Fault-Tolerant Control Strategies and Capability without Redundant Sub-Modules in Modular Multilevel Converters
Abstract
:1. Introduction
2. Basic Structure and Principle of MMC
3. System Analysis Under Faulty Conditions
4. Proposed Fault-Tolerant Strategies
4.1. Generalized Discontinuous Pulse Width Modulation (GDPWM)
4.2. Amplitude-Limited Modulation (ALM)
4.3. Operation conditions of GDPWM and ALM
4.4. Capacitor Voltage Fluctuations and Circulating Current Analysis under GDPWM and ALM
5. Simulation Studies
a) GDPWM under Balanced Conditions
b) Fault-Tolerance under GDPWM
c) Fault-Tolerance under ALM
6. Experimental Studies
a) GDPWM
b) ALM
c) Comparison
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Marquardt, R.; Lesnicar, A. New concept for high voltage-modular multilevel converter. In Proceedings of the IEEE Power Electronics Specialists Conference, Aachen, Germany, 20–26 June 2004; pp. 1–5. [Google Scholar]
- Gemmell, B.; Dorn, J.; Retzmann, D.; Soerangr, D. Prospects of multilevel VSC technologies for power transmission. In Proceedings of the 2008 IEEE/PES Transmission and Distribution Conference and Exposition, Chicago, IL, USA, 21–24 April 2008; pp. 1–16. [Google Scholar]
- Saeedifard, M.; Iravani, R. Dynamic performance of a modular multilevel back-to-back HVDC system. IEEE Trans. Power Deliv. 2010, 25, 2903–2912. [Google Scholar] [CrossRef]
- Yin, J.; Wu, W.; Wei, T.; Wu, X.; Huo, Q. A Novel Fault-Tolerant Control of Modular Multilevel Converter under Sub-Module Faults Based on Phase Disposition PWM. Energies 2019, 12, 1–19. [Google Scholar]
- Beijing HVDC Engineering Co. Ltd. Zhoushan Multiterminal Flexible HVDC Project System Design Report; Beijing HVDC Engineering Co. Ltd.: Beijing, China, 2012; pp. 77–83. [Google Scholar]
- Mohammadi, P.H.; TavakoliBina, M. A transformerless medium voltage STATCOM topology based on extended modular multilevel converters. IEEE Trans. Power Electron. 2011, 26, 1534–1545. [Google Scholar]
- Mei, J.; Xiao, B.; Shen, K.; Tolbert, L.; Zheng, J. Modular multilevel inverter with new modulation method and its application to photovoltaic grid-connected generator. IEEE Trans. Power Electron. 2013, 28, 5063–5073. [Google Scholar] [CrossRef]
- Popova, L.; Pyrhonen, J.; Blaabjerg, K. Device Loading of modular multilevel converter MMC in wind power application. In Proceedings of the 2014 International Power Electronics Conference (IPEC-Hiroshima 2014-ECCE ASIA), Hiroshima, Japan, 18–21 May 2014; pp. 548–554. [Google Scholar]
- Jung, J.; Lee, H.; Sul, S. Control strategy for improved dynamic performance of variable-speed drives with the modular multileve converter. IEEE J. Emerg. Sel. Top. Power Electron. 2013, 3, 371–380. [Google Scholar] [CrossRef]
- Jung, J.; Cui, S.; Lee, Y.; Sul, S. A cell capacitor energy balancing control of MMC-HVDC under the AC grid faults. In Proceedings of the 2015 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia), Seoul, Korea, 1–5 June 2015; pp. 1–8. [Google Scholar]
- Guan, M.; Xu, Z. Modeling and control of a modular multilevel converter-based HVDC system under unbalanced grid conditions. IEEE Trans. Power Electron. 2012, 27, 4858–4867. [Google Scholar] [CrossRef]
- Rodriguez, P.; Luna, A.; Ciobotaru, M.; Teodorescu, R.; Blaabjerg, F. Advanced grid synchronization system for power converters under unbalanced and distorted operating conditions. In Proceedings of the IEEE Industrial Electronics IECON Conference, Paris, France, 7–10 November 2006; pp. 5173–5178. [Google Scholar]
- Li, X.; Song, Q.; Liu, W. Protection of nonpermanent faults on DC overhead lines in MMC-based HVDC systems. IEEE Trans. Power Deliv. 2013, 28, 483–490. [Google Scholar] [CrossRef]
- Weihao, Z.; Jing, S.; Haoze, L. Detection and localization of submodule open-circuit failures for modular multilevel converters with single ring theorem. IEEE Trans. Power Electron. 2019, 34, 3729–3739. [Google Scholar]
- Shao, S.; Wheeler, P.; Clare, J.; Watson, A. Fault detection for modular multilevel converters based on sliding mode observer. IEEE Trans. Power Electron. 2013, 28, 4867–4872. [Google Scholar] [CrossRef]
- Deng, F.; Chen, Z.; Khan, M.; Zhu, R. Fault detection and localization method for modular multilevel converters. IEEE Trans. Power Electron. 2015, 30, 2721–2732. [Google Scholar] [CrossRef]
- Li, B.; Shi, S.; Wang, B.; Wang, G.; Wang, W.; Xu, D. Fault diagnosis tolerant control of single IGBT open-circuit failure in modular multilevel converters. IEEE Trans. Power Electron. 2016, 31, 3165–3176. [Google Scholar] [CrossRef]
- Lu, B.; Sharma, S. Literature review of IGBT fault diagnostic and protection methods for power inverters. IEEE Trans. Ind. Appl. 2009, 45, 1770–1777. [Google Scholar]
- Campos-Delgado, D.; Espinoza-Trejo, D. An observer-based diagnosis scheme for single and simultaneous open-switch faults in induction motor drives. IEEE Trans. Ind. Electron. 2011, 58, 671–679. [Google Scholar] [CrossRef]
- Estima, J.; Cardoso, A. A new approach for real-time multiple open-circuit fault diagnosis in voltage source inverters. IEEE Trans. Ind. Appl. 2011, 47, 2487–2494. [Google Scholar] [CrossRef]
- Shao, S.; Clare, J.; Watson, A.; Wheeler, P. Detection and isolation of multiple faults in a modular multilevel converter based on a sliding mode observer. In Proceedings of the 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, 14–18 September 2014; pp. 3491–3495. [Google Scholar]
- Wu, W.; Wu, X.; Yin, J.; Jing, L.; Wang, S.; Li, J. Characteristic Analysis and Fault-Tolerant Control of Circulating Current for Modular Multilevel Converters under Sub-Module Faults. Energies 2017, 10, 1827. [Google Scholar] [CrossRef]
- Yang, Q.; Qin, J.; Saeedifard, M. Analysis, detection, and location of open-switch submodule failures in a modular multilevel converter. IEEE Trans. Power Deliv. 2016, 31, 155–164. [Google Scholar] [CrossRef]
- Wang, J.; Ma, H.; Bai, Z. A submodule fault ride-through strategy for modular multilevel converters with nearest level modulation. IEEE Trans. Power Electron. 2018, 33, 1597–1608. [Google Scholar] [CrossRef]
- Konstantinou, G.; Pou, J.; Ceballos, S.; Agelidis, V. Active redundant submodule configuration in modular multilevel converters. IEEE Trans. Power Deliv. 2013, 28, 2333–2341. [Google Scholar] [CrossRef]
- Liu, G.; Xu, Z.; Xue, Y.; Tang, G. Optimized control strategy based on dynamic redundancy for the modular multilevel converter. IEEE Trans. Power Electron. 2015, 30, 339–348. [Google Scholar] [CrossRef]
- Li, B.; Xu, Z.; Ding, J. Fault-tolerant control of medium-voltage modular multilevel converters with minimum performance degradation under submodule failures. IEEE Access 2018, 6, 11772–11781. [Google Scholar] [CrossRef]
- Hu, P.; Jiang, D.; Zhou, Y. Energy-balancing control strategy for modular multilevel converters under submodule Fault Conditions. IEEE Trans. Power Electron. 2014, 29, 5021–5029. [Google Scholar] [CrossRef]
- Yang, Q.; Qin, J.; Saeedifard, M. A post-fault strategy to control the modular multilevel converter under submodule failure. IEEE Trans. Power Deliv. 2016, 31, 2453–2463. [Google Scholar] [CrossRef]
- Shen, K.; Xiao, B.; Mei, J.; Tolbert, L.; Wang, J.; Cai, X.; Ji, Y. A modulation reconfiguration based fault-tolerant control scheme for modular multilevel converters. In Proceedings of the 2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 17–21 March 2013; pp. 3251–3255. [Google Scholar]
- Mei, J.; Li, Y.; Tian, J.; Huang, C.; Lu, X.; Du, X.; Xie, Y.; Hu, Q.; Ma, T. Balancing control scheme for modular multilevel converters using virtual loop mapping with fault-tolerance capabilities. IEEE Trans. Ind. Electron. 2016, 63, 38–48. [Google Scholar] [CrossRef]
- Ma, M.; Hu, L.; Chen, A.; He, X. Reconfiguration of carrier-based modulation strategy for fault tolerant multilevel inverters. IEEE Trans. Power Electron. 2007, 22, 2050–2060. [Google Scholar] [CrossRef]
- Antonopoulos, A.; Angquist, L.; Nee, H. On dynamics and voltage control of the modular multilevel converter. In Proceedings of the 2009 13th European Conference on Power Electronics and Applications, Barcelona, Spain, 8–10 September 2009; pp. 1–10. [Google Scholar]
- Yazdani, D.; Bakhshai, A.; Jain, P. Adaptive notch filtering based grid synchronization techniques for converter interfaced distributed generation systems. In Proceedings of the IEEE-IECON Conference, Barcelona, Spain, 8–10 September 2009; pp. 3963–3965. [Google Scholar]
- Li, J.; Wu, W.; Yao, X. A zero-sequence voltage injection control scheme for modular multilevel converter under submodule failure. In Proceedings of the 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, 18–22 September 2016; pp. 1–6. [Google Scholar]
State | T1/T2 | usm | Capacitor | Voltage |
---|---|---|---|---|
1 | On/off | E | discharge | decreased |
charge | increased | |||
2 | Off/on | 0 | bypass | uncharged |
Item | Value |
---|---|
Rated Power S | 10 MVA |
DC voltage udc | 10 kV |
Number of SMs per arm N | 20 |
SM capacitance C | 5000 μF |
Arm inductance L | 5 mH |
Fundamental frequency f | 50 Hz |
Range of ωt | Va(ωt) | Vb(ωt) | Vc(ωt) |
---|---|---|---|
Other ranges |
Item | Value |
---|---|
DC voltage | 120 V |
SMs number | 4 |
SM capacitance | 2000 μF |
Arm inductance | 5 mH |
Fundamental frequency | 50 Hz |
Digital control period | 150 μs |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Yin, J. Fault-Tolerant Control Strategies and Capability without Redundant Sub-Modules in Modular Multilevel Converters. Energies 2019, 12, 1726. https://doi.org/10.3390/en12091726
Li J, Yin J. Fault-Tolerant Control Strategies and Capability without Redundant Sub-Modules in Modular Multilevel Converters. Energies. 2019; 12(9):1726. https://doi.org/10.3390/en12091726
Chicago/Turabian StyleLi, Jinke, and Jingyuan Yin. 2019. "Fault-Tolerant Control Strategies and Capability without Redundant Sub-Modules in Modular Multilevel Converters" Energies 12, no. 9: 1726. https://doi.org/10.3390/en12091726
APA StyleLi, J., & Yin, J. (2019). Fault-Tolerant Control Strategies and Capability without Redundant Sub-Modules in Modular Multilevel Converters. Energies, 12(9), 1726. https://doi.org/10.3390/en12091726