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Abstract: To mitigate the increasing concentration of carbon dioxide in the atmosphere, energy
production processes must change from fossil to renewable resources. Bioenergy utilization from
agricultural residues can be a step towards achieving this goal. Syngas (fuel obtained from biomass
gasification) has been proved to have the potential of replacing fossil fuels in stationary internal
combustion engines (ICEs). The processes associated with switching from traditional fuels to
alternatives have always led to intense research efforts in order to have a broad understanding of the
behavior of the engine in all operating conditions. In particular, attention needs to be focused on fuels
containing relatively high concentrations of hydrogen, due to its faster propagation speed with respect
to traditional fossil energy sources. Therefore, a combustion study was performed in a research optical
SI engine, for a comparison between a well-established fuel such as methane (the main component of
natural gas) and syngas. The main goal of this work is to study the effect of inert gases in the fuel
mixture and that of air dilution during lean fuelling. Thus, two pure syngas blends (mixtures of CO
and H2) and their respective diluted mixtures (CO and H2 with 50vol% of inert gases, CO2 and N2)
were tested in several air-fuel ratios (stoichiometric to lean burn conditions). Initially, the combustion
process was studied in detail by traditional thermodynamic analysis and then optical diagnostics
were applied thanks to the optical access through the piston crown. Specifically, images were taken in
the UV-visible spectrum of the entire cycle to follow the propagation of the flame front. The results
show that hydrogen promotes flame propagation and reduces its distortion, as well as resulting in
flames evolving closer to the spark plug. All syngas blends show a stable combustion process, even in
conditions of high air and fuel dilution. In the leanest case, real syngas mixtures present a decrease in
terms of performance due to significant reduction in volumetric efficiency. However, this condition
strongly decreases pollutant emissions, with nitrogen oxide (NOx) concentrations almost negligible.

Keywords: syngas; optical techniques; SI engines; electricity generation; lean combustion

1. Introduction

The provision of an extended electricity distribution network in rural areas of developing countries
is an objective which has been recognized by the governments of these countries as well as international
institutions [1,2]. One potential option is to create small isolated grids, powered by small-scale
generators with a low-cost fuel. In general, residues of biomass are discarded or directly burned in
low-efficiency systems which implies high rates of waste. An improved process for obtaining fuel
from biomass waste is gasification, a process in which syngas is obtained [3,4]. This alternative fuel is
generally considered in the literature as a mixture of hydrogen and carbon monoxide [5]. However,
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given the commercial processes for its production, it is common to find large amounts of nitrogen
and carbon dioxide (20–70% of the total gas in volume). In some cases, methane and other fuel gases
are found in the blend, but in percentages less than 3%. The final mixture depends on components
such as the gasification process, the raw material and oxidant used [6]. Specifically, the most common
type of gasifier tested by several researchers [7–10] coupled with ICEs is the downdraft fixed bed
gasifier (DFBG) due to the flexibility in terms of capability of using a wide variety of biomass sources.
Therefore, at locations where agroindustry waste is available in large amounts, this technology is a
potential solution for the improvement of electrification. The main requirements in these areas are low
cost of installation and simple operation; therefore, several combustion and mechanical tasks need to
be solved before this idea can be implemented on a large scale.

The synthesized gas is characterized by great variability in its composition, given the various input
factors that affect the production process. One of the most important is the composition of biomass
residues [11]. In general, inert gases (CO2 and N2) are present in concentrations around 50% when air
is used as an oxidant in DFBG systems [12]. The latter dilutes the fuel gas making it more difficult to
combust in engines, as it results in high cyclic variability, similar to lean burn conditions. Additionally,
syngas is characterized by volumetric energy content lower than traditional fuels such as gasoline,
methane, etc. This directly affects the volumetric efficiency of the engine and consequently the thermal
efficiency. Another important feature is the stoichiometric air-fuel ratio (AFRst). For biomass waste is
between 1.0 and 9.0, significantly less than methane (17.2). Therefore, increased injection times and,
in some cases, different injector design is needed.

Several authors [7,8,13–17] have studied syngas mixtures and compared them with conventional
fuels (gasoline, natural gas, and hydrogen) in terms of engine performance, durability, combustion
stability, and exhaust emissions. A reduction in efficiency and power was observed due to low energy
density. Also, it is not possible to reach stoichiometric AFR given the prolonged injection pulses that
are necessary [18]. Therefore, the analysis is done comparing lean operative conditions (λ = 1.2 to 2.0).
Moreover, the start of combustion must be delayed so as not to produce excessive peak pressure events
and to improve the performance due to the higher rate of combustion, mainly due to the presence
of hydrogen. The compression ratio can be increased given the low tendency to knock in this type
of fuel thanks to the presence of CO and N2 [19]. However, in almost all works the high combustion
instability was highlighted as one of the main problems. The coefficient of variation values in indicated
mean effective pressure (COVIMEP) above 10% was measured, which is considered unacceptable for
any power production engines.

Among several experimental and numerical works in the area, this technology was not widely
applied due to, at least in part, several combustion-related issues. Starting from these considerations,
four different synthetic syngas mixtures (prepared in laboratory conditions) were tested, with and
without the addition of diluents in the fuel. Then, for comparative purposes, the blends were analyzed
together with methane as a baseline fuel. The first group of syngas is called ‘pure syngas’ with
two blends: S50 (50% H2 + 50% CO) and S75 (75% H2 + 25% CO). The second group is called ‘real
syngas’, with two blends: S50D (S50 + 50% diluents) and S75D (S75 + 50% diluents). The experimental
campaign was performed in a spark ignition (SI) single cylinder engine (SCE) testbed with port fuel
injection (PFI) system. Moreover, the engine is equipped with a flat optical piston that enables the
bottom view of the pent-roof combustion chamber. The objective is to investigate the effect of diluents
(N2, CO2, and Air) on the combustion process, with the application of traditional thermodynamic
techniques and direct flame visualization. Fuel dilution refers to the mix of inert gases (N2 and CO2) in
the pure fuel and the term air dilution corresponds to lean operation (λ > 1.0). Moreover, the engine
speed was set at 900 rpm and maximum load or throttle fully open (WOT). The relative air-fuel ratio
was changed from stoichiometric (λ = 1.0), generally used in automotive SI engines, to values close to
the extreme lean operative condition for methane (λ = 1.4), representative of stationary applications for
power generation. This work adds valuable information in the combustion field, and it could help to
overcome some practical difficulties currently found in the development of engines operated with
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syngas. In addition, it incorporates new optical combustion measurements of alternative fuels that
cannot be found in the bibliography. It is important to note that the measurements are performed
in real engine operating conditions in which flame speed, as well as other spatial parameters of the
combustion, were obtained.

2. Experimental Setup and Methodology

2.1. Experimental Apparatus

Experimental tests were performed on a PFI-SI-SCE as shown in Figure 1a. The same test bed was
previously used in other work on combustion characterization [20,21]. Optical access is provided by
both the piston and the top of the cylinder liner. In the first case, the metal piston crown is replaced by
a sapphire window. The optical set-up allows a bottom view of around 78% of the piston diameter
(61% of cylinder cross-section). By using the lateral view, the entire cylinder diameter (82 mm) and
half of the stroke (45 mm) in the vertical axis can be observed. In this work, the view from below
the combustion chamber was used to characterize the combustion process. However, flame speed
measurements are similar from both views as it was demonstrated by the research group in previous
work [21]. The light emitted by the combustion process after ignition and prior to the opening of the
exhaust valves are captured thanks to a 45◦ inclined ultraviolet (UV) mirror located in the elongated
piston and an acquisition system developed for this purpose (high-speed camera together with a
double intensifier). Figure 1b shows the combustion chamber with external lighting for its visualization.
During fired operation, the test cell is kept without light to avoid reflections as well as disturbances
in the measurement. The cylinder head used is representative of current commercial engines with
pent-roof design and two camshafts to command the two intake and two exhaust valves. In addition,
the spark plug is located 5 mm from the center and a pressure sensor was inserted between the valves
(Figure 1b) for the thermodynamic analysis of combustion.
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Figure 1. (a) Experimental setup of the single cylinder PFI-SI research engine with an optical
arrangement (camera and intensifier), and (b) cylinder head bottom view.

Since it is a research engine, it allows flexibility in terms of the variation of different parameters.
Among them is the compression ratio, which can be modified by placing spacers under the piston
crown. In the present study, 9.7 was used for ensuring high-load operation points without incurring
the danger of breaking the optical windows due to high-pressure peaks. All acquisition components
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are synchronized through an engine-timing unit. A high-precision rotary shaft encoder AVL 365 was
used for engine control and data acquisition, with a resolution of 0.1 degrees crank angle. An electronic
central unit (ECU) controlled injection and ignition parameters. In-cylinder pressure was measured
with the AVL GU22C piezoelectric pressure transducer (accuracy of ±1%.) for combustion analysis.
Further details on engine specifications can be found in Table 1 and previous work [20,21]. The top dead
center (TDC) of combustion was taken as the reference point throughout the manuscript, with crank
angle degree (CAD) after top dead center (ATDC) denominating signal phasing.

Table 1. Specifications of the PFI SI single-cylinder research engine.

Parameter Size

Displaced volume 530 cm3

Stroke 90 mm
Bore 82 mm

Connecting Rod 144 mm
Compression ratio 9.7
Clearance height 1.5 mm
Top land height 72 mm

Radial clearance Crevice volume Vcv 1.4 0.5 mm
Crevice volume 1.4 9.3 cm3

The experiments were performed at 900 rpm and WOT; the relatively low engine speed and load
level were selected as operating conditions representative of electric generator systems [22]. The PFI
system was programmed to end the injection close to intake valves opening (358 CAD ATDC) for
all cases. This strategy was adopted to improve mixture homogeneity in the intake port and ensure
that the injection is done with the intake valves closed, independently of the duration of fuel delivery
(generally, syngas requires longer injection time compared to methane due to its lower AFR). Therefore,
the falling edge of the injector control signal was set at 330 CAD ATDC. The relative air-fuel ratio
was controlled by adjusting the duration of the injection pulse and monitored at the outlet of the
exhaust manifold (30 cm from the exhaust valve) by means of an oxygen sensor especially calibrated
for combustion of gaseous fuels. Likewise, the injection pressure was kept constant for all tests (7 bar)
and the injection duration was changed to meet the required mixture strength in each test. The injector
used was a Bosch ML082G gas injector. Ambient temperature (298 K), cooling water (333 K) and oil
system (333 K) were kept constant and ambient pressure was around 1 atm.

Spark advance (SA) was set at maximum brake torque of the baseline case (−7 CAD ATDC) in
order to maintain the same in-cylinder fluid conditions before the spark event. For this work, methane
at stoichiometric condition was selected as the baseline case due to the extensive used in commercial
application [23]. In addition, this approach is in line with the operation requirements by several
manufacturers in order to change the fuel without ECU calibration changes [24].

2.2. Fuels

Four different syngas mixtures were tested in order to analyze the effect on the combustion process
of inert gases (N2 and CO2) present in real syngas and air dilution in the total mixture. The ratios
of reactive fuel components (H2/CO) were selected at 1.0 (50–50%) and 3.0 (75–25%), composition
representative of pure syngas [25–27]; these were used by the research group in a previous work [20].
Diluted syngas, also called ‘real syngas’, was obtained by adding CO2 and N2 to the ‘pure syngas’
mixtures. The work of E. Monteiro [6] shows that a representative amount is around 35% for N2 and
15% of CO2 for fuels extracted from DFBG. This represents a total quantity of 50% degree of dilution
(DOD). Also, see Table 2 for more details of the fuel mixtures. All the results were compared with pure
methane, as a representative component of natural gas (NG), commonly used in the energy generation
sector. Table 3 shows the main properties of the mixtures; diluted syngas has the lowest lower heating
value (LHV), followed by pure syngas and methane. Also, 75/25 H2/CO shows higher LHV than
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the 50/50 H2/CO blend due to the higher ratio of hydrogen (LHV 142 MJ/kg) to CO (LHV 10 MJ/kg).
Therefore, another interesting point of this experimental work is the inclusion of fuels with varied
calorific power under the same operating conditions.

Table 2. Fuel composition on a volume basis.

Fuel. CH4 (%) H2 (%) CO (%) CO2 (%) N2 (%)

M 100 0 0 0 0
S50 0 50 50 0 0

S50D 0 25 25 15 35
S75 0 75 25 0 0

S75D 0 37.5 12.5 15 35

Table 3. Main properties of the fuels used for the study.

Properties M S50 S50D S75 S75D

LHV (MJ/kg) 50.2 17.5 5.5 29.7 6.1
AFRst (kgair/kgfuel) 17.2 4.59 1.44 8.11 1.73

Adiabatic Peak flame temp (K@1 atm) 2223 2371 2005 2373 1981
Laminar Flame Speed (m/s) 0.35 1.23 0.52 1.77 0.73

H2/CO - 1.0 1.0 3.0 3.0
H2 mass (%) 0 6.7 2.1 17.8 3.7
DODvol% 0 0 50 0 50

*1 atm, 293 K and stoichiometric condition.

As a starting point in the combustion analysis of these fuels, the laminar flame speed was
calculated by CHEMKIN-PRO 2018 tool [28,29] at ambient conditions (1 atm and 293 K). Syngas with
dilution showed higher velocity compared to methane, but significantly less than the pure syngas.
This is due to the proportion of hydrogen in the mixtures, which has a propagation speed higher than
CO and CH4. If we compare the same H2/CO ratio in syngas, the dilution reduced speed values by 60%
for the simulated conditions. Thus, one of the objectives of this work is to perform the same analysis at
in-cylinder engine conditions. This means high temperature and pressure combined with the effects of
fluid motion.

The air-fuel mixture was changed from stoichiometric to lean condition by varying the width of
the injector pulse. The mix between fuel and air was done in the intake port, as is commonly found in
commercial PFI-SI engines. It can be seen in Figure 2 that the mixtures with H2 have a long duration of
injection. In addition, the DOI trend is inverse to the LHV and AFRst of the fuel presented in Table 3.
The maximum difference was 360 CAD between methane and S50D at λ = 1.0. This configuration
result shows the necessity of investigating, in several operative conditions, non-conventional fuels due
to the high variations in control variables. Also, they are important for companies that aim to propose
improvements in the future.Energies 2019, 11, x FOR PEER REVIEW  6 of 24 
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2.3. Thermodynamic and Optical Measurements

A traditional thermodynamic analysis was combined with optical measurements to obtain overall
information about the combustion process. In addition, it is possible to observe the behavior of
syngas flames with high spatial resolution thanks to the UV-digital image acquisition of the flame
front. In-cylinder pressure data were recorded during 200 consecutive combustion cycles, and the last
30 cycles of each set featured acquisition of image sequences (limited due to the optical apparatus
memory capacity). For the thermodynamic analysis, an in-house developed code was used to
extract information on the rate of heat release, mass fraction burned (MFB), combustion stability
(COVIMEP), power, fuel conversion efficiency and heat losses from pressure traces. The first-law
analysis approach was used [30], which included the calculation of blow-by losses and heat transfer.
This code was especially developed and calibrate for optical research engines; detailed information can
be found in [31,32].

The image sequences were taken with a high-speed PCO Dimax S1 camera coupled with a Video
Scope VS4-1845HS intensifier. This allows high sensitivity in the spectral range of 290–700 nm, typical
of radical species as HC*, OH*, CH* found during the combustion process in ICEs [33]. The high-speed
camera features a 12-bit complementary metal-oxide semiconductor image sensor (CMOS) that can
work at up to 44,767 fps in full chip configuration (1008 × 1008 pixel). In this work, an acquisition rate
of 5400 fps, i.e., 1 image/CAD, was set at the engine speed of 900 rpm. Therefore, a region of interest of
864 × 896 pixels was selected in the camera software. In addition, a UV-Nikon lens with a focal length
of 105 mm and f-number of 4.5 was used. The obtained spatial resolution was 0.011 pixel/µm. Overall,
the f-number together with the intensifier gain and exposure time was tuned to obtain high-quality
images. An exposure time of 92.5 µs (0.5 CAD) and 70% of intensification level was fixed for all
mixtures. However, the f-number was changed to avoid image saturation. Two different setups were
used, one for high-luminosity flames (methane and pure syngas at λ = 1.0) with f/32 and the other with
f/5.6 for diluted syngas and lean methane combustion. In spite of the fact that this approach has the
disadvantage that flame luminosity between mixtures cannot be quantitatively compared, it avoids the
risk of damage to the equipment and has no effect on the analysis of flame morphology parameters [34].

The National Instruments Vision Development Module was used for image post-processing by
using an in-house algorithm [34]. Figure 3 shows the main steps of the procedure, from the original
image to the outline flame front extraction. In this way, it was possible to estimate the flame area
and its centroid coordinates, both in x (Cx) and y (Cy) directions. Moreover, propagation speed (St)
was calculated with the assumption of a perfect semi-spherical flame (circumference in the x-y plane).
Therefore, St is the incremental outline radius between two consecutive frames over the dwell time.
The Heywood Circularity Factor (HCF) was used to follow the evolution of flame front distortion.
This shape factor corresponded to the ratio between the flame front perimeter and the circumference
length of a circle with the same area of the flame. Values different from 1.0 indicate distortion in the
flame front with respect to a circumference, generally assumed by theoretical models as the shape of
the flame view in a horizontal plane. More information about the calculus of morphological parameters
can be found in [20].
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All the parameters previously mentioned give information that characterizes the global or
macroscopic behavior of the flame. Microscopic or local features of the flame front can also be obtained
by applying the in-house Vision algorithm. In this work, evaluations were performed for obtaining the
wrinkling of the flame front, defined as local curvature along the flame front (Figure 4a). A convention
was adopted in which positive curvature is taken if the radius of curvature is measured from the
unburnt gases as shown in Figure 4a. This radius is measured by discretization of the flame front in
square regions of interest (side of 5 pixels). A long radius means low curvature and a short radius is
equivalent to high curvature, as illustrated in Figure 4a. For each operative condition, the curvature
frequency distributions were obtained by the cumulative of selected images from 30 consecutive cycles
(Figure 4b), all corresponding to the same flame area compared to the piston cross-section. In detail,
flame stages of 10% and 30% (with respect to the piston cross-section) were studied. The selection was
based on the link with the thermodynamic parameters, which were 5% and 10% of MFB, respectively.
These thresholds are commonly used to determine the start and development stage of the combustion
process. Gaussian fitting was used, and the full width at half maximum (FWHM) was obtained as a
parameter of curvature dispersion:

FWHM = σ (2
√

2ln2) (1)

with σ being the variance of the data. This means that the increase in FWHM is linked with more
corrugate flame fronts [35]. The baseline fuel in lean conditions presents a FWHM of 9.6 at 30%
flame area (Figure 4b). It is important to note that these values can be directly compared for all
mixtures because the data features the same spatial resolution and similar in-cylinder fluid conditions.
Caution must be taken for the quantitative comparison with other works. However, it is valuable
information that describes the change in local morphology characteristics between different syngas
mixtures and methane.Energies 2019, 11, x FOR PEER REVIEW  8 of 24 
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3. Results

3.1. Thermodynamic Analysis

In-cylinder pressure was analyzed as the average value of 200 consecutive acquisitions for five
different fuels and three air-fuel dilutions. The results for stoichiometric and the leanest air-fuel ratio
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are reported in Figures 5 and 6, respectively. The motored pressure signal before the combustion
process is depicted with dash-double-dot lines. Pure syngas shows the highest peak pressure in both
H2/CO and air diluted conditions. Despite the inert gas content in real syngas mixtures, the peak
pressure was higher than that of methane for all conditions. On the other hand, the pressure trace
in the expansion stroke for syngas mixtures (pure and diluted) was lower compared to the baseline
fuel. This behavior could be attributed to the spark timing optimization strategy, which has a strong
effect on this parameter [23]. The high difference in combustion duration caused a shift of the peak
pressure position to the left. In stoichiometric conditions (Figure 5) the real syngas featured a shift of
around 8 CAD with respect to pure syngas (for the same H2 proportion). The influence of fuel dilution
was similar for both hydrogen levels at λ = 1.0, with a reduction of around 20% in peak pressure.
Air dilution exerts a strong effect on combustion behavior, with an important pressure decrease for
methane and real syngas mixtures (Figure 6). The high hydrogen content in pure syngas mixtures
enhanced flame propagation and resulted in a reduction of only 5 bar in the peak pressure with respect
to stoichiometric conditions.Energies 2019, 11, x FOR PEER REVIEW  9 of 24 
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The mass fraction burned was calculated with the thermodynamic first-law procedure explained
in Section 2.3. Global results of the MFB traces are detailed in Table 4, with 5%, 10%, and 50% points
being representative of the initial, kernel development, and main combustion phases, respectively.
The effect of hydrogen on the combustion speed is evident, greatly reducing the duration of each stage.
In addition, air dilution also plays an important role, especially for fuels with lower laminar speed (see
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Table 3). This information is useful to have the first reference when re-calibration of the ECU is made
for this type of alternative fuels.

Table 4. Mass fraction burned position for combustion ignition, kernel development and main phase
with respect to the start of spark.

Fuels λ 5% (CAD ASOS) 10% (CAD ASOS) 50% (CAD ASOS)

M
1.0 13 16 32
1.2 13 17 33
1.4 16 21 43

S50
1.0 5 6 21
1.2 6 8 25
1.4 7 9 27

S50D
1.0 9 11 28
1.2 10 13 28
1.4 13 17 37

S75
1.0 3 4 17
1.2 4 5 17
1.4 5 6 18

S75D
1.0 7 9 25
1.2 8 11 24
1.4 12 16 36

Other parameters such as IMEP, combustion stability, and fuel conversion efficiency were obtained
from the analysis of pressure traces. IMEP is commonly used as a normalized parameter for power
analysis. Figure 7 shows the IMEP for the five fuels and three air-fuel ratios tested. Methane featured
the highest value for stoichiometric operation and intermediate lean conditions. However, for the
leanest case (λ = 1.4) pure syngas with the H2/CO ratio of 50/50% IMEP was higher than the baseline.
Methane showed an important increase in combustion duration and reduction of peak in-cylinder
pressure. This could be explained due to the SA optimization approach, which has a strong effect in
lean conditions. On the other hand, the fixed spark advance seems to be better suited for pure syngas
mixtures. Practically, the stoichiometric and the lean mixture feature the same IMEP, and thus the same
power output.
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An important decrease in IMEP was recorded for diluted syngas only at λ = 1.4, mainly due
to a combined effect of fuel and air dilution. At this point the losses in volumetric efficiency are
high. When comparing the H2 content, it can be seen that the 50% H2 blend has higher power output
than the 75% H2 one under the tested conditions. This behavior could be associated with the effect
of advanced spark timing and lower volumetric efficiency due to the reduced density of hydrogen.
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In spite of the fact that the main objective of the test did not include measuring the performance of
the fuels, the results suggest that re-calibration of the ECU needs to be performed when considering
such a fuel type change and other air management and injection strategy need to be applied. Also,
other interesting options to be considered are turbocharging and direct injection system. These could
improve the volumetric efficiency in high dilution conditions such as S50D and S75D at λ ≤ 1.4.

The stable operation of an internal combustion engine is one of the most important parameters,
and it is a critical task when alternative gaseous fuels, derived from biomass waste, are applied [30].
In this work, it was quantified with the COVIMEP (Figure 8) and a limit below 3% was taken as a
reference of stable combustion processes [36]. Pure and diluted syngas show excellent behavior in
extreme lean conditions as well. The lack of spark timing optimization affected pure fuel more than
the real one. Methane at λ = 1.4 presents values over the stability limit. This suggests the advantage of
using hydrogen as an additive to control the combustion process in SI-ICE.

Fuel conversion efficiency is depicted in Figure 9. It was calculated as defined by Heywood [30],
i.e., the ratio of the work produced per cycle (Wc) to the amount of fuel energy supplied per cycle that
can be released in the combustion process:

n f =
Wc

m f LHV
=

IMEP Vd
m f LHV

(2)
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Cyclic work was calculated based on in-cylinder pressure measurements, and the energy supplied
was estimated by the fuel mass multiplied by the lower heating value (LHV) of the fuel (see Table 3).
The baseline fuel shows values of around 20% for all the air dilution tested. However, pure syngas
presents an improvement when λ is higher. This is mainly due to the spark timing configuration,
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which is better for lean mixtures of these gases (S50 and S75). On the other hand, real syngas mixtures
exhibit a decrease with air dilution for both hydrogen content. The losses in volumetric efficiency
have greater penalties for these fuels (S50D, S75D) as was explained in the IMEP analysis. The highest
efficiency values were seen for real syngas mixtures at λ = 1.0 (21.5%). It is important to note that the
low-efficiency values are common in optical research engines due to the increased top land volume
and high blow-by losses [37].

The last set of parameters analyzed in this section are the exhaust emissions, which were measured
with a Multigas 2030 spectrometer analyzer. Table 5 shows pollutant emission (CO, NOx, and CH4)
for λ = 1.4. Only this condition was considered for the sake of brevity of the manuscript and because
it is the most common condition in energy production applications. From the table, it can be seen
that the concentration of CO at the exhaust increases with that in the intake manifold (due to fuel
content). The high top-land region volume and low fuel conversion efficiency that was seen in the
previous graph are the main reasons for this behavior. Similar behavior was seen during the methane
combustion process with high concentration of CH4 at the exhaust. Despite the fact that real syngas
features lower CO percentages in the fuel than the corresponding pure blends, more unburned fuel was
found in the exhaust line. In this case, the drop-in fuel conversion efficiency is the main explanation
(see Figure 9).

Table 5. Exhaust gas emissions measured at lean condition (λ = 1.4).

Fuels CO (ppm) NOx (ppm) CH4 (ppm)

M 545 10 13,824
S50 1555 3076 0

S50D 7419 2 0
S75 1179 3115 0

S75D 3603 2 0

NOx emissions are one of the most important aspects considered by the regulations, due to the
direct impact on local air pollution. Moreover, it is also one of the most controlled gases when hydrogen
is used in combustion because of the tendency to increase the temperatures in the combustion chamber
(see Table 3). NO2 and NO generation during the combustion process is strongly correlated with
in-cylinder temperature [38]. Therefore, roughly the same trend as that shown in Figure 6 (high peak
pressure correlates with high burned gas temperature) can be appreciated in the measurements of
NOx concentrations.

3.2. Optical Investigations

Traditional thermodynamic analysis gives global information on the evolution of combustion.
However, for the study of new fuels, it is important to introduce additional measures for the detailed
study of the process. In this work, direct visualization was performed through the window provided
by the piston crown. Figure 10 shows an image sequence of six different instances (from 5% to 60% of
piston area) for stoichiometric air-fuel ratio and syngas blends with 50% H2. A similar sequence can be
seen in Figure 11 for 75% H2 blends. Methane data was duplicated for easier comparison. The crank
angle values at the different flame area thresholds give indirect information of flame propagation
speed. It is clear that pure syngas is much faster than diluted syngas and methane. Despite the fuel
dilution, the hydrogen content of real syngas mixtures improves the combustion speed and shortens
its duration by 4 CAD for S50D and 6 CAD for S75D with respect to methane. The high difference
in terms of luminosity between diluted syngas and the other fuels is mainly because of the change
in the f-number of the focal length as was mentioned in the optical measurement section. However,
quantitative measurements such as flame speed, distortion, and displacement if its center in the
combustion chamber can be measured with high precision [23].
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Figure 11. Image sequence of flame evolution at the same flame area (5%, 10%, 20%, 30%, 50% and 60%
of the piston cross-section) for a stoichiometric air-fuel ratio (λ = 1.0) with M, S75, and S75D fueling.

In the case of lean combustion, the same camera set up could be used due to lower flame intensity.
Figures 12 and 13 show the sequence of images for H2/CO at 50/50% and 75/25% for the leanest case,
respectively. Syngas without fuel dilution shows the highest emission intensity, followed by diluted
syngas and methane. This behavior could be explained due to a different rate of heat released and
local concentration of active chemical species. Martinez et al. [20] showed that the hydrogen content
in mixtures of methane and syngas increases flame luminosity. The same behavior can be seen for
these fuels. In addition, it can be appreciated that the flame front thickness was greater for pure syngas
compared to the diluted blends and methane. Pure syngas featured the fastest propagation and the
lowest flame distortion at the same air-fuel ratio. Also, the high content of hydrogen reduces the
displacement of the flame center. This promotes combustion with a more uniform process.
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After a qualitative analysis of the flame front propagation, this study quantified the trends of the
average flame area and propagation speed by applying the image processing procedure described in
the previous section. Results reported in Figure 14, Figure 15, and Figure 16 are related to the averaged
values over 30 consecutive engine cycles. Pure syngas was the ‘fastest’ fuel due to the high content of
hydrogen. In particular, the H2/CO 75–25% blend at λ = 1.0 featured the highest speed value (32 m/s),
20 m/s faster than the baseline fuel in the same conditions (Figure 14). It is important to note that the
results have the same trend as evaluated by using in-cylinder pressure data (see Table 4). Specifically,
valuable results could be extracted even in the 0–5% MFB range, which is well recognized to be less
accurate when using traditional thermodynamic analysis. In addition, S75D and S50D showed an
increase of 5 m/s and 3 m/s with respect to methane, respectively. Therefore, the presence of hydrogen
compensates for the inhibiting effect of diluent gases (CO2 and N2) on the flame propagation speed.
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Figure 14. Average flame front evolution in terms of normalized area (cross-section piston area) and
flame propagation speed for stoichiometric air-fuel ratio and five different fuels.
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Figure 15. Average flame front evolution in terms of normalized area (cross-section piston area) and
flame propagation speed for intermediate lean air-fuel ratio and five different fuels.

The lean cases (λ = 1.2 and λ = 1.4) showed a similar trend as λ = 1.0. For the leanest operating
point, S75D suffered a decrease of 8.7 m/s with respect to λ = 1.0 and in the case of S50D, a decrease
of 5.5 m/s was found (Figure 17). This analysis can be performed thanks to the fixed spark timing
setting; these trends would change if optimized ignition were to be set for each fuel. However,
this point was not among the objectives of this work. Another interesting comment is the fact that these
results contribute to the literature on flame propagation when using alternative gaseous fuels in ICEs.
In addition, these trends can be included as a direct comparison for 1-D and 3-D numerical models.
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Figure 16. Average flame front evolution in terms of normalized area (cross-section piston area) and
flame propagation speed for the leanest air-fuel ratio and five different fuels.
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Figure 17. Maximum flame propagation speed obtained from average propagation speed data for all
fuels and air-fuel ratios.

As iterated in the previous sections, laminar flame speed values are commonly used as a reference
point for evaluating combustion evolution in ICEs. The results presented in Figure 17 for flame
propagation speed inside the combustion chamber of the ICE (i.e., their peak values extracted from the
traces shown in Figures 14–16) are in line with those of laminar flame speed at atmospheric condition
in constant volume chamber devices (see Table 3). This is associated with the fact that laminar flame
speed is a key factor in flame front propagation. Also, the same fluid-dynamic conditions are set at
ignition, and therefore, the turbulent component for different fuels is comparable [39].

Measured flame propagation speed (turbulent speed) was also compared to laminar flame
speed values calculated in the engine like conditions. Figure 18a shows the comparison of the two
parameters (i.e., their peak values, with the latter estimated using the CHEMKIN tool, with pressure
and temperature values determined from measurements on the engine (at the crank angle of peak
turbulent flame speed). It is important to note that pressure was directly taken from the pressure
transducer. Meanwhile, the temperature was estimated with the first law of thermodynamics coupled
with a heat and mass transfer model [34]. The results show the same trend between fuels in laminar
and turbulent flame speed. It is good to note that the graph was depicted with a scale factor of 10
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between turbulent and laminar. Despite pure syngas having the highest values in both conditions,
methane and diluted syngas presented high rates of increase, around 20 times with respect to 10 times
of pure cases (Figure 18b). This could be associated with the effect of turbulence in slow mixtures.
Therefore, the results show that at the engine like conditions the values taken in constant volume
chamber could be taken as a reference but turbulence influence need to be considered.
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Figure 18. (a) Measured turbulent flame speed and calculated laminar flame speed and (b) the
ratio between turbulent and laminar flame speed for the five different fuels at λ = 1.0 and engine
like condition.

Proceeding with the morphologic analysis, flame distortion was analyzed by using the Heywood
Circularity Factor (HCF). Figure 19a shows that without air dilution (λ = 1.0) the flame propagated
quite uniformly in all directions for pure and real syngas blends. Methane resulted in less “circular”
flame fronts, with a maximum distortion of around 1.35. Focusing on the different relative air-fuel
ratios (Figure 19b), it is possible to see an increase at higher λ. This behavior could be attributed to the
higher effect of in-cylinder turbulence due to the low burning velocity. However, hydrogen content
helps to reduce this effect as can be seen for HCF values in the case of syngas with respect to methane.
For real syngas mixtures, the double effect of air and fuel dilution caused a strong increase in flame
distortion, even higher than pure methane.
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Another global morphology parameter analyzed was flame center displacement. This parameter
gives interesting information about how the flame evolves inside the combustion chamber and shows
whether there is a preferential direction of propagation. Figure 20 depicts the trends in stoichiometric
conditions, for which an initial displacement towards intake valves can be noticed, after which a return
to the center of the combustion chamber was measured. The first trend could be associated with the
tumble motion (vertical plane) and the selected injection mode (PFI). For the same cylinder head used
in this work and similar crank angle speed, Gomes et al. [40] measured Tumble ratios of 4.0 during
intake and 1.5 during compression. Centered flames during late combustion are expected because it is
the center of the optical window (see Figure 1b). Another important aspect is that almost negligible
movement in the horizontal axis was seen for all fuels. For this type of combustion chamber geometries,
the swirl motion (horizontal plane) is low. Huang et al. [41] show that for a similar combustion chamber
geometry the swirl ratio values are around 0.1 [40].
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Therefore, another comparison between fuels was done with maximum vertical displacement
(Figure 20b). It could be seen that the addition of hydrogen reduces the displacement towards the
intake valves. However, the increase in fuel dilution enhances the preferential displacement to that
side. In addition, air dilution was seen to have a similar effect to that of fuel dilution, e.g., during
lean fueling with pure syngas (S50 and S75 at λ = 1.4) and when inert gas was added (S50D and S75D
at λ = 1.0).

Finally, the flame front surface wrinkling was analyzed with respect to fuel type. This parameter
is associated with in-cylinder turbulence and fuel chemistry [38,42]. The literature is not completely
coherent on this aspect; however, several authors link flame front corrugation with the combustion
reaction rate and overall duration of the process [43]. Also, it was suggested that the high thermal
and mass diffusivities of hydrogen reduce the flame thickness and with that increase wrinkling.
These results are important for numerical simulation codes, as well, especially if wrinkling effects
are considered when calculating the flame front area [44]. In this work, as was described in the
methodology section, wrinkling was measured with the curvature tool, as the average of 10 combustion
images with approximately the same flame area for two different points (10% and 30% of the piston
cross-section). This ensures a comparative study of all the fuels at similar MFB; the first threshold (i.e.,
10%, equivalent to around 5% MFB) is representative for flame kernel development, and the second
one (i.e., 30%, equivalent to around 10% MFB) is indicative of the fully turbulent propagation phase.

A flame curvature comparison between pure syngas, methane-hydrogen blends and pure
methane [20] revealed that higher hydrogen content increases flame wrinkling, as does the air-dilution.



Energies 2019, 12, 1566 18 of 23

In this work, the analysis was focused on comparing real syngas mixtures (fuel diluted) and pure
methane during lean fueling. Figure 21a shows a common trend of a reduction in wrinkling for S50D,
and then an increase for S75D with respect to methane; this was true for both flame sizes. To improve
the analysis, HCF and SL were also inserted (Figure 21b,c, respectively). The graphs suggest that
macroscopic flame distortion is related to flame distortion and less to the laminar flame speed. Several
works [45–47] suggest that higher flame speed reduces wrinkling, due to the fact that the flame
front is less affected by the turbulence. Reiterating the discussion on flame-turbulence interaction,
one important aspect that needs to be considered is that methane reaches the flame area thresholds later
during the cycle compared to the two syngas blends, therefore in a crank angle region with different
turbulence intensity. No clear affirmation can be stated with respect to higher or lower intensity
near TDC (given the conversion of tumble to turbulence [48]), but the common trend of increased
wrinkling later during flame propagation could explain the relatively high value recorded for methane
at 10% flame area compared to SD50. The fact that the latter fuel type features the lowest value for
both instances emphasizes the importance of the second aspect of flame-turbulence interaction, i.e.,
combustion chemistry. Calculated laminar flame speeds do not seem to correlate with the observed
trends of wrinkling.
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Figure 21. (a) Flame curvature, (b) average Heywood Circularity Factor, and (c) laminar flame speed in
engine-like conditions for methane and real syngas mixtures at 10% and 30% flame sizes with respect
to the piston area, during lean fueling (λ = 1.4).

On the other hand, flame-induced turbulence also needs to be considered. Even though it is still
a matter of debate [49], it is well established that there are basically three mechanisms determining
wrinkling [50]: eddy diffusion associated with turbulence in the unburned gases, which tends to
increase it; propagation of the flame into the unburned region, which tends to reduce it; and instability,
shear and eddy diffusion resulting from flame generated velocity gradients produced by the pressure
drop across the combustion zone due to the density ratio, which tends to increase it. Considering these
effects, higher laminar flame speed should be associated with less wrinkled flame fronts; on the other
hand, it could increase the influence of the first mechanism, as previously iterated. The third effect
should play a minor role, given that quite similar density ratios can be expected for all three fuel types.
One definite observation is that the actual balance between the three mechanisms is what determines
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wrinkling trends, and a single explanation clarifies only part of the phenomenon. Looking at flame
sensitivity from a more quantitative point of view, methane features an effective Lewis number around
unity [51]; therefore, turbulent flame speed is expected to be influenced to a relatively small degree by
wrinkling. Changes in the values of this parameter can have a significant impact on stretched laminar
flame speed, especially in the first stages of combustion [52]. Even if values relatively close to unity
should be expected for syngas as well [53], slight modifications in the effective Lewis number could
induce variations of laminar flame speed values. No clear conclusion could be drawn on the observed
trends, other than the fact that, given that all cases featured quite close values, turbulence characteristics
dominate over fuel chemistry effects with respect to flame wrinkling; nonetheless, an interesting line of
future investigations was identified in the form of studying more in detail flame-turbulence interactions
in syngas-fueled SI engines.

4. Conclusions

Extensive experimental research on the syngas combustion process was performed. To this
end, an optically accessible engine was run in conditions specific to power generation applications,
with pure synthetic syngas (S50 and S75) and two representative mixtures of real syngas production
(S50D and S75D). Two different H2/CO ratios (50–50% and 75–25%) were considered and 50% dilution
(15% CO2 and 35% N2) was used as representative of real syngas mixtures. Moreover, air dilution
was changed from stoichiometric up to extreme lean burn for methane combustion in SI engines.
This single-component fuel was used as the baseline for all comparisons, due to the extended use
of natural gas in ICEs for energy production. Traditional thermodynamic tools were complemented
with cycle-resolved visualization over 30 consecutive cycles that featured continuous firing. Global
and local morphology parameters were evaluated by applying a custom image processing method,
with results averaged over several cycles so as to reduce the effect of CCV specific for SI engines.

Thermodynamic results show performance values for syngas close to methane under lean
conditions. Despite the fixed spark timing strategy, the combustion stability indicator was below the
limit (3% COVIMEP) for pure and real syngas. The leanest condition (λ = 1.4) with methane fueling was
an exception, with a COVIMEP of 3.5%. Moreover, the fuel conversion efficiency was higher for real
compared to pure syngas in stoichiometric and intermediate lean conditions. The trend was reverted
at λ = 1.4 due to the spark timing strategy fixed for the point of MBT with methane at a stoichiometric
air-fuel ratio. The low values of efficiency (20%) were attributed to a significant contribution of the top
land region, commonly used in the design of optically accessible ICEs. Exhaust gas measurements
confirmed this assumption, with high quantities of the unburned mixture in the exhaust port (high CO
concentrations for syngas mixtures and CH4 for methane). On the other hand, NOx increased with
the hydrogen content, in line with the observation of higher peak pressure. However, for real syngas,
the emission of this pollutant was almost negligible. Therefore, real syngas shows great advantages
for the use in SI engines in lean conditions, with acceptable performance, stable combustion process,
and low emissions.

The optical results gave more detailed information on the combustion process. Spatial and temporal
observations were obtained from this analysis. The addition of hydrogen promotes combustion with
higher propagation speed (10 m/s higher for S75 compared to methane), reduces flame distortion (HCF
0.25 lower for S75 with respect to methane) and centered the combustion (3 mm lower displacement
along the y-axis with S75 fueling compared to methane). Pure syngas showed better results than real
syngas, due to lower fuel dilution. The results also suggest that air and inert gas in the fuel have a
similar effect, meaning that both inhibit flame propagation. The results of simulated laminar flame
speed show the same trend as that recorded for the measured turbulent speed at the same pressure
and temperature conditions. The average ratio between the two types of the parameter was around 10
times. Lastly, local morphology study of the flame front shows that the full width at half maximum
(FWHM) increased with hydrogen addition and was to a certain degree correlated with macroscopic
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flame distortion. The comparison between methane and real syngas mixtures showed a minimum
value for S50D and a maximum for S75D, at two different flame sizes.
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Abbreviations

AFRST Stoichiometric Air fuel ratio
ATDC After top dead center
CAD Crank angle degree
CCV Combustion cyclic variability
COVIMEP Coefficient of variation of indicated mean effective pressure
DFBG Downdraft fixed bed gasifier
DOD Degree of dilution
DOI Duration of Injection
fps Frame per second
FWHM Full with at the half maximum
HCF Heywood circularity factor
ICE Internal combustion engine
IMEP Indicate mean effective pressure
LHV Low heating value
M Methane
MBT Maximum brake torque
MFB Mass fraction burned
NG Natural gas
S50 Syngas with composition 50% H2 and 50% CO
S50D Syngas with composition 50% H2 and 50% CO in fuel basis plus 50% of dilution
S75 Syngas with composition 75% H2 and 25% CO
S75D Syngas with composition 75% H2 and 25% CO in fuel basis plus 50% of dilution
SA Spark advance
SI Spark ignition
SL Laminar flame speed
ST Turbulent flame speed
UV Ultra violet
WOT Wide open throttle
λ Relative air fuel ratio
σ Standard deviation of gaussian curve fitting the wrinkling histogram
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