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Abstract: A novel ensemble algorithm based on kernel density estimation (KDE) is proposed to forecast
distributed generation (DG) from renewable energy sources (RES). The proposed method relies solely
on publicly available historical input variables (e.g., meteorological forecasts) and the corresponding
local output (e.g., recorded power generation). Given a new case (with forecasted meteorological
variables), the resulting power generation is forecasted. This is performed by calculating a KDE-based
similarity index to determine a set of most similar cases from the historical dataset. Then, the outputs
of the most similar cases are used to calculate an ensemble prediction. The method is tested using
historical weather forecasts and recorded generation of a PV installation in Portugal. Despite only
being given averaged data as input, the algorithm is shown to be capable of predicting uncertainties
associated with high frequency weather variations, outperforming deterministic predictions based on
solar irradiance forecasts. Moreover, the algorithm is shown to outperform a neural network (NN) in
most test cases while being exceptionally faster (32 times). Given that the proposed model only relies
on public locally-metered data, it is a convenient tool for DG owners/operators to effectively forecast
their expected generation without depending on private/proprietary data or divulging their own.

Keywords: forecasting; ensemble methods; kernel density estimation; smart grids; distributed
generation; solar PV

1. Introduction

Accurate prediction of power generation from renewable energy sources (RES) is a challenging
task, posing problems for short-term operation of modern power systems [1]. This difficulty is due
to the high uncertainties and complexity of both the associated variables and the equipment used
for generation and grid connection. On the one hand, generation from RES is a function of multiple
meteorological factors (temperature, humidity, wind flow, etc.) which are in and of themselves highly
chaotic in nature and difficult to quantify [2,3]. On the other hand, the equipment used is also a source
of significant uncertainty with reliability issues and failures commonly occurring in installed power
electronics, inverter-side, grid-side, and even the metering apparatus [4]. The combined effect of chaotic
input variables and complex energy conversion models render deterministic approaches infeasible
for the prediction of distributed generation (DG) from RES. As such, statistical and/or probabilistic
models are commonly employed not only to forecast DG but also to predict market behavior in the
case of high RES deployment [5,6] which allows for a computationally efficient way of accounting for
uncertainties in inputs.
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In recent years, there has been increased interest in the use of ensemble methods for power system
applications. Ensemble techniques have a decades-long track record in meteorological prediction,
proving their potential to effectively predict highly chaotic processes [7].

The main premise of ensemble methods is to overcome both input and model uncertainties by
compiling a set (ensemble) of separate predictions into a forecast of most likely outcomes. Each separate
prediction is a result of varying input variables within their uncertainty range in addition to the model
uncertainty. Therefore, a combination of these separate predictions yields a range of possible outputs
representing a confidence/uncertainty region surrounding a most likely scenario.

In Figure 1, the concept of an ensemble forecast is visualized considering the case of DG production
from RESs. Various meteorological factors are independent input variables and are associated with a
significant level of uncertainty. In addition, the physical energy conversion models of DG units are
also associated with a high uncertainty, leading to a significant change in energy generation as a result
of small perturbances in the meteorological variables. Ensemble methods combine different scenarios
based on both input and model uncertainties and establish a confidence interval around a most likely
outcome. One can see that the employment of an ensemble technique involves the (continuously
improving) prediction of some variable based on historical data, without knowledge of the physical
model relating the inputs with the outputs. This is, in fact, the definition of machine learning (ML),
and, as such, ensemble methods are often classified accordingly [8].
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Figure 1. Visualization of an ensemble forecast. Rather than employing a deterministic/point method
(thick lines) to obtain the output from input variables, an ensemble of predictions is made from varied
input conditions (dashed lines), constructing an uncertainty region and most likely output value(s).

Paper Organization

This manuscript is organized as follows: Section 1 provides the motivation behind this study and
an introduction to ensemble forecasting. Section 2 provides a comprehensive state-of-the-art review of
recent literature on the topic. Section 3 describes the mathematical formulation of the proposed model.
Section 4 presents the case study based on a solar photovoltaic (PV) installation in the center region of
Portugal. Section 5 provides the simulation results and a comparison between the proposed method,
a deterministic irradiance-based prediction, and a neural network (NN) approach. A discussion of
the obtained results is then presented followed by prospects for future work following up on the
current study. The conclusions are finally summarized in Section 6. More detailed supplementary data
regarding the case study used are provided in Appendix A.
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2. State-of-the-Art and Novel Contributions

As mentioned, the use of ensemble methods is gaining popularity with the increased complexity
and uncertainty of distributed energy resources (DERs). Before presenting the proposed method,
a review of recent works is presented to highlight the state-of-the-art scientific literature on ensemble
methods applications to power systems in recent years.

2.1. State-of-the-Art

In Reference [9], different strategies for combining forecasts of solar photovoltaic (PV) generation
were presented. In this study, the ensemble prediction was obtained by combining different probabilistic
models rather than an ensemble of results of the same model. It used three models (i.e., QKNN, QRF,
and QR) and the inputs were historical PV power and weather data.

By testing using the GEFCOM 2014 data, the results showed that the use of an ensemble of various
probabilistic forecasts resulted in a significant increase in forecasting accuracy for solar photovoltaic (PV)
systems as opposed to the use of individual ones, regardless of the ensemble strategy and/or scenarios
considered. In Reference [10], the advantages and disadvantages of applying an ensemble to improve
empirical mode decomposition (EMD) techniques were reported, which are mentioned as being
commonly applied to wind forecasting. While the ensemble improved EMD models are associated
with additional computational burden, they are reported to outperform other techniques, specifically
in tackling the challenge of mode mixing. In addition, the authors reported it was significantly more
beneficial to apply ensemble decomposition to artificial neural network (ANN) models as compared to
using optimization methods to tune the ANN parameters. The previous statements were shown to
hold for all time resolutions in wind power forecasting. In Reference [8], a comparison of numerous
commonly used ensemble, ANN, and other ML techniques was performed for solar power forecasting.
Random Forest (RF), an ensemble method, was found to exhibit the best performance. Two main
conclusions were made by the study: (1) a seasonal bias was shown with spring and winter being
more challenging to forecast than summer and autumn (keeping in mind that the data were from
Norwich, UK) and, more importantly, that (2) a combination of simple algorithms yielded better and
more reliable results than any individual algorithm on its own, regardless of its complexity.

In Reference [11], a short-term probabilistic forecasting method was proposed based on a
competitive ensemble of different base predictors of PV power. The method was implemented using
different probabilistic approaches which were trained as base predictors in order to obtain an ensemble
of the predictive distribution with optimal characteristics of accuracy and reliability. In Reference [12],
the reliability, robustness, and computational burden of a proposed PV power forecasting model based
on the RF method was combined with the extra trees technique on an hourly basis and compared
against supervised support vector regression. For a fair and comparative analysis, the models used
comparable forecasting data, applicable for forecasting hourly PV power.

A probabilistic PV power forecasting model was proposed in Reference [13] and applied to several
French PV plants considering six days of lead time with a resolution of thirty minutes. The proposed
model was derived from multiple forecasts considering the national numerical weather predictions and
including ensemble forecasts. Then, a free online parameter learning technique generated a weighted
combination of the individual PV outputs, and the resulting weights were later sequentially computed
before each forecast, using only historical data, with the goal of minimizing the continuous ranked
probability score criterion.

An analog ensemble forecasting method for day-ahead regional with hourly resolution was
presented in Reference [14]. The proposed model considered publicly available weather forecasts and
power measurement data, considering some historical sets of temperature, irradiance, and terrain
slopes as well, among others. To process the input data, clustering and blending strategies were used
to improve the PV forecasting results which were compared and validated against several numerical
models based on weather forecasts.
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Photovoltaic power variability was studied in Reference [15], proposing a data-driven ensemble
modeling technique to improve the forecasting of PV output. Also, three different models were
analyzed within a recursive arithmetic average technique, considering stand-alone forecasting results.
To prove the superiority of the proposed model, the comparison was carried out considering a
considerable number of different training and testing samples, showing that the ensemble model
generally outperforms different stand-alone forecasting models.

A PV forecasting model in Reference [16] used an ANN ensemble scheme based on particle
swarm optimization with trained feed-forward neural network. The proposed model was constructed
considering five different structures with varying network complexities, in order to improve the
forecasting results. Then, the model was combined using trim aggregation after removing the error
boundaries. Exogenous data, such as physical specification and environmental, were used as model
inputs. Moreover, a clearness index was used to classify days accordingly with their features, considering
a yearly basis analysis with a real case study. It was shown that ensemble schemes improve the forecast
results in comparison with benchmark models.

In Reference [17], an hourly PV power forecasting model was presented based on clustering and
ensemble prediction using the RF method. First, clustering was used to improve the computational
burden by selecting the necessary weather variables. Then, the RF method with different parameters
was implemented as a component model to find weather regimes making up the ensemble prediction.
Finally, weighted computation was carried to analyze the different forecasting weather regimes in
order to obtain the final results. Ridge regression was used to determine the weight of each weather
variable automatically.

In Reference [18], a hybrid PV forecasting model combined the ML method with the Theta
statistical method. Multiple ML components were used: long short-term memory, gate recurrent unit,
and unsupervised learning. Structural and data diversity were key to improving the accuracy of the
model. Four different approaches were implemented for validation, considering two real case studies.
The proposed hybrid model was shown to be superior to traditional ML without statistical components.

In Reference [5], a new ensemble technique was employed to improve probabilistic forecasting of
day-ahead price forecasting of the Iberian market. An approach based on kernel density estimation
(KDE) was used to “activate” the best set of input variables which minimize the forecasting error.
This study is an example of numerous others applying probabilistic and ML techniques for electricity
price forecasting which has been increasing exponentially in the past decade as shown by Reference [6].
The latter shows that, while non-existent before 2003, probabilistic methods (or hybrid ones) have
quickly gained ground as one of the main approaches used contemporarily for price forecasting [19–21].
The analysis in Reference [22] has shown that, for the case of price forecasting, while combining
different forecasts in an ensemble framework does not necessarily always bring about improved
accuracy, it does contribute to more reliable forecasting by decreasing the risk associated with an
individual method.

Based on the conducted literature review, the following points were noted and were carried forth
in the formulation, analysis, and discussion made throughout this paper:

• The use of combinatorial ensemble techniques is shown to significantly improve the accuracy of
RES-based DG forecasting in addition to guaranteeing a more reliable and/or robust prediction;

• An ensemble of simple probabilistic/statistical techniques is shown to produce better and more
robust DG forecasting than individual complex models;

• KDE has been recently employed to “activate” input sets for probabilistic price forecasting models,
showing great success in improving the accuracy. This was only found to be tested on price
forecasting, and no studies were found using this methodology for DG forecasting [5].

2.2. Novel Contributions

In this study, we proposed an ensemble algorithm based on the following key points:
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1. The objective was to develop an algorithm suitable for predicting DG from RESs. The specific
focus of this study was on solar PV; however, the proposed approach is generalizable;

2. Only historical, publicly available data (e.g., meteorological forecasts) and the corresponding
local output (i.e., recorded power generation) were given as inputs (i.e., no knowledge of any
physical model was known and no dependence on private/proprietary data were needed);

3. The algorithm can run despite inconsistency or loss of data points. Using KDE, the most suitable
inputs are “activated” from the historical dataset.

3. Proposed Methodology

Consider an output variable P that has a value which depends on a set of inputs V := {v1, v2, . . .NV}

through some unknown model f :

P = f (V) = f (v1, v2, . . .NV) (1)

where NV is the number of independent variables which affect output P. For the purpose of
generalization, the inputs V are considered multidimensional, such that:

v1 =
{
v1,1, v1,2, . . . v1,H1

}
(2)

In this case, H1 is the number of dimensions of v1. Now, consider scenario “new” for which we are
trying to predict the output Pnew, given a set of conditions Vnew:

Pnew = f (Vnew) = f
(
vnew

1 , vnew
2 , . . .Nnew

V

)
(3)

The goal is to predict the value of Pnew given only the new conditions Vnew and a historical set of
No cases (with no knowledge of f ):

Pold,o = f
(
Vold,o

)
= f

(
vold,o

1 , vold,o
2 , . . .Nold,o

V

)
; ∀ o = 1, 2, . . . , No (4)

While the model function f is assumed to be chaotic, in this model we assume that the number
of independent input variables and their dimensions remain constant and, therefore, the following
equations hold:

Nnew
V = Nold,o

V = NV; Hnew
i = Hold,o

i = NH; ∀o = 1, 2, . . . , No; i = 1, 2, . . . , NV (5)

At this stage, the objective was to select a subset of Ns cases which were most suitable to form an
ensemble prediction of Pnew. To do this, the KDE function similar to Reference [5] was used to calculate
a similarity index sold,new between the new case and each of the old cases in the historical dataset. In this
case, the most similar Ns cases (with the highest similarity index) can be activated by means of the
product of kernel functions of each variable. This is visualized in Figure 2.
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Figure 2. Demonstration of how the proposed Kernel Density Estimation (KDE)-based similarity index
is used to extract Ns cases to form an ensemble prediction of the new output value.
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The Gaussian kernel functions were used to construct the similarity index KDE, as they are most
suitable for cases when little or no knowledge of the model is known.

sold,new =


NV∏

i

NH∏
j

e
−

1
2 (

vold
i,h −vnew

i,h
bi

)

2
1

NVNH

(6)

The bandwidth value bi can be used to increase or decrease the sampling window (relative to
the full range of the historical samples) for each variable in the same manner that KDE works, i.e.,
the narrower the bandwidth, the higher assumed correlation between variable v and the output P.
Therefore, the value of bi for each variable i can be expressed by means of a tuning coefficient αi:

bi = αi

(
max

o

(
vold,o

i

)
−min

o

(
vold,o

i

))
; ∀ o = 1, 2, . . . , No ; i = 1, 2, . . . , NV (7)

In this way, this normalized tuning coefficient is varied from 0 (exclusive) to 1 (inclusive),
corresponding to a bandwidth value between zero (exclusive) and the maximum range of the historical
value of the variable (inclusive):

0 < αi ≤ 1 ∀ i = 1, 2, . . . , NV (8)

The similarity index in Equation (6) can be simplified in case all input independent variables are
scalars. In this case, NH is equal to one, and the equation is reduced accordingly:

sold,new =

 NV∏
i

e
−

1
2 (

vold
i −vnew

i
bi

)

2
1

NV

(9)

Given a new case, the similarity index is calculated for all old cases in the historical dataset.
We can now construct a sorted array S which has elements that correspond to the index of the old case;
this array thus contains the indices of the historical dataset, sorted from most to least similar to the
current case based on their calculated similarity index for Equation (9):

S = [k1, k2 . . . kNo ] (10)

In this case, k1 is the index o of the historical case with the highest, k2 to the second highest, etc.
Now, the top Ns samples can be selected to perform the ensemble prediction. The simplest prediction
is to calculate the mean value of the top Ns Pold values:

P̂new
≈

∑Ns
i=1 Pold

ki

Ns
(11)

To obtain a confidence/uncertainty interval around this expected output, percentile ranks can be
used by constructing a cumulative distribution function of the top Ns values. By doing so, a confidence
interval can be determined as follows:

P̂new
lb,x% ≤ P̂new

≤ P̂new
ub,x% (12)

P̂new
lb,x% = ρ 1

2 (100−x)%

({
Pold

k1
, Pold

k2
, . . . , Pold

kNs

})
(13)

P̂new
ub,x% = ρ 1

2 (100+x)%

({
Pold

k1
, Pold

k2
, . . . , Pold

kNs

})
(14)

What Equation (12) means is that for a confidence of x%, P̂new lies between the lower and
upper bounds equal to P̂new

lb,x% and P̂new
ub,x%, respectively; which are calculated, as per Equations
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(13) and (14), by means of the percentile ρ 1
2 (100−x)% and ρ 1

2 (100+x)% of the top Ns values({
Pold

k1
, Pold

k2
, . . . , Pold

kNs

})
, respectively.

It must be noted that there are clearly more complex means of calculating P̂new and the confidence
bounds. However, the main focus of this study was to highlight the use of the similarity index to
extract the set S, and the choice of the simplest ensemble prediction afterwards was intentional to
demonstrate the power of such a selection algorithm even with the most basic ensemble applied.

4. Case Study and Validation

4.1. PV Installation in Portugal

In order to test and validate the proposed algorithm, a real case study was used based on solar PV
installations located in the vicinity of the city of Coimbra in the center region (“Região do Centro”) of
Portugal as shown in Figure 3. The technical specifications of the plant are listed in Table 1. Historical
forecasts and measurements are available for the same installation for a full year from 15 March 2015
to 15 March 2016 as detailed in Table 2. Annual plots of all variables are provided in Appendix A1.

In this case, the historical weather forecasts were the input variables (V) and are publicly provided
by the Global Forecasting System (GFS) model with a 22 km resolution. The GFS’s data are available
for any region of the world and is publicly available online [23]. The forecasts are made at 18:00 (UTC
time) of each day for the day-ahead with a 3 h resolution (average of each 3 h interval of the day:
0:00, 3:00, 6:00, ..., 21:00). The provided forecasts are for wind speed, temperature, solar irradiance,
precipitation, and humidity.

The output AC power of the inverter was recorded for the same year. A 20 kW SMA Sunny
Tripower inverter was installed with 2 maximum power point trackers (MPPTs) installed (4 strings per
inverter). The logging frequency of the AC power output was approximately 5 min. For this study,
the recorded AC power was synchronized with the forecasts by applying a 3 h average (averaging can
be seen in Figure A6). It is important to stress that the proposed prediction method was only given the
averaged output power as input. However, high-resolution data were used for validation to test if
uncertainties associated with high frequencies were captured.

4.2. Numerical Irradiance-Based Forecast

Given that the GFS data and the output power were synchronized, and since MPPTs were installed
with the inverters, one can use the following equation to predict the maximum possible power output
from the current installation for each data point.

Pt ≈ Pirr
t = ηavgNpApRw f

t (15)

where Pirr
t is the predicted power output at time t calculated numerically from the irradiance forecast,ηavg

is the overall average energy conversion efficiency of the PV plant (accounting for the PV conversion
and inverter efficiency), Np and Ap are the number of panels and the area of each panel (in m2),

respectively, and Rw f
t is the direct incident solar irradiance (W/m2) obtained from the weather forecast

for time t.

Table 1. Technical specifications of the solar photovoltaic (PV) plant used as a case study.

Parameter Value Units

Number of Panels (300 kWp each) 53 -
Panel Area (each) 1.713 m2

Total Installed Capacity 18 kWp
Inverter Capacity 20 kW

Nominal DC Voltage 600 V
Overall Efficiency 20 %
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Table 2. Details of variables in the historical dataset provided (from 15 March 2015 to 15 March 2016).

Historical Variable Data Source Spatial
Resolution

Temporal
Resolution Units

Wind Speed Meteorological Forecast 22 km 3 h m/s
Temperature Meteorological Forecast 22 km 3 h ◦C

Solar Irradiance Meteorological Forecast 22 km 3 h W/m2

Precipitation Meteorological Forecast 22 km 3 h mm
Humidity Meteorological Forecast 22 km 3 h %

Inverter AC Power (Output) Real Measurement - ~5 min kW
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4.3. Seasonal Test Weeks

Also, in order to check for seasonal effects and/or bias, four test weeks were extracted from the
annual data corresponding to all four seasons. The annual measured output power, annual predicted
maximum output (based on irradiance estimation in Equation (15)), and detailed plots thereof for all
four representative weeks are shown in Figure 4.

By inspecting the plots shown in Figure 4, particularly comparing the maximum theoretical output
based on irradiance and recorded power, two important observations are worthy of noting:

• During the summer, the maximum power output prediction based on Equation (15) was greater
than the recorded value. This is what one would expect, and the operating efficiency and/or
reliability of the installation would seldom reach the maximum theoretical power output;

• During the winter, the prediction based only on solar irradiation failed to predict any value of
output power (one can see that the predicted values were zeros throughout the winter and also by
looking at the plot of the winter week). This is due to the fact that the meteorological forecasts
provided by GFS are averaged over large temporal and spatial resolutions. As such, the forecasted
irradiance would dissipate during winter weather conditions.

As such, it is clear that relying solely on the irradiance models, is insufficient to make any
prediction of the expected power output of the solar PV installations.
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Therefore, the objective of this case study was to check if the proposed method, taking
into consideration GFS data as input variables and the recorded (and synchronized) AC power
output of the plant, would be capable of accurately forecasting the power output under different
meteorological conditions.

The GFS meteorological data are plotted for the entire year in Figures A1–A6 in the Appendix A.
Zoomed-in plots are also provided for each test week in order to show the seasonal differences and
highlight some visible correlation between the weather conditions and the recorded AC power output.
The plots of spring, summer, autumn, and winter are shown in Figures 5–8, respectively.
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4.4. Implementation and Validation

To test the proposed algorithm in Section 2, the power output for each of the four test weeks was
forecasted, only taking as input variables the meteorological forecasts provided by GFS. The hour of
the day and day of the year were appended to the array of input variables in order to give the potential
of favoring closer times/dates. The input variable array for this case was as follows:

V = {v1, v2, v3, v4, v5, v6, v7} (16)

The description of each variable and the choice of the bandwidth tuning coefficients (Equations
(7) and (8)) are provided in Table 3. As explained in Section 2, the smaller the value of α, the higher the
assumed correlation between the output variable and its corresponding input variable. The values
used in this study were assumed based on the well-established physical relationships between each
meteorological variable and the target one (PV output power). For instance, solar irradiance was
associated with the most dependence and thus a value of 0.1 was chosen, etc. This can heuristically be
set based on visual inspection of Figures 5–8.
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Table 3. Description of input variables for the historical dataset and value chosen for bandwidth
coefficient for the KDE-based similarity index calculator.

Bandwidth Coefficient Value

αv1 (hour of the day) 0.4
αv2 (day of the year) 1.0
αv3 (wind speed forecast) 0.8
αv4 (temperature forecast) 0.5
αv5 (solar irradiance forecast) 0.1
αv6 (precipitation forecast) 0.8
αv7 (humidity forecast) 0.5

In order to investigate the performance of the proposed algorithm, the results obtained for the four
test weeks are against the numerical irradiance-based forecast based on Equation (15), and an ANN
(trained using the same data). A feed-forward ANN was used with 1 hidden layer and 10 neurons.
The performance of all three methods was compared in terms of computational time and accuracy. Since
the ANN was trained using the Levenberg–Marquardt algorithm [24], its results and computational
time both varied in every run due to the random data division and training process employed.
Therefore, to evaluate the results in a fair manner, the ANN was run a sufficiently large number of
times (10,000 runs), and the average runtime and forecast results were used for comparison.

To quantify the forecast error, three criteria were used: the mean absolute error (MAE), root mean
square deviation (RMSD), and the normalized root mean square deviation (NRMSD). The MAE
provides a simple overall measurement of the mean error between forecasted (P̂) and real (P) values:

MAE =

∑Nt
t=1

∣∣∣P̂t − Pt
∣∣∣

NT
(17)

where the subscript t corresponds to the value at time step t and Nt is the total number of time steps.
The RMSD is based on the on the quadratic mean:

RMSD =

√√∑Nt
t=1

(
P̂t − Pt

)2

NT
(18)

Both the MAE and RMSD provide a scale-dependent measure of the deviation between the
forecasted and real values. The NRMSD provides a normalized measure as a percentage which is
sometimes more favorable when comparing different models.

NRMSD =
RMSD

(Pmax − Pmin)
· 100% (19)

Pmax and Pmin are the maximum and minimum values of the real data, respectively. As such,
the NRMSD provides a scale-independent measure. The MAE, RMSD, NRMSD, and computational
time are all used to assess the performance of the different approaches for all four test weeks.

The proposed algorithm was developed as original code by the authors using the MATLAB
R2019b environment on a standard laptop computer with the following specifications: Intel Core
i7-8550U CPU @ 1.80 GHz, 16.0 GB RAM, Windows 10 64 bit operating system. The neural network
used for validation was based on the MATLAB 2019b Statistics and Machine Learning Toolbox [24].

5. Results and Discussion

5.1. Results of the Proposed Ensemble Algorithm

The results of the proposed ensemble algorithm are shown in Figure 9. The predicted value was
plotted, along with confidence intervals of 68%, 95%, and 99.7%. The following points are noted:
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• The proposed ensemble algorithm successfully managed to forecast the wind power output,
relying only on the historical GFS meteorological data, for all four tests weeks of all seasons;

• The power production in cases when the deterministic model based on irradiance was inadequate
(i.e., winter season) was successfully predicted;

• Despite only being provided averaged data, the confidence intervals successfully managed to
cover high-frequency fluctuations during most days;

• The confidence interval grows and shrinks in response to such fluctuations even within the same
day (e.g., Summer week, day 5);

• The forecasted mostly underestimated the power output than. This is favorable to overestimation
particularly from the point of view of operators of DG installations.

5.2. Comparison and Validation

A comparison between the forecast obtained and that of an irradiance-based numerical model
(Equation (15)) and an ANN was used to validate the proposed method. As elaborated in the previous
section, the same data were used to train the ANN. Since a random data division and training method
was employed (which aimed to minimize the computational time of the ANN), the average of a
sufficiently large number of runs of the ANN (i.e., 10,000 runs) was used for a fair comparison.

The comparison was made considering the MAE, RMSD, and NRMSD error criteria for each of
the test weeks and is shown in Table 4. The different forecasts are visualized in the plots shown in
Figure 10. The computational time to forecast all four weeks by the proposed method and the ANN
(average of 10,000 runs in each case) is shown in Table 5.

By comparing the results of the different models, the following points can be verified:

• According to all error criteria used, the proposed method outperformed the irradiance-based
prediction for all seasons. It outperformed the ANN in all seasons except winter;

• Both the ANN and the proposed method managed to provide a reasonably accurate prediction of
the output power in the winter, where a numerical irradiance-based model completely fails;

• Despite the ANN being capable of providing a better average error for the winter, the capability of
the proposed method to capture high-frequency fluctuations in its confidence intervals provides
an advantage over the ANN;

• The proposed method was extraordinarily fast in terms of computational time, being 32 times
faster than the ANN while outperforming the ANN in the majority of situations.

5.3. Prospects for Future Work

After testing the proposed method, confirming its validity, and taking note of its superior
performance particularly in terms of providing a highly computationally efficient forecast, the following
recommendations are provided for future work following on this study:

• The effect of using additional meteorological variables (e.g., absolute and relative atmospheric
pressure) should be investigated in terms of the forecast accuracy and computational burden;

• Optimal tuning of the bandwidth coefficients should be studied. This can be performed in a
pre-processing stage (e.g., with correlation analysis) or using a reinforcement learning-based
design in which the values are self-tuned every time the code is run. In the latter, using an
optimization method to determine the optimal values may be an option for a hybrid structure;

• Due to the fact of its high computational efficiency and its reliance only on publicly available
historical weather forecasts, the proposed method seems to have great potential to be applied to
forecast RES-based DG. As such, follow-up work should test the proposed method on other RES
technologies such as wind power.
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Table 4. Comparison of the MAE, RMSD, and NRMSD error criteria for the results obtained for each of
the test weeks from the irradiance forecast, ANN, and the proposed method.

Criterion Method Winter Spring Summer Autumn

MAE (kW)
Irradiance Forecast 34.6 15.7 17.4 15.3

Neural Network 10.7 15.5 8.4 7.9
Proposed Method 12.6 14.0 3.6 7.7

RMSD (kW)
Irradiance Forecast 3.062 2.138 2.508 1.857

Neural Network 0.949 2.114 1.203 0.951
Proposed Method 1.115 1.914 0.523 0.928

NRMSD (%)
Irradiance Forecast 34.6 15.7 17.4 15.3

Neural Network 10.7 15.5 8.4 7.9
Proposed Method 12.6 14.0 3.6 7.7
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Table 5. Comparison of the computational time between the proposed method and the ANN.

Computational Time to Forecast all Four Weeks
(Average of 10,000 runs)

Neural Network 1.46 s
Proposed Method 0.045 s

6. Conclusions

In this study, a novel ensemble algorithm based on kernel density estimation (KDE) was proposed
to forecast RES-based DG, particularly PV power. The proposed method relies solely on publicly
available historical series of independent input variables (i.e., historical meteorological forecasts) and
the corresponding local output (i.e., recorded power generation). Given a new case (with forecasted
meteorological variables), the resulting power generation was forecasted. For the new case to be
forecasted, a KDE-based similarity index was used to determine a set of most similar cases from the
historical dataset. Then, the corresponding outputs of the most similar cases were used to calculate
an ensemble prediction for the forecasted power generation. The proposed method was tested by
considering meteorological and recorded power generation from a PV installation around the city
of Coimbra, in the center region of Portugal. Despite only being given averaged data as inputs,
the developed algorithm was capable of predicting uncertainties associated with high frequency
variations in weather conditions, outperforming deterministic prediction based on solar irradiance
forecasts. The proposed method outperformed an ANN in most cases while being exceptionally faster
(32 times more than the computational time). Given its exceptional computational efficiency and its
reliance solely on public data (weather forecasts) and local metered data (power generation), it is a
convenient tool for use by owners or operators of solar power installations to effectively forecast their
expected generation without depending on private/proprietary data or divulging their own.
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