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Abstract: This paper proposes an active power control method for supporting grid frequency
regulation in wind farms (WF) considering improved fatigue load sensitivity of wind turbines (WT).
The control method is concluded into two parts: frequency adjustment control (FAC) and power
reference dispatch (PRD). On one hand, the proposed Fuzzy-PID control method can actively maintain
the balance between power generation and grid load, by which the grid frequency is regulated when
plenty of winds are available. The fast power response can be provided and frequency error can be
reduced by the proposed method. On the other hand, the sensitivity of the WT fatigue loads to the
power references is improved. The explicit analytical equations of the fatigue load sensitivity are
re-derived to improve calculation accuracy. In the process of the optimization dispatch, the re-defined
fatigue load sensitivity will be used to minimize fatigue load. Case studies were conducted with a WF
under different grid loads and turbulent wind with different intensities. By comparing the frequency
response of the WF, rainflow cycle, and Damage Equivalent Load (DEL) of the WT, the efficacy of the
proposed method is verified.

Keywords: fatigue load; active power dispatch; frequency regulation; fuzzy control; wind farm

1. Introduction

Wind energy is one of the rapidly growing renewable energy sources [1–4]. By far largest wind
power market, China installed an additional capacity of 19 Gigawatts, and continues its undisputed
position as the world’s wind power leader [5–8]. With the rapid growth of installed wind power
capacity, its proportion in the power grid continues to increase. Wind power generally does not
participate in frequency regulation due to the decoupling of the WT rotor and the grid frequency,
so large-scale wind power access to the grid will significantly weaken the frequency regulation
capability of the grid [9,10]. With the continuous increase of the wind power penetration rate, the
influence of wind power volatility and uncertainty on the frequency regulation of power systems is also
increasing [11–15]. In order to meet grid frequency requirements, active power control (APC) method
for wind power is critical to actively maintaining a balance between power generation. However,
the power reference is frequently changed by the FAC to adapt to changes in the grid frequency when
the WF participates in frequency regulation. The frequent action of the pitch angle of the WT and
the torque of the generator is caused by this change, resulting in an increase in the fatigue loads
of WTs [16–19]. Therefore, it is necessary to study which control methods support grid frequency
regulation without affecting or even reducing the fatigue loads of WTs.

In recent research, some methods for supporting grid frequency regulation have been proposed.
An approach for participation of doubly fed induction generator (DFIG) based wind farms in power
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system short-term frequency regulation to simplify the high-order average frequency models of bulk
power systems was proposed in [20,21]. In [22,23], the inertia constant and primary power reserve for
a variable speed wind turbine that operates at derated conditions were formulated in a wind farm
to support short-term frequency control in power systems. Reference [24] presents a model-based
control method based on Model Predictive Control (MPC) method and on a Kalman-like estimation
algorithm to improve the contribution of wind power generators to short-time primary frequency
regulation in electric power systems. A frequency control support function responding proportionally
to frequency deviation is proposed to take out the kinetic energy of wind turbine for improving the
frequency response of the system in reference [25]. However, the grid frequency is only stabilized
in a short period of time using these methods. Reference [26] presented two APC methods that are
developed based on adaptive pole placement control (APPC) and fuzzy proportional-integral (PI)
control approaches to provide rapid power response. The grid frequency can be stabilized for a long
time by WF power reduction. However, it can be seen from the DELs results that the fatigue load of
WT has been increased using this method. For wind farm power distribution, as long as the power
scheduling requirements are met, the fatigue load can be minimized by coordination between the
WTs [27]. In [28,29], a distributed MPC based APC method of WFs was presented to reduce the fatigue
loads of WTs. In [30], a load sensitivity based optimal active power dispatch algorithm is proposed
for wind farms. The explicit analytical equations of the load sensitivity are derived to improve the
computational efficiency of controller. Two fatigue loads experienced by shaft torque and tower
bending moment are considered.

An APC method is proposed in this paper. This method is used to provide fast power response
while minimizing fatigue loading on the WT, which is used to overcome the above problems.
The frequency adjustment control of WF was developed based on the Fuzzy-PID control method.
The method is designed to track various forms of load while maintaining grid frequency stability when
plenty of wind is available. The total active power obtained by the FAC is proportionally distributed to
the wind farms. The fast power response can be provided and frequency error can be reduced by the
proposed method compared with traditional methods. Based on the resulting power reference value,
the PRD adjusts the power reference of WT within the WF to track power. The model of the WT is
improved and the analytical equation for fatigue load sensitivity is re-derived. Compared with the
original method, the calculation accuracy is improved by the improved method. Meanwhile, PRD
minimizes fatigue loads of tower thrust and shaft torque variations based on the improved fatigue
load sensitivity model. Following this, a complete system simulation model is built in MATLAB to
verify the effectiveness of the proposed method.

The main contributions of this work are described as follows: A control structure support
frequency adjustment for large-scale WF is proposed in Section 2. Section 3 designs a Fuzzy-PID
controller to respond and recover grid frequencies more quickly. The fatigue load sensitivity model of
the wind turbine is improved and the explicit analytical equations of the fatigue load sensitivity are
re-derived in Section 4. The improved model can adapt to wind conditions with different turbulence
intensity to minimize the shaft torque and tower bending moment fatigue loads. The simulation results
demonstrate the effectiveness of the method in Section 5. Section 6 concludes the paper.

2. Control Structure of WF Participates in Frequency Regulation

The proposed WF control architecture proposed in the paper is shown in Figure 1. The control
architecture is mainly divided into two parts.

The first part is FAC of the WF. The measured grid frequency f meas is used as a feedback signal to
set up active power control in real-time and maintain the balance between power generation and grid
loads. The demanded power of WF PWF

demand is calculated by FAC and delivered to the PRD. The grid
frequency is regulated by FAC to its rated value despite a changing grid load. The second part is
PRD of the WF. This part takes all the WTs as the unit and performs power tracking on the power
value assigned by the superior to realize the active power adjustment of the WT in the area under his
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jurisdiction. The fatigue load sensitivity ∂L
∂PWT

demand
is calculated by PRD using a and b obtained by the

wind turbine generator (WTG) controller. The details of ∂L
∂PWT

demand
, a and b are described in Section 4.

Then the local WTG controller does not need to be changed.
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3. Fuzzy-PID Control Method of Supporting Grid Frequency Regulation for WF

The frequency fluctuation of the power system is caused by the imbalance of the generation and
consumption of active power. In order to maintain the frequency stability of the power system, the
system frequency must be maintained by active power control. The greater the balance between power
generation and consumption, the smaller the frequency fluctuations, and the higher the electricity
quality. This paper considers active power control at an entire WF level within the general structure
shown in Figure 1. A typical large-scale WF including N wind turbines is included.

When the penetration of wind power in the power grid is relatively low, the impact of wind power
participation in frequency regulation is minimal, so the wind farm frequency regulation method uses
open-loop control. However, with the increase of wind power penetration rate, this open-loop control
method cannot adapt to this situation and will cause the frequency to produce steady-state error.
Traditional proportion-integral-derivative (PID) controllers are one of the most widely used controllers
in industrial applications, and they can eliminate the steady-state error of the frequency [31–33].
However, it is difficult to adapt to a wind power conversion system with strong nonlinear dynamic
characteristics, which needs to be improved.

The fuzzy control system establishes a fuzzy rule table suitable for the actual production process
by summarizing expert knowledge and operational experience. It not only reduces the rise time and
overshoot of the output response, but also reduces the sensitivity of the system to interference and
increases the stability of the system [34]. Fuzzy-PID can adjust the size of the parameters for P, I, and
D online, and it can adapt well to dynamic systems [35,36]. In this paper, the Fuzzy-PID controller is
used to regulate the grid frequency. In the APC architecture proposed in this paper, the input of the
fuzzy controller is the frequency deviation f error of the grid, and the output is the demanded power of
WF PWF

demand. The demanded power is then sent to PRD.
As it is shown in Figure 2, grid frequency error f error is calculated by

ferror = fmeas − fN (1)
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The APC control method determines the WF power demand PWF
demand for adjusting the grid

frequency through input ferror.
.
f error is a nonlinear differential approximation. KP, KI and KD are

calculated by
KP(P) = aPP + bP (2)

KI(I) = aII + bI (3)

KD(D) = aDD + bD (4)

The constants bP, bI, and bD represent a conventional PID controller that provides a good but
not optimum system response. These constants can be obtained using any conventional methods for
PID controllers. In (2), (3), and (4), the coefficients aP, aI, and aD are obtained according to simulation
results to determine the relevant ranges of variations for bP, bI, and bD, respectively. The parameters of
P, I, and D onlines are determined by the fuzzy rules in Figure 3. Membership functions for inputs and
outputs are shown in Figure 3. The vertical axes represent the degree of membership that is within the
range of [0, +1].
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The meaning of the linguistic variables is listed in Table 1.

Table 1. Linguistic variables of membership functions.

Linguistic Variables Meaning

NB Negative big
NM Negative medium
NS Negative small
Z Zero
PS Positive small
PM Positive medium
PB Positive big

The input parameters are blurred and then defuzzified, the explicit control signal obtained after
defuzzification is shown in Figure 4. Note that the inputs ferror and

.
f error of fuzzy rules need to be
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normalized within the range [−1, +1] before being processing in Figure 4, where e represents ferror; de
represents

.
f error.
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4. PRD Method for WT Based on Fatigue Load Sensitivity Using Quadratic
Programming Algorithm

In the wind farm power reference dispatch section, the power reference dispatch controller
regulates all the WT active outputs of the wind farm. The controller aims to minimize the fatigue
load of WT and track the active power allocated by the frequency adjustment controller. Typically,
the sampling time of the wind farm controller is in seconds [28]. Therefore, the rapid dynamics
of generators and pitch actuators can be ignored [37]. In addition, shaft torsion and tower point
oscillations are ignored to reduce the complexity of the model.

The fatigue loads of WTs can be divided into two parts: one is aerodynamic loads and gravity
loads (external), and the other is structural loads (internal) [38]. In this paper, the fatigue loads mainly
focus on the loads of the drive train due to the torsion of the shaft and the loads of the tower structure
due to the tower deflection. Compared with static loads, the dynamic stress causing structural damage
of WTs is a much bigger issue. By reducing the fluctuations of low-speed shaft torque Ts and thrust
force Ft, the related fatigue loads can be reduced. ∂L

∂PWT
demand

can be represented by a combination of

∂Ts

∂PWT
demand

and ∂Ft
∂PWT

demand
when the drive train and tower structure loads are considered.
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4.1. Improved Model of Fatigue Load Sensitivity

The WT (NREL 5 MW) developed by the National Renewable Energy Laboratory (NREL) is
used in this paper [39,40]. The oscillations in the shaft torsion and tower nodding are disregarded,
the fluctuations of wind speed are ignored based on the previous report [30]. In order to better
optimize the calculation, the equations of fatigue load sensitivity are re-derived. In the process of the
optimization dispatch, the redefined fatigue load sensitivity will be used. The active power of the WT
output is still controlled by adjusting the pitch angle and torque.

The equivalent mass Jt of drive train system is described by [41]

Jt = Jr + η2
g Jg (5)

where Jr is the rotor mass; Jg is the generator mass; ηg is the gear box ratio.
The low-shaft motion equation is described by

.
ωr ≈

1
Jt
(Trot − ηgTg) (6)

where ωr is the measured rotor speed; Trot is the aerodynamic torque; Tg is the generator torque;
The measured generator speed ωg is filtered by a low-pass filter and the filtered speed ωf is

ωf =
1

1 + s · τf
ωg (7)

where τf is time constant of the filter of ωg.
According to the deviation of ωf from generator rated speed ωg-rated, pitch angle reference θref

can be obtained by the PI controller.

θref =
1
ka
[kp +

ki

s
](ωf −ωg−rate) (8)

where kp is the proportional gain; ki is the integral gain; ka is a function of θref, defined by ka ,

ka1 + ka2θref. Where ka1 and ka2 are the constants.
By defining

β , kaθref (9)

(8) is transformed into

β = kp(ωf −ωg−rate) + ki
(ωf −ωg−rate)

s
(10)

According to the motion equation of shaft torque Ts,
.
ωr, and

.
ωg can be described by

.
ωr ≈

1
Jr
(Trot − Ts − B(ωr −

ωg

ηg
)) (11)

.
ωg ≈

1
Jg
(

1
ηg

(Ts + B(ωr −
ωg

ηg
)) − Tg) (12)

where ωg is the measured generator speed; B is the main shaft viscous friction coefficient.
According to (11) and (12),

.
ωg can be expressed by

.
ωg ≈

1
Jg
(

1
ηg

(Trot − Jr
.
ωr) − Tg) =

1
Jg
(1−

Jr

Jt
)(

Trot

ηg
− Tg) (13)

The time of the operating point is assumed to be k. The wind speed v is a variable that can be
estimated or measured [42]. In this study, v is estimated. The value at t = k is v0 and is assumed to be
constant over a short control period. The measured power output, generator speed, filtered speed,
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and pitch angle are defined as Pg0, ωg0, ωf0, and θ0 at t = k, respectively. The Trot and Tg at t = k can be
defined as Trot0 and Tg0, respectively.

Based on (6), (7), (10), and (13), the incremental form can be obtained as

∆
.
ωr =

1
Jt
(∆Trot − ηg∆Tg) +

1
Jt
(Trot0 − ηg∆Tg0) (14)

∆
.
ωf = −

1
τf

∆ωf +
1
τf

∆ωg (15)

∆
.
β =

kp

τf
∆ωg + (−

kp

τf
+ ki)∆ωf + ki(ωf0 −ωg−rate) (16)

∆
.
ωg =

1
Jg
(1−

Jr

Jt
)(

∆Trot

ηg
− ∆Tg) +

1
Jg
(1−

Jr

Jt
)(

Trot0

ηg
− Tg0) (17)

The aerodynamic torque Trot is calculated by

Trot =
0.5πR2ρv3Cp(λ,θ)

ωr
(18)

where R is the length of the blade; ρ is the air density; v is the wind speed on the rotor; Cp is the power
coefficient; λ is the tip speed ratio, defined by λ , ωrR

v ; In order to simplify the expression, Psim is
defined by Psim , 0.5πR2ρv3.

According to (18), ∆Trot can be calculated by

∆Trot ≈
∂Trot

∂ωr
∆ωr +

∂Trot

∂β
∆β+

∂Trot

∂v
∆v (19)

∂Trot

∂ωr
= −

PsimCp

ω2
r0

+
Psim

ωr0
·
∂Cp

∂ωr
(20)

∂Trot

∂β
=
∂Trot

∂θ
∂θ
∂β

=
∂Trot

∂θ
·

1
ka1 + 2ka2θ0

(21)

∂Trot

∂v
=

0.5ρπR2
· 3v2

0 ·Cp0

ωr0
(22)

where Cp is described in a lookup table derived from the inputs λ and θ, as is shown in Table 2. Where
n and m are the corresponding rows and columns, respectively.

Table 2. Lookup table of Cp (λ, θ).

θ λ λmin λmin + ∆λ . . . λmax

θmin 0.0005 0.001 . . . −0.8478
θmin + ∆θ 0.0005 0.001 . . . −0.8637

. . . . . . . . . . . . . . .
θmax −0.0012 −0.0036 . . . −207.6793

The generator torque reference Tg_ref is filtered by a low-pass filter and the generator torque Tg is
derived by,

Tg =
1

1 + s · τg
Tg_ref (23)
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where τg is the time constant of the filter of Tg_ref. Tg_ref is calculated by

Tg−ref =
Pwt

ref

ωg
(24)

According to (23) and (24), ∆Tg and ∆Tg_ref can be calculated by

∆Tg ≈
1
τg

(
∂Tg

∂t
∆t +

∂Tg

∂Tg_ref
∆Tg_ref) = −

1
τg
· Tg0 · ∆t +

Tg0

Tg_ref0
· ∆Tg_ref (25)

∆Tg_ref ≈ −
Pwt

ref0

ω2
g0

∆ωg +
1
ωg0

∆Pwt
ref (26)

where ∆t is the control cycle.
According to (14)–(17), the continuous state space model for WT is formulated as

.
x ≈ Ax + J∆Pwt

ref + E (27)

where x ≈ [∆ωg, ∆β, ∆ωf, ∆ωr
]
, and the state space matrices are

A =



1
Jg
(1− Jr

Jt
)

Tg0
ωg0

1
Jg
(1− Jr

Jt
) 1
ηg

∂Trot
∂β 0 1

Jg
(1− Jr

Jt
) 1
ηg

∂Trot
∂ωr

kp
τf

0 −
kp
τf
+ ki 0

1
τf

0 −
1
τf

0
ηg
Jt

Tg0
ωg0

1
Jt

∂Trot
∂β 0 1

Jt

∂Trot
∂ωr



J =


1
Jg
(1− Jr

Jt
)

Tg0
ωg0

0
0

−
ηgTg0

JtPwt
ref0



E =


1
Jg
(1− Jr

Jt
)(

Tg0
τg
· ∆t + Trot0

ηg
− Tg0)

Ki(ωf0 −ωg−rated)

0
1
Jt

∂Trot
∂v ∆v +

ηg
Jt

Tg0
τg
· ∆t + 1

Jt
(Trot0 − ηgTg0)


These matrices change every other dispatch cycle. Then, the continuous state space model is

discretized with the sampling period ts, which is

x(k + 1) ≈ Gx(k) + H∆Pwt
ref + M (28)

with
G = eAts

H =

∫ ts

0
eAts Jdt

M =

∫ ts

0
eAtsEdt
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Substituting (6) and (11), the shaft torque Ts can be calculated by

Ts = Trot − Jr
.
ωr − B(ωr −

ωg

ηg
) = (1−

Jr

Jt
)Trot +

ηg Jr

Jt
Tg − B(ωr −

ωg

ηg
) (29)

Accordingly,

∆Ts = (1−
Jr

Jt
)∆Trot +

ηg Jr

Jt
∆Tg − B(∆ωr −

∆ωg

ηg
) (30)

Based on (19) and (25), (30) can be transformed into

∆Ts(k) ≈ CTsx(k) + DTs∆Pwt
ref + FTs (31)

with
CTs =

[
B
ηg
−
ηg Jr

Jt

Tg0
ωg0

(1− Jr
Jt
) ∂Trot
∂β 0 (1− Jr

Jt
) ∂Trot
∂ωr
− B

]
DTs =

ηg Jr

Jt

Tg0

Pwt
ref0

FTs = (1−
Jr

Jt
)
∂Mrot

∂vrot
∆vrot −

ηg Jr

Jt

Tg0

τg
∆t

Based on (28) and (31)

∆Ts(k + 1) = CTsx(k + 1) + DTs∆Pwt
ref + FTs (32)

Hence
∆Ts(k + 1)= (CTsH + DTs)∆Pwt

ref + CTsGx(k) + CTsM + FTs (33)

In order to simplify the expressions, ai
Ts

and bi
Ts

are defined by

ai
Ts
, CTsH + DTs (34)

bi
Ts
, CTsGx(k) + CTsM + FTs (35)

Therefore, the fatigue load sensitivity of the drive train can be expressed as

∂Ti
s

∂PWTi
demand

≈
∆Ti

s

∆Pwti
ref

= ai
Ts
+

bi
Ts

∆Pwti
ref

(36)

According to [43], The tower dynamics is not included in the simplified WT model. According to,
it is assumed the tower base overturning moment Mt can be approximately derived by

MT ≈ H·FT (37)

where H is the tower height. Ft is thrust force.
The thrust force Ft is calculated by

FT = 0.5πR2ρv2Ct(λ,θ) (38)

where Ct is the thrust coefficient.
Accordingly

∆Ft =
∂Ft

∂ωg
∆ωg +

∂Ft

∂β
∆β+

∂Ft

∂v
∆v (39)
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∂Ft

∂v
= 0.5ρπR2

· 2v0 ·Ct0 (40)

Similar to (31),
∆Ft(k) ≈ CFtx(k) + FFt (41)

with
CFt =

[
0 ∂Ft

∂β 0 ∂Ft
∂ωg

]
FFt =

∂Ft

∂v
∆v

Based on (28) and (41)
∆Ft(k + 1) ≈ CFtx(k + 1) + FFt (42)

Hence
∆Ft(k + 1) = CFtH∆Pwt

ref + CFtGx(k) + CFtM + FFt (43)

Similar to (34) and (35),
ai

Ft
= CFtH (44)

bi
Ft
= CFtGx(k) + CFtM + FFt (45)

Therefore, the fatigue load sensitivity of the tower structure can be expressed as

∂Fi
T

∂PWTi
demand

≈
∆Fi

T

∆Pwti
ref

= ai
FT

+
bi

FT

∆Pwti
ref

(46)

The fatigue load sensitivities considered in the paper are dynamic loads causing structural damage.
The equation shown in (33) and (42) are not equations for calculating a fatigue load, but equations for
calculating the change in the shaft torque ∆Ms and the tower bending moment ∆Mt associated with
the fatigue load. The parameters in the equation are changing at different times. By reducing ∆Ms and
∆Mt, the corresponding fatigue load can be reduced. The calculations are carried out by this law of
effect. Reductions on the changes of the moments ∆Ms and ∆Mt are highly corelated to reductions in
the damage equivalent fatigue load [44]. ∆Ms and ∆Mt are related to changes in power reference. ∆Ms

and ∆Mt can be reduced by properly distributing the active power. ∆Ms and ∆Mt are reduced for each
sampling period, so the fatigue loads are reduced.

4.2. Cost Function and Constraints

In Figure 1, every individual WT is equipped with an exclusive control system that can follow the
power references provided by the frequency adjustment controller.

The controller minimizes the variation of shaft torque Ts and thrust force Ft to reduce the fatigue
load. Accordingly, the cost function is expressed as

min
n∑

i=1

[(
∂Fi

T

∂PWTi
demand

)

2

+ ξ · (
∂Mi

s

∂PWTi
demand

)

2

] (47)

For the convenience of calculation, the equivalent calculation formula is expressed as

min
n∑

i=1

[(ai
Ts

∆Pi
re f + bi

Ts
)

2
+ ξ · (ai

Ft
∆Pi

re f + bi
Ft
)

2
] (48)

where ξ is the weight coefficient.
∆Pi

ref = Pi
ref − Pi

k (49)



Energies 2019, 12, 1508 11 of 23

The constraints are expressed by

n∑
i=1

Pi
re f = PWF

demand (50)

10%PWTi
available ≤ PWTi

ref ≤ PWTi
available (51)

where PWF
demand is the demanded power of WF; PWTi

available is the maximum available power of WT-i, it
can be estimated by

PWTi
available= min(Pi

rated, 0.5πR2
i v3

nacCi
p) (52)

where Pi
rated is the rated power of WT; vnac is the nacelle wind speed of WT. The corresponding data of

Cp and Ct for this study can be accessed in the wind turbine model of SimWindFarm. The plot of Cp(λ,
θ) and Ct(λ, θ) based on the lookup table is shown in Appendix A.

The presented problems can be expressed as standard quadratic programming (QP) issues [45,46].
It can be effectively solved by a commercial solver. This optimization problem can be solved by
different optimization methods. Group intelligent algorithms such as particle swarm optimization
(PSO) and genetic algorithm (GA) have good search performance for solving complex problems, but the
calculation time is long and is not suitable for real-time online optimization [47–50]. The programming
algorithm has a good ability to search for non-complex solving problems, and the calculation time
is short, which is suitable for online optimization. The model proposed in this paper belongs to the
non-complex online solution model.

Then, the matrix H and the matrix f of QP can be expressed as

H = diag
{
2(a1

Ts
)

2
+ 2ξ(a1

Ft
)

2
, 2(a2

Ts
)

2
+ 2ξ(a2

Ft
)

2
, · · · , 2(an

Ts
)2 + 2ξ(an

Ft
)2

}
(53)

f =


2a1

Ts
(b1

Ts
− a1

Ts
P1

0) + 2ξa1
Ft
(b1

Ft
− a1

Ft
P1

0)

2a2
Ts
(b2

Ts
− a2

Ts
P2

0) + 2ξa2
Ft
(b2

Ft
− a2

Ft
P2

0)
...

2an
Ts
(bn

Ts
− an

Ts
Pn

0) + 2ξan
Ft
(bn

Ft
− an

Ft
Pn

0)


(54)

If the available power of WF does not meet the demand, the following procedure is available.

i f :
n∑

i=1

PWTi
available ≤ Pdemand, Pi

ref = PWTi
available (55)

5. Case Study

5.1. System Setup

The WF control architecture illustrated in Figure 1 is used to test the performance of control.
Figure 1 shows the typical configuration of a WF, which consists of 10, 5 MW WTs. The simulation
model is based on SimWindFarm [40] developed in the EU-FP7 project by AEOLUS. The SimWindFarm
model allows the real time simulation of flows in the wind field and includes the main aerodynamic
effects of the wind farm in MATLAB/Simulink. It consists of four elementary components: wind
turbine dynamics, wind field interactions and dynamics, wind farm controller, and electrical network
operator. It can represent the main dynamics of a wind farm. The model toolbox includes a wind
field generator where mean wind speed, turbulence intensity, and grid resolution can be specified.
Furthermore, a number of post-processing tools are included for performance, such as a rain-flow
counting algorithm and wake animation. Simulations are conducted for WF over 200 s of run time.
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In the test system, the frequency adjustment controller of WF sends instructions every 0.5 s. 0.5 s is
to match the wind farm dispatch algorithm and faster to achieve frequency regulation. The parameters
of frequency adjustment controller are shown in Table 3. The PRD optimization (OPT) controllers send
instructions every 0.5 s. The detailed WT parameters are listed in Table 4. The typical turbulent winds
with different intensities generated by the Aeolus toolbox with same average wind speed of 12 m/s are
shown in Figure 5.
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Table 3. Parameters of Fuzzy-PID controller.

Parameter Value

f N 50 Hz
aP 1 × 108

bP 3 × 108

aI 5 × 106

bI 5 × 107

aD 5 × 107

bD 2 × 108

Table 4. Parameters of WT.

Parameter Value

Rotor inertia: Jr 3.54 × 107 (kg·m2)
Generator inertia: Jg 5.34 × 102 (kg·m2)

Gear box ratio: ηg 97
Filter time constant of ωg: τf 10

Proportional gain: kp 0.2143
Integral gain: ki 0.0918

Gain coefficient: ka1 2.1323
Gain coefficient: ka2 1

Generator rated speed: ωg-rated 122.91 (rad/s)
Main shaft viscous friction coefficient: B 6.22 × 106 (Nm·s/rad)

Sir density: ρ 1.22 (kg/m3)
Length of the blade: R 63 (m)

Filter time constant of Tg_ref: τg 0.1

Through post-processing, the fatigue cycles based on the rainflow counting method are derived
to evaluate the performance of the proposed method. Furthermore, the damage equivalent load (DEL)
is based on the Miner’s rule and depends on the material properties specified by the slope of the S–N
curve for quantizing the load minimization. In this study, the relevant calculations are performed by
MCrunch developed by NREL [51].
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5.2. Wind Farm Controller Performance

5.2.1. Performance for the Improved Model of Fatigue Load Sensitivity

In the simple WT model, the drive train can be considered to be rigid if the fatigue load is ignored.
However, the drive train is a flexible system. A comparison of measuredωr and

ωg
ηg

is shown in Figure 6.

As shown in Figure 6, ωr ,
ωg
ηg

. So ∆ωg(k) and ∆ωr(k) are calculated separately in the improved models,
and the calculation formula of ωg = ηgωr is not used.
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Figure 6. Wind speed, and the measured ωr and
ωg
ηg

in a flexible system.

The wind speed of the WF is 12 m/s with 0.1 turbulence intensity. The values of ∆ωg(k + 1) and
∆ωr(k + 1) obtained by calculating WT1 are shown in Figures 7 and 8. Note that x(k + 1) is obtained
by discretizing x(k). Figures 7, 8, 9 and 10b are enlarged image of the inside of the dashed box in
Figures 7, 8, 9 and 10a, which will not be described in detail in the following paper.
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Figure 7. Calculated and measured values of ∆ωg. (a) Calculated and measured values of ∆ωg from 0
to 200 seconds; (b) Calculated and measured values of ∆ωg from 89 to 106 seconds.
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Figure 8. Calculated and measured values of ∆ωr. (a) Calculated and measured values of ∆ωr from 0
to 200 seconds; (b) Calculated and measured values of ∆ωr from 139 to 162 seconds.

As is shown in Figures 7b and 8b, The values of ∆ωg and ∆ωr after 0.5 s can be accurately calculated
using the improved model. A better basis for optimizing results is provided by this precise calculation.

The effect of changes in wind speed is considered when calculating ∆Trot. Comparison of the case
of adding ∂Trot

∂v ∆v and not adding is shown in Figure 9.
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Figure 9. Calculated and measured values of ∆Trot. (a) Calculated and measured values of ∆Trot from
0 to 200 seconds; (b) Calculated and measured values of ∆Trot from 144 to 167 seconds.

The model is simulated based on SimWindFarm. Since the control time is 0.5 s, sampling is
performed every 0.5 s. Because Trot is cube of v, even small changes of v can have a big impact on
∆Trot. As is shown in Figure 9b, in the vicinity of 154 s, there is a big step in the measured value, which
is caused by the change in wind speed. Mutations in ∆Trot caused by sudden changes in wind speed
can still be accurately calculated by the improved model. However, the original models that did not
consider ∂Trot

∂v ∆v cannot adapt to this mutation. The value of ∆Trot after 0.5 s is accurately calculated.
After a detailed improvement, the ∆Ft calculation is more accurate. The comparison between the

improved value and the measured value is shown in Figure 10.
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Figure 10. Calculated and measured values of ∆Ft. (a) Calculated and measured values of ∆Ft from 0
to 200 seconds; (b) Calculated and measured values of ∆Ft from 78 to 97 seconds.

As is shown in Figure 10b. In the vicinity of 82 s, there is a big step in the measured value, which
is caused by the change in wind speed. The improved model can better adapt to the ∆Ft mutation
like ∆Trot. This improvement makes the calculation of the optimization target more accurate and
the optimization effect is better. The re-derived fatigue load sensitivity equations can improve the
calculation accuracy very well.

5.2.2. Performance for Different Turbulence Intensity

The normal PRD controller uses a proportional distribution method (NORM). The reference power
is assigned to the WT in the available power ratio. As is calculated by

PWTi
ref =

PWTi
available

n∑
i=1

PWTi
available

PWF
demand (56)

In order to test the efficacy of the improved model, the operation of wind farm under different
turbulence intensity were studied and the FAC is not used. The average wind speed of the test wind is
12 m/s, and the turbulence intensity is 0.1, 0.2, and 0.3 respectively. The results of OPT and NORM are
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compared under different turbulence intensities. The tower bending moment was mainly considered
in this paper, so the weight coefficient ξ to 3000 is selected.

Scenario 1: The turbulence intensity is 0.1. The wind farm reference power PWF
demand is 35 MW

under this scenario. The calculated DELs of Ts and Mt for all WTs are listed in Table 5. As shown
in Table 5, some of the WTs have more growth in DELs for Ts, but this growth will be offset as the
simulation time increases. The total DELs of wind farms using OPT is still lower than NORM. From
the whole WF point of view, the reductions of the total DEL for Ts is 2.21%.

Table 5. DELs of Ts and Ft for Scenario 1.

No.
DELs for WTs (Ts/MNm) DELs for WTs (Mt/MNm)

NORM OPT Percentage NORM OPT Percentage

1 1.94 2.06 6.13% 50.48 44.96 −10.93%
2 1.94 1.76 −9.38% 57.48 57.92 0.77%
3 1.82 1.77 −2.26% 62.68 60.90 −2.83%
4 1.82 1.70 −6.73% 54.19 47.86 −11.68%
5 1.85 2.28 23.39% 42.83 40.86 −4.59%
6 1.86 1.66 −11.04% 59.97 58.95 −1.71%
7 1.74 1.55 −10.86% 65.75 64.67 −1.64%
8 1.83 1.45 −20.89% 48.69 40.87 −16.05%
9 1.87 2.08 11.01% 42.00 38.29 −8.83%

10 1.80 1.76 −2.48% 58.64 58.56 −0.15%
summary 18.47 18.07 −2.21% 542.76 513.90 −5.32%

Compared with the NORM, most DELs of Mt except for NO.2 are reduced. The reduction values
are from 0.15% to 16.05%. From the whole WF point of view, the total DEL of Mt is reduced by 5.32%.

Scenario 2: The turbulence intensity is 0.2. The wind farm reference power is 20 MW under this
scenario. Scenario 3: The turbulence intensity is 0.3. The wind farm reference power is 15 MW under
this scenario. The calculated DELs of Ts and Mt for the sum of all WTs are listed in Table 6.

Table 6. DELs of Ts and Ft for Scenario 2 and 3.

Turbulence
Intensity

DELs for WTs (Ts/MNm) DELs for WTs (Mt/MNm)

NORM OPT Percentage NORM OPT Percentage

0.2 15.78 14.97 −5.13% 616.40 577.77 −6.28%
0.3 14.63 14.27 −2.46% 646.93 611.33 −5.50%

As shown in Table 6, the DELs of both Ts and Mt with the OPT are reduced compared with NORM.
When the turbulence intensity is 0.2, a more detailed cumulative rainflow cycle is shown in

Figure 11. A representative WT (WT09) is used as an example. Compared with the NORM, less cycles
are found for OPT, which implies less fatigue loads experienced by the WT.

When the turbulence intensity is 0.3, a more detailed cumulative rainflow cycle is shown in
Figure 12. A representative WT02 is used as an example. Compared with the NORM, less cycles are
found for OPT, which implies less fatigue loads experienced by the WT.

Fatigue load optimization results with three different turbulence intensities were obtained. It can
be seen from the results that the improved model can optimize the fatigue load well under different
turbulence intensities.
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Figure 11. Cumulative rainflow cycle of Ts and Mt of WT09 for 0.2 turbulence intensity. (a) Cumulative
rainflow cycle of Shaft Torsion Moment for 0.2 turbulence intensity; (b) Cumulative rainflow cycle of
Tower Bending Moment for 0.2 turbulence intensity.

Figure 12. Cumulative rainflow cycle of Ts and Mt of WT02 for 0.3 turbulence intensity. (a) Cumulative
rainflow cycle of Shaft Torsion Moment of WT02 for 0.3 turbulence intensity; (b) Cumulative rainflow
cycle of Tower Bending Moment of WT02 for 0.3 turbulence intensity.

5.3. Overall Performance

5.3.1. WF Controller Performance

In order to prove the performance of the frequency control of the developed solution, the wind
farm is assumed to be able to get enough power from the wind. When the WF is operating in the
frequency regulation mode, the measured grid frequency is used as a feedback signal to establish
real-time active power control. The baseline model for electrical network operator in SimWindFarm can
function in different power command modes such as: absolute, delta, and frequency regulation modes.
Basically, baseline control scheme in frequency regulation mode can maintain the necessary balance
between power generation and loads. The demand power of the baseline control is calculated by

PWF
demand =



0.5× Pup −td ≤ ferror ≤ td

0.5× (Pup − Pdown) tc ≤ ferror

0.5× (Pup + Pdown) ferror ≤ −tc

0.5× Pup − 0.5× Pdown(
ferror−td

tc−td
) td < ferror < tc

0.5× Pup − 0.5× Pdown(
ferror+td

tc−td
) −tc < ferror < −td

(57)

where td and tc are two constants (tc > td) of dead bands and control bands, defined by td = 0.002 and
tc = 0.02 which can enable the baseline control to function optimally. Moreover, Pup and Pdown are
defined by

Pup = Pmax + Pmin (58)
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Pdown = Pmax + Pmin (59)

where Pmin and Pmax are the prescribed minimum and maximum limits for the total power of WF.
In order to verify the performance of the control method, different functions of the grid load are

defined and used for WF testing. Baseline control is compared to Fuzzy-PID. NORM dispatch method
is compared to OPT method. The initial frequency is assumed to be 50 Hz. The test wind is 12 m/s
with 0.3 turbulence intensity. Figures 13a and 14a show the performance of the active power control
method for the WF in response to the different loads considered, respectively. Figures 13b and 14b
show the grid frequency responses with respect to the different loads, respectively. The power and
frequency responses of Fuzzy-PID and baseline control are compared in Figures 13 and 14, respectively.
The power curve of the wind farm output is the same whether the WF dispatch method uses NORM
or OPT.
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As shown in Figure 13a, the grid load A is a step variable. As is shown in Figure 13b, the baseline
control cannot achieve a frequency of 50 Hz, and there is still an error of 0.004 Hz as the control time
increases. The frequency error of the Fuzzy-PID control method is smaller than that of the baseline
control. As the control time increases, the frequency gradually approaches 50 Hz and the error disappears.
The Fuzzy-PID control method can quickly track the frequency so that the error is approximately zero at
the 100 s. Therefore, the Fuzzy-PID method has better control effects than the baseline control.

As is shown in Figure 14a, grid load B is the varying load. Baseline control failed to track the
grid load during the initial phase of 20–50 s, which also caused a relatively large frequency fluctuation
of 20–50 s as shown in Figure 14b. Fuzzy-PID control can track grid load very well by compared to
baseline control. As is shown in Figure 14b, Fuzzy-PID can track the frequency very well, and the
frequency error of Fuzzy-PID is smaller. As are shown in Figures 13 and 14, less power fluctuations
make power tracking better.
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To check the tracking accuracy of APC methods, the normalized root-mean-squared error (NRMSE)
is defined as

NRMSE =

√
1
N

N∑
i=1

(PL − Pout)
2

Pout
(60)

To illustrate the ability of Fuzzy-PID methods in the regulation of the grid frequency, Table 7
quantitatively compares the obtained grid frequency responses in terms of standard deviation (SD)
and NRMSE of power responses.

Table 7. Quantitative comparison of Fuzzy-PID methods in terms of accuracy of response for active
power and frequency.

Control Method
NRMSE for Power Responses SD for grid Frequency Responses

Grid Load A Grid Load B Grid Load A Grid Load B

Baseline Control 0.017545 0.104380 0.002845 0.007423
Fuzzy-PID 0.021409 0.012052 0.000764 0.001345

For a step grid load like A, compared to baseline control, NRMSE for power responses increased
by 22.02%, and SD for grid frequency responses is reduced by 88.45%. For a varying grid load like
B, compared to baseline control, NRMSE for power responses is reduced by 73.15% and SD for grid
frequency responses is reduced by 81.88%.

By testing the control method of the WF with different loads, the Fuzzy-PID control has a good
performance regardless of the speed or error of the tracking frequency.

5.3.2. Fatigue Loads Performance

The fatigue load results of the WTs using Baseline Control + NORM, Fuzzy-PID + NORM and
Fuzzy-PID + OPT are shown in Figure 15 when load B is used to test the overall controller.
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Figure 15. DELs of the WTs using Baseline Control + NORM, Fuzzy-PID + NORM and Fuzzy-PID +

OPT when load B is used to test the overall controller. (a) DELs for Shaft Torsion Moment of the WTs;
(b) DELs for Tower Bending Moment of the WTs.

As is shown in Figure 15, the frequency adjustment effect by the Fuzzy-PID is better, but the DELs
of Ts is significantly larger than Baseline Control + NORM. The specific results are shown in Table 7,
the fatigue load using Fuzzy-PID + NORM increased by 6.47% compared with the fatigue load using
Baseline Control + NORM. The fatigue load using Fuzzy-PID + OPT still increased by 2.44% compared
with Baseline Control + NORM, but decreased by 3.79% compared with Fuzzy-PID + NORM.

The fatigue load of Mt using Fuzzy-PID + NORM was significantly higher than that of Baseline
Control + NORM, and the specific results were increased by 8.15% as shown in Table 8. The fatigue
load using Fuzzy-PID + OPT is 0.32% higher than Baseline Control + NORM and 7.24% lower than
Fuzzy-PID + NORM.
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Table 8. Total DELs of WTs for three different controllers.

DELs for WTs (Mt/MNm) DELs for WTs (Ts/MNm)

Values Percentage Values Percentage

Baseline Control + NORM 730.68 23.77
Fuzzy-PID + NORM 790.23 8.15% 25.31 6.47%

Fuzzy-PID + OPT 733.01 0.32% 24.35 2.44%

The fatigue load of the WT will increase since the WF needs to frequently change the pitch angle
and reference power when participating in frequency regulation. The better the frequency adjustment
effect, the more frequent this change, the greater the fatigue load caused. The overall fatigue load of
the WT is reduced, DELs of Mt is hardly affected especially after considering the fatigue load.

6. Conclusions

In this paper, an APC method for supporting grid frequency regulation in WFs considering
fatigue load of WT is proposed. The Fuzzy-FID control is used for a frequency adjustment controller to
maintain the balance between power generation and grid load. The equations of fatigue load sensitivity
are re-derived. The calculation accuracy is improved by the re-derived equations. The re-derived
equations are used for PRD to minimize the fatigue load for all the WTs. Case studies show that the
frequency adjustment control method based on Fuzzy-PID can respond to and recover grid frequency
deviations more quickly. Less power fluctuations make power tracking better. Compared to baseline
control, NRMSE for power responses and SD for grid frequency of Fuzzy-PID are reduced by 81.45%
and 81.88%, separately. In addition, the explicit analytical equations of fatigue load sensitivity are
re-derived to improve the calculation accuracy of the fatigue loads. DELs for Ts reduced by 2.21%
to 5.13%, DELs for Mt reduced by 5.32% to 7.32%. This improvement minimizes fatigue loads for
wind farms under different turbulent wind and different loads. The proposed solution is suitable for
real-time control of large-scale WF.

Since this study is mainly focused on the wind farm control level, some of the dynamics of
WTs are ignored. Rainflow counting is applied to the time histories of thrust and torque from the
simulation results, so the evaluation of fatigue load cannot be fully reflected. Quantitative conclusions
are uncertain and can only represent trends in fatigue load changes. Since this study is a simulation
based on SimWindFarm, the study cannot consider all practical engineering problems. Verifying this
method in engineering is what we will do next.
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Nomenclature

Symbols
KP, KI, KD Calculated by Fuzzy-PID controller
bP, bI, bD Parameters of conventional PID controller
aP, aI, aD Parameters of determined the relevant ranges of variations for bP, bI, and bD
P, I, D Calculated by Fuzzy Rules

PWF
demand

Demanded power of wind farm

PWF
available

Available power of wind farm

PWTi
available

Available power of wind turbine i
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Pi
rated

Rated power of wind farm

PWTi
ref

Reference power of wind turbine i

∂L
∂PWT

demand

Sensitivity of fatigue load with respect to demanded power of wind turbine

∂Ts
∂PWT

demand

Sensitivity of drive train fatigue load with respect to demanded power of wind turbine

∂Ft
∂PWT

demand

Sensitivity of the tower structural fatigue load with respect to demanded power of wind
turbine

ferror Grid frequency error
fmeas Grid measured frequency
fN Normal frequency of the grid
Jt Equivalent mass of the drive-train
Jr Rotational inertia of the rotor
Jg Rotational inertia of the generator
ηg Gear box ratio
ωr Measured rotor speed
ωg Measured generator speed
ωg-rated Rated generator speed
Ft Thrust force
Trot Aerodynamic torque
Tg Generator torque
Tg_ref Generator torque reference
Ts Shaft torque
Mt Tower basefore-aft bending moment
Tgi

ref Generator torque of wind turbine i
ωf Generator filtered speed
τf Time constant of the filter of ωg

τg Time constant of the filter of Tg_ref
θi

ref Pitch angle reference of wind turbine i
θref Pitch angle reference of blades
ka, β Functions of θref
kp, ki Proportional and integral gain of θref
ka1, ka2 Constants of ka

B Main shaft viscous friction coefficient
Pg0 Output power of a turbine at t = k
ωg0 Generator speed at t = k
ωf0 Filtered speed of the generator speed at t = k
θ0 Pitch angle at t = k
Trot0 Aerodynamic torque at t = k
Tg Generator torque at t = k
R Length of the blade
H Tower height
ρ Air density
v Wind speed of hub height
Cp Power coefficient
Ct Thrust coefficient
λ Tip speed ratio
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