the EPVA current signature, which evidences the fault indicator of covered coil.
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6.2. Mechanical Misalignment

During the performed analysis, the rotation frequency fault pattern, as presented in (9), was
also noteworthy. This fault pattern is indicative of rotor mechanical problems. For the purpose of
analysis, the same current and voltage data selected in the last section have been considered in the
present section.

Considering the current and voltage signals in the database and the signatures computed by the
SAS, Figure 7 presents the trend curves of the rotation frequency of the voltage and current signatures
of GUs at Goiandira power plant, considering the average level of the components. It can be noticed
that the component’s magnitudes were about -90 dB for GU#1 and -95 dB for GU#2, for voltage signals.
The component’s magnitudes were about -70 dB for GU#1 and -82 dB for GU#2, for current signals.
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There is a significant difference between the rotation frequency component’s magnitudes of GU#1
and GU#2, mainly in current signature, and GU#1 presents higher magnitudes in relation to GU#2.
This fault pattern is indicative of rotor winding inter-turn short circuit or rotor mechanical problems.
After the analysis, the power plant personnel reported that GU#1 presented “dogleg” condition, which
is an angular mechanical misalignment between the turbine shaft and the generator rotor shaft. Thus,
the hypothesis raised by the analysis has been confirmed.

In order to verify if the data sets of rotation frequency of current signature of GUs were statistically
different and reinforce the ESA diagnosis effectiveness, a two-sample t-test has been performed [43]
using Minitab software. The data used for the hypothesis testing were the rotation frequency
component’s magnitudes in dB of current signals in the period of analysis. Table 2 presents the results
for the two-sample t-test for the fault pattern in question.

Table 2. Results of two-sample t-test for rotation frequency of current signature.

GU Number of
Samples Mean Standard

Deviation
Standard Error of

the Mean

GU#1 117 −71.357 0.678 0.063
GU#2 46 −83.520 3.430 0.510

Estimated difference: 12.165
Confidence interval of 95% for the difference: (11.140; 13.190)

t-Test of the difference = 0 (vs not =): p-value = 0.000

It can be concluded that the data set of the rotation frequency component’s magnitudes of
GU#1 is statistically different from the corresponding data set of GU#2, because p-value < 0.05.
The estimated difference is that the GU#1 component magnitudes mean is 12.165 dB above the mean of
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the component magnitudes of GU#2. This result provided evidence for the fault indicator of rotor
mechanical misalignment.

Figure 8 presents, for illustration purposes, examples of rotation frequency components of
the current and voltage signatures of GU#1 and GU#2 at Goiandira power plant. These were
signal acquisitions chosen arbitrarily to show the signatures computed by the SAS. There is a
significant difference between the components of GU#1 and GU#2, mainly in current signature, and
the component’s magnitudes of GU#1 are higher than GU#2. This is evidence of the fault indicator of
rotor mechanical misalignment.
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6.3. Final Remarks

It is important to reinforce that the proposed system can detect electrical and mechanical faults,
including those presented in Section 3. The current section has focused only on two types of faults
(stator electrical unbalance and mechanical misalignment) because these were the faults detected in
practice in the in-service SG in the monitored hydroelectric power plant. When working in a laboratory
environment, it is possible to simulate different types of faults in a machine and get results covering all
of them [3]. However, when considering a power plant application, the studied types of faults will
not always occur during the selected period of monitoring and analysis. Finally, the results obtained
in a power plant are very valuable, because this environment is concerned with monitoring and is
subjected to diverse conditions of bulk power system.

7. Conclusions

This paper has presented a study on ESA for condition monitoring of SGs in bulk electric systems.
The paper has presented a methodology for SG predictive maintenance by using ESA and has also
addressed peculiarities in the application of this technique to fault detection in wound rotor SGs. The
main contribution of this work is the practical results of ESA for fault detection in an in-service SG
connected to a power system.

The detected faults were an early stage of stator phase-to-phase short circuit, detected in the EPVA
electrical unbalance pattern, and mechanical misalignment, detected in the rotation frequency pattern.
The results show the potential of applying ESA to fault detection in SGs interconnected to a power
system. Moreover, it has been shown that in this case, the emphasis of ESA must be on CSA. This is
because the faults were more evident through the analysis of fault patterns in current signatures than
in voltage signatures.

It may be proposed for future works to improve the automatisms and diagnostics of the system
by using artificial intelligence techniques and expand the possible monitored conditions beyond fault
detection and identification.
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Nomenclature

Abbreviations
CBM Condition-based maintenance
CSA Current signature analysis
DFT Discrete Fourier Transform
ESA Electrical signature analysis
EPVA Extended Park’s vector approach
FFT Fast Fourier Transform
GU#1 Generating unit #1
GU#2 Generating unit #2
GUs Generating units
SAS Signal analysis software
SGs Synchronous generators
UMP Unbalanced magnetic pull
VSA Voltage signature analysis
Parameters
f1 Power line frequency
fc Specific fault characteristic frequency
fe Fault frequency
fepva EPVA electrical unbalance pattern
fpfr Spectral components analyzed for SG rotor mechanical problems
fphp Spectral components analyzed for SG even harmonics
fphsz Zero sequence harmonics fault pattern
fr Rotor rotation frequency
iA Current of phase A
iB Current of phase B
iC Current of phase C
iD Direct component of Park’s vector
id Maximum value of the direct sequence current
ii Maximum value of inverse sequence current
iM Peak value of the line current
iQ Quadrature component of Park’s vector
k Positive integer value
m DFT index (harmonic order)
n Time-domain index
N Number of samples
P Number of pole pairs
t Time variable
Xm mth DFT coefficient
xn Time-domain list of equally-spaced complex samples
γi Initial phase angle of the inverse sequence current, in (rad)
θ Initial phase angle, in (rad)
θd Initial phase angle of the direct sequence current, in (rad)
ω Angular frequency, in (rad/s)
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