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Abstract: The open circuit voltage (OCV) of lithium-ion batteries is widely used in battery modeling,
state estimation, and management. However, OCV is a function of state of charge (SOC) and battery
temperature (Tbat) and is very hard to estimate in terms of time efficiency and accuracy. This is
because two problems arise in normal operations: (1) Tbat changes with the current (I), which makes it
very hard to obtain the data required to estimate OCV—terminal voltage (U) data of different I under
the same Tbat; (2) the difference between U and OCV is a complex nonlinear function of I and is very
difficult to accurately calculate. Therefore, existing methods have to design special experiments to
avoid these problems, which are very time consuming. The proposed method consists of a designed
test and a data processing algorithm. The test is mainly constant current tests (CCTs) of large I,
which is time-efficient in obtaining data. The algorithm solves the two problems and estimates OCV
accurately using the test data. Experimental results and analyses showed that experimental time was
reduced and estimation accuracy was adequate.
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1. Introduction

The open circuit voltage (OCV) of a lithium-ion battery is the terminal voltage (U) when the
internal physical and chemical processes of the battery are steady [1]. OCV is widely used for
battery modeling [2,3], state estimation [4,5], and management [6], etc., and is in need of estimation.
An applicable OCV estimation method at a product level requires a short experimental time and
adequate accuracy.

The principle of OCV estimation methods can be explained by the equivalent circuit models
(ECMs) of the battery. The most widely used ECM is shown in Figure 1 [2], where U is terminal voltage,
I is working current (this study defines discharge as the positive direction), Z is equivalent impedance,
and ∆U is the voltage drop across Z. It is worth noting that Z represents the internal multidynamics of
the battery, such as ohm polarization, electrochemical polarization, and concentration polarization [1].
The typical time ranges of these internal dynamics can be from microseconds to as long as hours [7],
which means long time rests are required before these dynamics become steady states. Existing studies
have shown that OCV is mainly a nonlinear function of state of charge (SOC) and battery temperature
(Tbat) [8], while Z and therefore ∆U are nonlinear functions of SOC, I, and Tbat [9]. This study defines
the working point of a battery as {SOC, I, Tbat}. Therefore, OCV, ∆U, and U are restricted as follows at
each working point according to the ECM of Figure 1:

OCV(SOC, Tbat) − ∆U(SOC, I, Tbat) = U(SOC, I, Tbat), (1)
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where U and I can be measured easily and accurately with test equipment. Tbat is a field-distributed
parameter, but can be treated as a lumped parameter in the case of OCV estimation [10]. Further, Tbat can
be measured with a thermocouple for simplification [10]. SOC can be calculated with Equation (2) [11]:

SOC(t) = SOC(t0) −
1

Cnom

∫ t

t0

I(t)dt, (2)

where Cnom is the nominal capacity of the battery, t is the operation time, and t0 is the start time of the
operation. It is generally considered that SOC equals one when the battery is fully charged. To sum
up, U, I, SOC, and Tbat in Equation (1) can be measured or calculated, while both OCV and ∆U are
unknown variables.
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Figure 1. An equivalent circuit model (ECM) of batteries.

An estimation of OCV can be done through applying multiple current excitations to the model
and analyzing the corresponding U variations. However, there are two difficulties in estimating OCV,
especially under large-current conditions, which is a common working state in many applications.
The first one is that the parameters are functions of SOC and Tbat, and therefore estimation needs U
data of different I under the same {SOC,Tbat}. However, Tbat is affected by I and changes drastically
under large-current conditions [7,12], as shown in Figure 2. This means discharging/charging the
battery with different I to the same SOC results in different Tbat, which makes it almost impossible to
obtain U data of different I under the same {SOC,Tbat} directly through experiments. The second one
is that ∆U and Z are time-varying and nonlinear functions of I, and the forms of these functions are
very complicated due to the complicated dynamics inside the battery [1], which makes it very difficult
to determine the ∆U–I function accurately under large-current conditions. These two problems are
referred to as Tbat changing with I and complex ∆U–I nonlinearity problems hereinafter and must be
solved by an effective and, more importantly, engineering-oriented parameter estimation method.
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Figure 2. Inputs, outputs, and main internal processes of the battery (Tamb: ambient temperature).

The existing methods can be divided into two groups, voltage relaxation (VR) methods [13–17]
and constant current (CC) methods [18–20], according to the form of the test signals.
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The long time rest (LTR) method [13] is the most accurate VR method. At a certain {SOC,Tbat},
the LTR method rests the battery for about 20 h to stabilize the battery internal dynamics. During the
rest, ∆U converges to zero, SOC remains the same, and Tbat converges to Tamb (ambient temperature),
so both Tbat changing with I and the complex ∆U–I nonlinearity problems can be avoided through the
test design. Therefore, the LTR method can directly take U at the end of the rest as the OCV at the
working point {SOC,Tbat}. The LTR method repeatedly rests the battery at other working points to
perform corresponding OCV estimations. The estimation results are so accurate that they are often
treated as the OCV true value. However, this method is very time consuming, since long time rest tests
must be conducted at extensive working points.

The hybrid pulse power characterization (HPPC) [14,15] method is the most widely used VR
method. The only difference between HPPC and LTR is that the rest time is shortened to one hour.
The HPPC method is accurate, since ∆U gradually converges to zero during rest and a one-hour rest
can achieve adequate accuracy in most engineering applications. HPPC is far less time consuming
than the LTR method and can fit the experimental time requirements for applications such as SOC
estimation, which only requires OCV estimation results at 10–20 SOC points under each Tbat. However,
in applications such as battery aging evaluations, it is necessary to differentiate the OCV–SOC curve for
incremental capacity analysis (ICA) to expose the battery’s internal changes [16], so it is necessary to
estimate OCV at over 1000 SOC points under each Tbat. The HPPC method is still too time consuming
for such applications.

Terminal voltage prediction (TVP) methods [17] are the least time consuming VR methods.
These methods model the U–t (time) relationship during battery rest and can estimate the OCV under
a certain {SOC,Tbat} with only a 20-min rest. These methods are still accurate enough as long as the U–t
relationship is accurately modeled. Besides, these methods are less time consuming than the HPPC
method due to the rest time being further shortened and can fit SOC estimation applications quite well.
However, TVP methods still cannot meet the experimental time requirements of ICA.

The small-current approximation (SCA) [20] method is a typical CC method. The SCA method
conducts a constant current test (CCT) with small I (about 1/25 C, where C is battery C rate) under a
constant Tamb. The SCA method neglects ∆U and assumes Tbat = Tamb in a small-current CCT, and
therefore both Tbat changing with I and complex ∆U–I nonlinearity problems are neglected. The SCA
method can directly take U in the CCT as the OCV. By conducting small-current CCTs under other
Tamb, the SCA method can estimate OCV(SOC,Tbat). The SCA method can obtain OCV estimation
results at thousands of SOC points or more through just one CCT due to the high sampling frequency
of the test equipment. Moreover, the changes in Tbat are not obvious in a small-current CCT, so it
is reasonable to assume Tbat = Tamb. However, neglecting ∆U causes significant errors. In addition,
this is still time consuming, since each small-current CCT takes a long time (about 30 h).

Another CC method, the terminal voltage average (TVA) method [18,19], attempts to improve
the accuracy of the SCA method. The TVA method conducts two small-current (also about 1/25 C)
CCTs with equal current amplitude but in opposite directions under each Tamb. By assuming the
∆U–I relation is linear near I = 0, the TVA method calculates OCV as the average U of the two CCTs.
This method is more accurate than SCA since it considers the ∆U–I relation approximately. However,
the TVA method is still not very accurate (see Section 4) and consumes about twice the experimental
time (about 55 h under each Tamb) in contrast to the SCA method due to the need for two CCTs.

To sum up, a battery usually works under large-current conditions in actual applications,
which accordingly causes Tbat changing with I and complex ∆U–I nonlinearity problems in OCV
estimation. Existing OCV estimation methods need to design special experiments to avoid these
two problems. VR methods conduct rest experiments and can provide accurate estimation results.
Some of the VR methods (HPPC and TVP) can adequately meet the experimental time requirement
for applications such as SOC estimation, which only requires OCV estimation results at 10–20 SOC
points under each Tbat. However, VR methods are too time consuming for applications such as
ICA, which requires OCV estimation results at over 1000 SOC points under each Tbat. Differently,
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CC methods conduct small-current CCTs and can estimate OCV at thousands of SOC points or
more with much less experimental time. However, CC methods are not very accurate and are still
time consuming.

This paper solves Tbat changing with I and complex ∆U–I nonlinearity problems and proposes
an OCV(SOC,Tbat) estimation method that is time-efficient and adequately accurate in engineering
applications. The method contains a designed test and a data processing algorithm. Large-current
CCTs instead of small-current CCTs are conducted to be time-efficient in collecting necessary data.
The algorithm is based on a battery electrochemical mechanism, can solve Tbat changing with I
and complex ∆U–I nonlinearity problems, and can therefore estimate OCV(SOC,Tbat) accurately.
The proposed method was verified via experiments and compared with five of the most widely used
existing methods.

The remainder of this paper is organized as follows: Section 2 introduces the data processing
algorithm. Section 3 introduces the experimental design. Section 4 compares and analyzes the proposed
and existing methods through experiments. Section 5 is the conclusion.

2. Data Processing Algorithm

2.1. Algorithm Principle

Lithium-ion batteries are often assigned to work within a certain range due to safety and economic
considerations [21], and this range is hereinafter referred to as the working range. This study sets the
working range as

SOC ∈ [SOCL, SOCH], I ∈ [IL, IH], Tbat ∈ [TbatL, TbatH], (3)

where the subscripts L and H represent the low and high boundaries of the variables, respectively.
In order to estimate OCV in the whole working range, large-current CCTs under several Tamb

must be conducted to obtain the necessary data. This study assumes that n CCTs are conducted under
each of the m Tamb. Thus, a total of m × n CCTs are performed, and the specific values are expressed as

{I1, I2, . . . , In} ∈ [IL, IH], {T1, T2, . . . , Tm} ∈ [TbatL, TbatH]. (4)

With the above data, the main principle of the proposed algorithm is elucidated as follows. For a
particular Tamb = Tj ∈ {T1,T2, . . . ,Tm}, the U– and OCV–SOC curves are shown in Figure 3 (assuming
0 < I1 < I2 < . . . < In). It can be seen that as the test currents of the n CCTs decrease, U approaches
OCV due to decreasing ∆U. Further, electrochemical theory shows that for CCTs of different I, U is
continuous and monotonous with respect to I under a particular {SOC,Tbat} [1], so there exists a U–I
function. Therefore, this study first estimates the U–I function and then estimates OCV by setting I = 0
in the U–I function (referred to as U(I = 0) hereinafter).
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Although the main principle of the algorithm is quite simple, two problems must be solved
before implementation.

First, estimating the U–I function requires U data of different I under the same {SOC,Tbat}.
However, due to the Tbat changing with I problem and different heat generation rates of different I,
discharging/charging the battery with different I to the same SOC results in different Tbat, even under
the same Tamb, as shown in Figure 4. This means the required U data for the U–I function estimation is
unavailable from experiments.

Second, an existing study [1] showed that the ∆U–I relation is complex and nonlinear, and thus
directly estimating the U–I function with large-current data results in a certain error at I = 0, which is
illustrated in Figure 5. Therefore, accurate estimation of the U–I function and U(I = 0) requires U
data from multiple CCTs and especially small-current CCTs. However, small-current CCTs require
high-precision equipment and are very time consuming, and moreover, they cannot expose some key
characteristics, since the battery mostly works under large-current conditions. This study conducted
large-current CCTs and compensated for the error with a data processing algorithm, as shown in
Section 2.2.
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2.2. Algorithm Procedures

The proposed algorithm was designed with the following steps to solve the above two problems
and estimate OCV. The main procedures are shown in Figure 6, and will be introduced in detail
as follows.
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• Step 1: Collect large-current CCT data.

For ∀SOC ∈ [SOCL,SOCH], m × n U data can be obtained from experiments:{
U(SOC, Ii, Ti j)

}
(i = 1, 2, 3, . . . , n; j = 1, 2, 3, . . . , m), (5)

where Tij is the battery temperature when discharging/charging the battery to SOC with I = Ii under
Tamb = Tj.

• Step 2: Estimate U data under the same Tbat.

This study proves that U is continuous and monotonous with respect to Tbat under a particular
{SOC,I}, and details are shown in the Appendix A. So for ∀Ii ∈ [I1,I2, . . . ,In], there exists a U–Tbat

function, and this function is defined as U = g(Tbat)|SOC,Ii. Equation (5) shows that at {SOC,Ii}, there are
m U data of different Tbat: U(SOC,Ii,Tij)(j = 1,2, . . . ,m). Thus, g(Tbat)|SOC,Ii can be fit with such data:

U(SOC, Ii, Tbat) ≈ Û(SOC, Ii, Tbat) = ĝ(Tbat)
∣∣∣
SOC,Ii

, (6)

where the superscript ˆ represents the estimation values after fitting. Then, for ∀Tj ∈ [T1,T2, . . . ,Tm],
U(SOC,Ii,Tj) can be estimated as

U(SOC, Ii, T j) ≈ Û(SOC, Ii, T j) = ĝ(T j)
∣∣∣
SOC,Ii

. (7)

Therefore, U data of different I under the same {SOC,Tj} can be estimated. At this time, the Tbat

changing with I problem is solved.

• Step 3: Model U–I function and calculate the error at I = 0.

As mentioned above, there exists a U–I function at {SOC,Tj}, and this function is defined as
U = f (I)|SOC,Tj. f (I)|SOC,Tj can be estimated through curve fitting with n data from Step 2, Û(SOC,Ii,Tj)
(I = 1,2, . . . ,n). This estimated function is defined as f̂largeI(I)|SOC,Tj, where the subscript largeI
represents the function fit with large-current CCT data. Then OCV at {SOC,Tj} can be estimated by
setting I = 0 in f̂largeI(I)|SOC,Tj. However, the Tafel equation [1] shows that estimating OCV with U data
from large-current CCTs will result in an error:

OCV(SOC, T j) = f̂largeI(I)
∣∣∣
SOC,T j,I=0 + a(SOC, T j), (8)

where a is the error, which is a function of SOC and Tbat. This study finds that a is not sensitive to SOC,
which will be verified in Section 3.2.1. Therefore, a can be considered to be independent of SOC from
an engineering point of view. Therefore,

OCV(SOC, T j) ≈ OĈV(SOC, T j) = f̂largeI(I)
∣∣∣
SOC,T j,I=0 + a(T j), (9)
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where OĈV(SOC, T j) is the estimation result of OCV(SOC,Tj).
Since a is independent of SOC from an engineering point of view, this study can calculate a through

measuring the true OCV at only one SOC point (define as SOCref) under the same Tj and then calculate
the error of f̂largeI(0)|SOC,Tj. After the true OCV at SOCref is measured, a(Tj) can be calculated as

a(T j) = OCV(SOCref, T j) − f̂largeI(0)
∣∣∣
SOCref,T j

. (10)

• Step 4: Compensate for the error and estimate OCV as U(I = 0).

The error can be compensated for and OCV can be estimated as

OĈV(SOC, T j) = f̂largeI(0)
∣∣∣
SOC,T j

+ OCV(SOCref, T j) − f̂largeI(0)
∣∣∣
SOCref,T j

. (11)

At this point, the U–I function is modeled and the modeling error at I = 0 caused by ∆U–I
nonlinearity is compensated for. Therefore, OCV can be estimated through large-current CCTs and
very few OCV measurement experiments, with a shortened experimental time and adequate accuracy.

3. Experimental Design

This section introduces the experimental design of the proposed method. It is worth noting that
the experiments here contained a large amount of redundancy. The purpose of such redundancy
was to provide experimental parameter design suggestions for the proposed method that suit other
lithium-ion batteries of similar characteristics as well. The required experiments in actual applications
were much less, as can be found at the end of Section 4.1.

3.1. Example of Experimental Procedures

The proposed method mainly conducted large-current CCTs. A few OCV true value
measurement tests were also conducted to compensate for the U–I modeling error, as mentioned
in Section 2.2. The procedures of these tests are illustrated through examples in Section 3.1.1.
and Section 3.1.2., respectively.

This study used a battery test system (type: BTS-4) from Neware Company to charge and discharge
the battery, and used a thermal chamber to control Tamb. This study used a BAK Company 3-A·h
lithium iron phosphate battery, whose parameters are shown in Table 1.

The working range of batteries should be determined according to application requirements. For a
simplification of the description, this study set the working range as an example:

SOC ∈ [0.3, 1], I ∈ [0, 2.5], Tbat ∈ [0, 60]
◦

C. (12)

Table 1. Battery parameters.

Parameters Value

Type 26650MP2-Fe
Electrode material LiFePO4/Graphite

Nominal capacity/Ah 3
Maximum constant charging current/C 1 2

Maximum constant discharging current/C 3
1 C means C rate, where 1 C = 3 A.

3.1.1. Constant Current Test Procedures

CCTs were conducted with multiple I and Tamb in this example. The specific values are listed
in Table 2, that is, a total of 36 CCTs. The charging of all CCTs was conducted at Tamb = 25 ◦C (the
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standard temperature specified by the battery manufacturer) to ensure SOC = 1 at the beginning of
discharge. Specifically, each CCT consisted of the following steps:

(1) Charge the battery using the standard procedures from the battery manufacturer. That is,
charge the battery with I = −0.5 C, then start constant voltage charging when U = 3.6 V.
Charging is completed when I = −0.02 C;

(2) Immediately after charging is completed, change Tamb from 25 ◦C to Tj (Tj ∈ {5,15,25,35,45,55} ◦C
and rest the battery for 2.5 h to make Tbat = Tj and the battery’s internal processes steady;

(3) Discharge the battery with Ii (Ii ∈ {0.2,0.6,1.0,1.4,1.8,2.2} C). Discharging is completed when
U = 2.5 V;

(4) Immediately after discharge is completed, adjust Tamb to 25 ◦C and rest the battery for 0.5 h to let
the internal processes approach steady. Then start the next CCT.

Table 2. Specific value of experiment I and Tamb.

I/C 1 Tamb/◦C

0.2/0.6/1.0/1.4/1.8/2.2 5/15/25/35/45/55
1 C means C rate, where 1 C = 3 A.

Notably, rest time needs to be determined according to the volume and shape of the battery.
The larger the volume is, the more inconvenient the shape is for heating diffusion, so the more rest time
there should be. This study verified that the above rest time was sufficient for the battery used here.

3.1.2. OCV True Value Measurement Test Procedures

This study measured the OCV true value corresponding to SOCref under the above Tj due to the
need for U–I modeling error compensation. Specifically, the fully charged battery was discharged to
SOCref = 0.9 and was then rested for 1 h at each Tj. The U at the end of the rest was taken as the OCV
true value.

3.2. Experimental Parameter Design

As mentioned above, this study conducted n CCTs under m Tamb and measured the OCV true
value corresponding to SOCref under each Tamb. That is, a total of three sets of parameters needed
to be designed: (1) the specific value of SOCref; (2) the specific value of {I1,I2, . . . ,In} and number n;
and (3) the specific value of {T1,T2, . . . ,Tm} and number m.

So far, the experimental parameter designs of the existing methods have been mostly empirical or
have been designed in combination with the actual working conditions of the battery [13–20]. This is
because a battery’s characteristics and applications are so different that it is very hard to provide
“optimal” experimental parameters that fit all batteries and applications. However, experimental
parameters do have an important impact on estimation accuracy and experimental time. This section
combines the battery mechanism and actual experimental data to analyze the experimental parameters’
influence on estimation accuracy and experimental time, and then proposes experimental parameter
design suggestions.

The true value of the OCV is needed to analyze estimation accuracy. This section took the HPPC
results as the OCV true value, since the HPPC method is adequately accurate [14]. The specific analyses
were as follows.

3.2.1. SOCref Design

SOCref Influence on Estimation Accuracy

In order to study the influence on estimation accuracy, eight SOCref were uniformly selected in
the working range (i.e., SOCref = 1.0, 0.9,..., 0.3) and other experimental parameters were set to fixed
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values (as an example, Tamb = 5, 15, 25, 35, 45, 55 ◦C, I = 0.2, 0.6 C). The maximum and the average
estimation error corresponding to the above SOCref are shown in Figure 7.
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Two conclusions could be drawn from Figure 7: (1) the estimation accuracy of all of the above
SOCref was high from an engineering point of view, where the maximum error was less than 0.98%
and the average error was less than 0.21%; and (2) the error was relatively small when SOCref was near
0.9 and 0.4–0.6.

Conclusion 1 verified the conclusion that the modeling error a could be treated independently
of SOC from an engineering point of view, as mentioned in Step 3, Section 2.2. Although this study
could not prove its rationality in a mechanistic way, the study did use a variety of batteries of different
materials, capacities, and aging statuses to conduct the experiments, and the actual experimental data
showed this compensation was very accurate in an engineering sense.

Conclusion 2 showed that setting SOCref reasonably could further improve estimation accuracy.
As mentioned earlier, estimation accuracy was higher when SOCref was around 0.9 and 0.4–0.6, where it
exactly corresponded to the voltage platform of the constant current discharge U–SOC curve. In the
voltage platform, the internal reaction of the battery was relatively stable, which was probably the
reason the compensation accuracy was higher. The reasons for the lower estimation accuracy of other
SOCref were (1) when SOCref = 1, the current excitation had just been applied and the dynamics of Z
were still unstable, which made the derivations in Section 2 invalid; (2) SOCref = 0.7–0.8 was the phase
transition region of the lithium iron phosphate battery [16], and phase transition information is often
not very obvious in U data in large-current CCTs; and (3) there was also a phase transition region near
SOCref = 0.3 [16].

This study used a variety of LPF/C (LiFePO4/Graphite) lithium-ion batteries for experiments
and found that SOC = 0.9 or 0.4–0.6 was a common area where the voltage platform occurred.
For another commonly used NCM/C (Nickel-Cobalt-Manganese/Graphite) lithium-ion battery,
the voltage platform’s position varied with different material ratios and battery aging states, but near
SOC = 0.9, the voltage platform was often obvious for different material ratios throughout the whole
lifespan. Therefore, setting SOCref = 0.9 could improve estimation accuracy.

SOCref Influence on Experimental Time

SOCref’s influence on the experimental time was reflected in the time used to discharge the battery
from SOC = 1 to SOCref, as shown in Section 3.1.2. Obviously, the closer SOCref was to 1, the shorter
the experimental time was. For example, an I = 0.5 C discharge to SOCref = 0.9 took about 12 min,
while SOCref = 0.5 took about 1 h.

Considering SOCref’s influence on estimation accuracy and experimental time, setting SOCref = 0.9
could improve estimation accuracy and shorten the experimental time at the same time for LPF/C and
NCM/C lithium-ion batteries, so this study suggests SOCref be set to 0.9, approximately.
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3.2.2. Design of Specific Value of {I1,I2, . . . ,In} and Number n

Design of Number n

The larger n is, the longer the experimental time is. Therefore, n should be set as small as possible
as long as estimation accuracy is ensured. The n minimum takes 2 to linearly model the nonlinear U–I
relation, so this study first compared the estimation accuracy of n = 2 and 3. It could be assumed that
|I1|<|I2|<|I3| for any {I1,I2,I3}. Only {I1,I2} and {I1,I2,I3} needed to be compared, since other cases should
be analyzed as the influence of current specific values. This section takes an example for convenience
of description. The conclusions derived from this example were representative, as verified by this
study. {I1,I2,I3} were set as {0.2,0.6,1.0}, and other parameters were set as SOCref = 0.9, Tamb = 5, 15, 25,
35, 45, 55 ◦C in the example. A comparison of the estimation results is shown in Figure 8.

It can be seen from Figure 8 that the estimation accuracy with n = 3 was almost the same
as with n = 2. Specifically, the average estimation errors of n = 2 and 3 were 0.12% and 0.14%,
respectively, and the maximum estimation errors were 0.60% and 0.90%, respectively. From a
mechanism point of view, increasing n should increase estimation accuracy as long as no overfitting
occurs, since the U–I relationship is nonlinear and complex. However, n = 2 could already achieve
adequate accuracy, since this study designed an algorithm to compensate for the modeling error caused
by U–I nonlinearity. On the other side, increasing n significantly increased experimental time. In this
example, the experimental time of n = 2 and 3 was 18 h and 24 h, respectively, which was a 33.3%
difference. To sum up, this study suggests setting n = 2, in consideration of both estimation accuracy
and experimental time.
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Figure 8. Estimation results of the hybrid pulse power characterization (HPPC) method and the
proposed method, with n = 2 and 3, respectively. (a) Tbat = 5 ◦C; (b) Tbat = 15 ◦C; (c) Tbat = 25 ◦C;
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Design of Specific Value of {I1,I2, . . . ,In}

While designing the current specific values, other parameters were set as SOCref = 0.9, n = 2,
and Tamb = 5, 15, 25, 35, 45, 55 ◦C, based on the previous conclusions. There were C2

6= 15 cases of
{I1,I2}, since {I1,I2} ⊂ {0.2,0.6,1.0,1.4,1.6,2.2}. This study studied all of the cases, but only shows the
necessary results due to space limitations. Figure 9 shows the estimation results when I1 = 0.2 C and
I2 is another current. It can be seen that I2 had little impact on estimation accuracy in the high-Tbat

and high-SOC region. However, estimation accuracy decreased with increasing I2 in the low-Tbat and
low-SOC region. Similarly, this study studied the influence of I1 on estimation accuracy and concluded
that I1 had little influence on estimation accuracy in the high-Tbat and high-SOC region, but estimation
accuracy decreased with increasing I1 in the low-Tbat, low-SOC region.
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This study attempted to estimate U(I = 0) as the OCV. Therefore, the smaller I was, the higher
the estimation accuracy should have been, but the longer the experimental time was. Therefore,
there was a trade-off between estimation accuracy and experimental time. For example, the maximum
estimation errors of {I1,I2} = {0.2,0.6}, {0.2,1.0}, {0.6,1.0} were 0.6%, 1.5%, 6.3%, and the experimental
time under each Tamb was 18 h, 17.5 h, 14 h. Therefore, this study could not quantitatively determine
the optimal values of I, since different applications have different requirements for estimation accuracy
and experimental time. However, this study could provide some design suggestions qualitatively:

(1) I should not be too large or too small, due to the trade-off between estimation accuracy and
experimental time;

(2) If the working temperature is low, I should be set to be smaller to guarantee estimation accuracy.
As shown in Figure 9, estimation accuracy was lower at low temperatures. This was mainly due to an
increase in a battery’s concentration polarization at low temperatures, which led to an increase of ∆U
in the CCTs, so it was more difficult to model the U–I function accurately;

(3) If the working range contains a low-SOC region, I should be set to be smaller. The reason is
similar to item (2), that is, a battery’s ∆U is larger at low SOCs;

(4) If the battery ages seriously, I should be set to be smaller. The reason is similar to item (2),
that is, an aged battery’s ∆U is larger.

This study used a variety of batteries of different materials and aging statuses to conduct the
experiments. The experimental results indicated that for most engineering applications, I1 should be
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<0.5 C, and I2 should be larger than I1 but no larger than 1 C. Specific values should be determined
according to a battery’ characteristics and application needs.

3.2.3. Design of the Specific Value of {T1, T2, . . . , Tm} and Number m

Experiments under a few Tamb were conducted to estimate OCV(SOC,Tbat) in the working range,
as mentioned above. This study could not quantitatively provide the Tamb setting principle that is
applicable to all conditions, since the requirements and working range of different applications are
different. However, this section provides some qualitative design tips based on a battery’s actual
characteristics and electrochemical mechanism.

Other experimental parameters were set as SOCref = 0.9, {I1,I2} = {0.2,0.6}, as discussed above.
An estimation result at SOC = 0.9 is provided as an example here for convenience of description.
Specifically, the OCV–Tbat relation at SOC = 0.9 is shown in Figure 10.

It can be seen that OCV increased monotonously with an increase in Tbat, but the increasing rate
gradually decreased. Therefore, the specific value of Tamb should cover the entire working range,
but more experiments should be conducted at low temperatures since OCV is more sensitive to
Tbat there.

The number m must be determined according to application requirements. The larger m is,
the higher the estimation accuracy is, since the OCV–Tbat relation is calculated through curve fitting or
interpolation. However, experimental time is approximately proportional to m, since the experiments
conducted under different Tamb were almost the same. That is, the setting of m is a trade-off between
estimation accuracy and experimental time. Thus, m should be set according to actual application
requirements. According to the authors’ experience, m should be set to at least 3~4 if the working
temperature range is as wide as this example.
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4. Comparison between Different Methods

This section compares the proposed method with the five most widely used existing OCV
estimation methods: the long time rest (LTR) method [13], HPPC method [14], terminal voltage
prediction (TVP) method [17], small-current approximation (SCA) method [20], and terminal voltage
average (TVA) method [19]. The first three methods are VR methods, and the latter two and the
proposed method are CC methods. Three important performance indicators of concern in applications
were chosen as evaluation criteria: estimation accuracy, experimental time, and also other battery
information obtained, since real applications usually require various types of battery information at
the same time.

A summary sheet is shown in Table 3. In Table 3, the experimental procedures and parameters
of the proposed method are those from Sections 3.1 and 4.1, respectively, and the algorithm of the
proposed method is from Section 2.2. The other methods’ experiments and algorithm can be found
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in Section 3.2, References [13–17] and [18–20]. Further details from Table 3 will be explained in the
remainder of this section.

Table 3. Comparisons between different methods.

Methods Error
Max Mean

Experimental Time 1/hour
Estimation Results at

10/20/1000 SOC Points
Other Information

LTR taken as true value 208 408 20008 Impedance
HPPC 0.45% 0.19% 19 29 1009 Impedance
TVP 0.40% 0.22% 11.7 15 341.7 Impedance

SCA 1.08% 0.52% 30 30 30 capacity with small-current conditions,
ICA information

TVA 3.60% 0.92% 55 55 55 capacity/resistance with small-current
conditions, ICA information

Proposed 0.45% 0.20% 18 18 18
capacity/resistance with

normal-current condition, thermal
characteristics, ICA information

1 This study compared each method’s experimental time when estimating OCV at 10/20/1000 SOC points,
since different applications require different amounts of OCV estimation results under each Tbat. LTR: long time
rest; TVP: terminal voltage prediction; SCA: small-current approximation; TVA: terminal voltage average; ICA:
incremental capacity analysis.

4.1. Experiments for Method Comparison

This section conducts multiple experiments with the above six methods. The battery working
range was as shown in Equation (12). The specific experiments were as follows.

The LTR method [13] rests the battery for 20 h at a particular {SOC,Tbat} and takes the U at the
end of the rest as the OCV. Limited by experimental time, this study only conducts the 20-h rest
for a small portion of SOC points. Specifically, rest experiments were conducted at SOC = 0.9, 0.65,
Tamb = 5, 15, 25, 40 ◦C.

The HPPC method [14] rests the battery for 1 h at a particular {SOC,Tbat} and takes the U at the
end of the rest as the OCV. Specifically, rest experiments were conducted at SOC = 1.0, 0.9, . . . , 0.3,
Tamb = 5, 15, 25, 40 ◦C.

The TVP method [17] rests the battery for 20 min at a particular {SOC,Tbat} and models the
U–t function during rest. The TVP method predicts the U after 20 h of rest and takes it as the OCV.
The specific experiment was very similar to HPPC. The only difference was that the rest time was
changed from 1 h to 20 min.

The SCA method [20] takes the U of the small-current CCT as the OCV. Therefore, a I = 1/25 C CCT
was conducted at Tamb = 5, 15, 25, 40 ◦C. For specific experimental procedures, refer to Section 3.1.1.

The TVA method [19] takes the average U of two small-current CCTs as the OCV. The currents of
the two CCTs are of the same amplitude but in opposite directions. In this study, I = ±1/25 C CCTs
were conducted at Tamb = 5, 15, 25, 40 ◦C. For specific experimental procedures, refer to Section 3.1.1.

The proposed method’s experimental procedures were introduced in Section 3.1. The specific
experimental parameters were set as SOCref = 0.9, I = 0.2, 1/3 C, and Tamb = 5, 15, 25, 40 ◦C, according
to the conclusions of Section 3.2.

4.2. Comparision and Analysis

This section compares three performance indicators of the above methods: estimation accuracy,
experimental time, and other battery information obtained. The details are as follows.

4.2.1. Estimation Accuracy

Estimation results of the above methods are shown in Figure 11. A quantitative comparison of
estimation accuracy requires a true value. U, after a battery rests for a long time, can be taken as the
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OCV from an engineering point of view [13], which is the case with the LTR method. The estimation
error of each method is shown in Figure 12.

Energies 2019, 11, x FOR PEER REVIEW  15 of 20 

 

Estimation results of the above methods are shown in Figure 11. A quantitative comparison of 
estimation accuracy requires a true value. U, after a battery rests for a long time, can be taken as the 
OCV from an engineering point of view [13], which is the case with the LTR method. The estimation 
error of each method is shown in Figure 12. 

 
(a) Tbat = 5 ℃ 

 
(b) Tbat = 15 ℃ 

 
(c) Tbat = 25 ℃ 

 
(d) Tbat = 40 ℃ 

Figure 11. Estimation results of different methods. (a) Tbat = 5 ℃; (b) Tbat = 15 ℃; (c) Tbat = 25 ℃; (d) Tbat 

= 35 ℃. 

 
Figure 12. Estimation errors of different methods. 

It can be seen that the overall estimation accuracy of the proposed method was high, and the 
error was only slightly higher in the low-Tbat and low-SOC region. The HPPC method had high 
estimation accuracy in the whole working range. The TVP method’s estimation accuracy was slightly 
lower than the HPPC method, but was still high. The estimation result of the SCA method was 

Figure 11. Estimation results of different methods. (a) Tbat = 5 ◦C; (b) Tbat = 15 ◦C; (c) Tbat = 25 ◦C;
(d) Tbat = 35 ◦C.

Energies 2019, 11, x FOR PEER REVIEW  15 of 20 

 

Estimation results of the above methods are shown in Figure 11. A quantitative comparison of 
estimation accuracy requires a true value. U, after a battery rests for a long time, can be taken as the 
OCV from an engineering point of view [13], which is the case with the LTR method. The estimation 
error of each method is shown in Figure 12. 

 
(a) Tbat = 5 ℃ 

 
(b) Tbat = 15 ℃ 

 
(c) Tbat = 25 ℃ 

 
(d) Tbat = 40 ℃ 

Figure 11. Estimation results of different methods. (a) Tbat = 5 ℃; (b) Tbat = 15 ℃; (c) Tbat = 25 ℃; (d) Tbat 

= 35 ℃. 

 
Figure 12. Estimation errors of different methods. 

It can be seen that the overall estimation accuracy of the proposed method was high, and the 
error was only slightly higher in the low-Tbat and low-SOC region. The HPPC method had high 
estimation accuracy in the whole working range. The TVP method’s estimation accuracy was slightly 
lower than the HPPC method, but was still high. The estimation result of the SCA method was 

Figure 12. Estimation errors of different methods.

It can be seen that the overall estimation accuracy of the proposed method was high, and the error
was only slightly higher in the low-Tbat and low-SOC region. The HPPC method had high estimation
accuracy in the whole working range. The TVP method’s estimation accuracy was slightly lower than
the HPPC method, but was still high. The estimation result of the SCA method was relatively low in
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the whole working range. The estimation result of the TVA method was relatively high, especially in
the low-Tbat and high-SOC region.

To sum up, the estimation accuracies of the proposed, HPPC, and TVP methods were high, but the
estimation accuracies of the SCA and TVA methods were relatively low. Due to space limitations,
this study will not analyze the source of error of each method and the cause of the above results.

4.2.2. Experimental Time

The experimental time required to estimate the OCV–SOC curve at one Tbat is compared here,
for convenience of description. Different applications require different amounts of estimation results
at each Tbat: For instance, SOC estimation [4] requires OCV estimation results at 10–20 SOC points,
but the ICA [19] requires OCV estimation results at a minimum of 1000 SOC points. Therefore,
the experimental time required to estimate OCV at 10, 20, and 1000 SOC points through each method
were compared. The details are shown in Figure 13 (part of the experimental time was reasonably
inferred from actual experimental data).
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It can be seen that the experimental times of the LTR, HPPC, and TVP methods increased linearly
with the number of estimation results, because all three VR methods require a rest experiment at
each SOC. The experimental times of the SCA, TVA, and proposed methods were independent of
the number of estimation results. This was because these three CC methods conduct CCTs that can
collect large amounts of test data at different SOC points, due to the high sampling frequency of test
equipment. For example, an I = 1/3 C CCT takes about 3 h. If the sampling frequency is 1 Hz, the CCT
can collect experimental data of about 10,800 SOC points.

Therefore, a quantitative comparison of these methods relates to application needs. Nowadays,
SOC estimation application requires an accuracy of about 2%~5% [22], and therefore OCV estimation
results of at least 20 SOC points usually need be provided. At this point, the TVP and proposed method
consumed significantly less experimental time than the other methods did. It can be seen from Figure 13
that the proposed method only consumed 16.7% more experimental time than the quickest existing
method (TVP) did, which means the proposed method’s experimental time suited SOC estimation
application quite well. For another application, ICA, OCV estimation results of at least 1000 SOC
points are needed. At this point, the proposed, SCA, and TVA methods consumed significantly less
experimental time than the other methods did. Among these three methods, the proposed method
was the quickest and only consumed 60.0% and 32.7% of the experimental time of the SCA and TVA
methods, respectively.

To sum up, the TVP and proposed methods consumed the least experimental time in applications
that required very few OCV estimation results under each Tbat, such as SOC estimation applications.
The proposed method consumed the least experimental time in applications that required a detailed
OCV–SOC curve, such as ICA in SOH (state of health) estimation applications. This means the
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proposed method’s experimental time suits both applications quite well. It is also necessary to note the
above analyses were based on the premise that all data of the proposed method must be collected from
experiments. The proposed method will have more of an advantage in experimental time when other
large-current CCT data is available, such as online constant-current charging data.

4.2.3. Other Battery Information

The information obtained for each method was mainly determined by the battery characteristics
excited by its experiment. The details are as follows.

The proposed method conducts CCTs with different I and could obtain the available capacity/energy
at different I. In addition, due to the large current used in the experiment, internal resistance at the
large-current working point could be obtained (see Reference [23] for details), and thermal characteristics
and thermal model parameters of the battery could be further obtained. The above information is
very important for understanding the actual working characteristics of the battery, since the current
amplitude of this method is close to a battery’s actual working current. Moreover, the ICA could
be further conducted to analyze the internal changes of the battery during aging, since the method
could provide detailed OCV–SOC estimation results. However, as CCTs contain little dynamic
excitations, the proposed method could not provide impedance information, except at SOC = 1,
when the experimental current was just applied to the battery.

The TVA method and SCA method also conducted CCTs, but the current amplitude was very
small. These two methods could obtain battery available capacity/energy and internal resistance
information in small-current conditions. This information is more suitable for theoretical analysis,
since the current amplitude of these methods was much smaller than the actual working current.
These methods could not be used to analyze the thermal characteristics of the battery, since heat
generation in the small-current experiment was not obvious. As mentioned earlier, these two methods
could be used for ICA but could not provide impedance information.

The LTR, HPPC, and TVP methods used step signal excitation multiple times in the experiment.
These methods could obtain the impedance of the battery, since step excitation contains more dynamic
signals. However, the excitation duration was too short to excite the battery thermal characteristics
significantly, although large-current excitation was used in the experiment. At the same time,
these methods did not apply to the ICA due to great experimental time consumption.

It can be seen that the information obtained by the proposed method was almost the total of the
other five methods, except for impedance. Moreover, the proposed method could also provide thermal
parameters, which the other five methods could not.

5. Conclusions

This paper proposes a time-efficient and adequately accurate OCV(SOC,Tbat) estimation method
for engineering applications of lithium-ion batteries. Large-current CCTs were conducted to collect
enough data in a time-efficient way. A set of algorithms based on battery electrochemical mechanisms
was designed to solve Tbat changing with I and complex ∆U–I nonlinearity problems and therefore
estimate the OCV(SOC,Tbat) with enough accuracy. Moreover, the experimental design principles
were provided in this paper for researchers to design experiments specifically according to application
requirements. The experimental results are summarized in Table 3, which shows the proposed method
had a great advantage considering comprehensive factors such as experimental time, estimation
accuracy, and other battery information obtained:

(1) For applications that require detailed OCV–SOC curves, the proposed method only consumes
5.3%/60% of the experimental times of the fastest VR/existing CC methods. For applications that require
rough OCV–SOC curves, the proposed method consumes almost the same/60% of the experimental
times of the fastest VR/existing CC methods;
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(2) The average and maximum estimation errors of the proposed method are 0.20% and 0.45%,
respectively. This indicates that the proposed method has accuracy similar to VR methods and has
higher accuracy than existing CC methods;

(3) The proposed method provides a lot of other battery information at the same time, such as
a battery’s capacity, resistance, aging status, and uniquely thermal parameters that existing OCV
estimation methods cannot provide. The provided information is almost the total of existing OCV
estimation methods, except for impedance.

These characteristics make the proposed method very suitable for engineering applications such as
battery aging evaluation, which requires accurate, detailed, and plentiful information in a time-efficient
way. Optimization (such as providing impedance information at the same time) of the proposed
method will be carried out in future work.

Author Contributions: Y.C. proposed the original idea, conceived the experiments, and analyzed the data. G.Y.
helped to develop the original idea and revised the manuscript. X.L. carried out the experiments and revised the
manuscript. Z.H. revised the manuscript.

Funding: This research was funded by the National Key R&D Program of China under Grant 2016YFB0900302
and the National Natural Science Foundation of China (NSFC) under Grant U1510208, 61273045.

Conflicts of Interest: The authors declare no conflicts of interest.

Nomenclature

a OCV estimation error with large-current experimental data
Ah ampere hour
C C rate, per unit of experimental current
CC constant current
CCT constant current test
Cnom nominal capacity
ECM equivalent circuit model
f (I)|SOC,Tj U–I function at {SOC,Tj}
f̂largeI(I)|SOC,Tj fitted f (I) with large-current experimental data
g(Tbat)|SOC,Ii U–Tbat function at {SOC,Ii}
HPPC hybrid pulse power characterization
ICA incremental capacity analysis
I working current
I1, I2, I3, Ii, In specific experiment current
IL minimum I in working range
IH maximum I in working range
LTR long time rest
LPF/C LiFePO4/Graphite
m number of experimental ambient temperatures
n number of experimental currents
NCM/C Nickel-Cobalt-Manganese/Graphite
OCV open circuit voltage
SCA small-current approximation
SOC state of charge
SOCL minimum SOC in working range
SOCH maximum SOC in working range
SOC* a specific state of charge
SOCref state of charge where OCV is measured
t operation time
t0 start time of the operation
T1, T2, Tj, Tm specific temperature
Tij Tbat when discharging/charging the battery to SOC with I = Ii under Tamb = Tj.
∆T Tbat changes during operation
Tamb ambient temperature



Energies 2019, 12, 1803 19 of 20

Tbat battery temperature
TbatL minimum Tbat in working range
TbatH maximum Tbat in working range
TVA terminal voltage average
TVP terminal voltage prediction
U terminal voltage
U(I = 0) terminal voltage when I = 0 in the CCT
∆U terminal voltage drop
VR voltage relaxation
Z equivalent impedance
ˆ estimated value

Appendix A : Proof That the U–Tbat Relation Is Continuous and Monotonic

In the CCTs, Z can be simplified as an internal resistance R, which is a time-varying function of SOC, I,
and Tbat. Therefore, Equation (1) turns into

For constant current conditions :
U(SOC, I, Tbat) = OCV(SOC, Tbat) − ∆U(SOC, I, Tbat)

∆U(SOC, I, Tbat) = R(SOC, I, Tbat) × I
. (A1)

The Nernst equation shows that the OCV–Tbat relationship is continuous and monotonic [1].
The Butler–Volmer equation and other existing electrochemical theory show that the R–Tbat relationship is
also continuous and monotonic [1]. Moreover, actual characteristics of the battery indicate that R is much more
sensitive to Tbat than OCV [24,25]:

∂OCV(SOC, Tbat)

∂Tbat
> 0,
∂R(SOC, I, Tbat)

∂Tbat
< 0,

∣∣∣∣∣∣∂R(SOC, I, Tbat)

∂Tbat

∣∣∣∣∣∣�
∣∣∣∣∣∣∂OCV(SOC, Tbat)

∂Tbat

∣∣∣∣∣∣. (A2)

Therefore, it can be derived from Equation (A1) that the U–Tbat relationship is also continuous and monotonic,
except for in the case of charging with extremely small currents (which does not happen in this method):

∂U(SOC,I,Tbat)
∂Tbat

=
∂OCV(SOC,Tbat)

∂Tbat
− I × ∂R(SOC,I,Tbat)

∂Tbat

if I > 0, then ∂U(SOC,I,Tbat)
∂Tbat

> 0

if I < 0 and I , infinitesimal, then ∂U(SOC,I,Tbat)
∂Tbat

< 0

. (A3)
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