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Abstract: The fastest-growing renewable source of energy is solar photovoltaic (PV) energy, which
is likely to become the largest electricity source in the world by 2050. In order to be a viable
alternative energy source, PV systems should maximise their efficiency and operate flawlessly.
However, in practice, many PV systems do not operate at their full capacity due to several types
of anomalies. We propose tailored algorithms for the detection of different PV system anomalies,
including suboptimal orientation, daytime and sunrise/sunset shading, brief and sustained daytime
zero-production, and low maximum production. Furthermore, we establish simple metrics to assess
the severity of suboptimal orientation and daytime shading. The proposed detection algorithms were
applied to a set of time-series of electricity production in Portugal, which are based on two periods
with distinct weather conditions. Under favourable weather conditions, the algorithms successfully
detected most of the time-series labelled with either daytime or sunrise/sunset shading, and with
either sustained or brief daytime zero-production. There was a relatively low percentage of false
positives, such that most of the anomaly detections were correct. As expected, the algorithms tend
to be more robust under favourable rather than under adverse weather conditions. The proposed
algorithms may prove to be useful not only to research specialists, but also to energy utilities and
owners of small- and medium-sized PV systems, who may thereby effortlessly monitor their operation
and performance.
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1. Introduction

The concentration of greenhouse gases (GHGs) in the Earth’s atmosphere has been steadily
increasing since the Industrial Revolution [1] and has thereby contributed to global warming over the
last two centuries [2–4]. This trend is primarily due to human activity, where the energy sector has
become a significant driver of GHG emissions [5]. Indeed, if current practices in energy production
are to be maintained, global temperature is expected to increase as much as 6 ◦C above pre-industrial
levels by 2050 [6]. There is therefore an urgent need to shift from carbon-intensive to sustainable and
renewable energy sources, and thereby reduce GHG emissions to limit global warming to 1.5 ◦C by
2050 [7].

Solar photovoltaic (PV) energy is perhaps the most promising and fastest-growing renewable
source of energy, and it is poised to become the world’s largest source of electricity by 2050 [5]. Hence,
PV systems have great potential to reduce the current dependence on carbon-intensive sources of
energy, and progress has been made to enhance their efficiency. In fact, solar cell efficiency has
increased from about 5% to over 40% over the last 60 years [8], yet current efficiency levels are rather
low compared to those of alternative sources of energy. PV systems should ideally operate seamlessly
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without anomalies to maximise efficiency and remain a viable alternative energy source. In reality,
however, several kinds of anomalies may occur that prevent PV systems from operating at their full
capacity. Thus, it is important to monitor the activity of PV systems, so that these anomalies can be
detected and repaired to ensure maximum efficiency [9–12].

Anomaly detection in PV systems can be performed using several methods, ranging from classical
statistics to data mining and machine learning [13,14]. Although such methods may be well suited
to detect anomalies in PV systems, they typically require data that might not be readily available
for anomaly detection. In particular, several methods of anomaly detection are based not only on
PV system production, but also on environmental data such as solar irradiation or temperature
(e.g., [15–19]). Alternatively, ref. [20] proposes a method of anomaly detection in PV systems based
on inferential statistical tools, which does not require environmental data. However, this method
is designed strictly for anomaly detection in PV systems, and thus it is not devised to identify and
distinguish several types of anomalies.

We address this problem by developing anomaly detection algorithms that indicate whether and
why a given PV system is not operating properly, and propose simple metrics to estimate anomaly
severity. Specifically, five algorithms tailored to detect PV system anomalies are evaluated, and
they also identify the cause of such anomalies: daytime zero-production, low maximum production,
daytime shading, sunrise/sunset shading, and suboptimal orientation. Importantly, the algorithms are
based on simple rules that solely require the PV system production as input data for anomaly detection.
Although PV systems are becoming increasingly sophisticated and currently allow for the monitoring
of environmental parameters, a significant share of PV systems still does not offer this possibility and
may therefore benefit from the widely applicable algorithms that are proposed. These algorithms may
prove useful not only to research specialists, but also to energy utilities and owners of small- and
medium-sized PV systems, who may thereby effortlessly monitor their operation and performance.

The usefulness of the proposed methods is demonstrated with time-series of electricity production
in Portugal, which were acquired for two periods with contrasting weather conditions. The majority of
PV systems analysed in this study are small solar panels used for domestic purposes, and therefore
similar in their structure. Furthermore, the geographical distribution of PV systems is restricted to the
continental territory of Portugal, such that weather conditions (e.g., daytime period, air temperature)
are regionally similar.

2. PV System Anomalies: An Overview

Despite their potential to offer a clean and inexhaustible source of energy, PV systems often
operate suboptimally due to several kinds of anomalies. Two major types of PV system anomalies are
distinguished: (1) internal PV system faults, which originate from the PV system itself, and (2) external
factors, which do not originate from the PV system and yet impair its electricity production. Although
this categorization of PV system anomalies is arbitrary, it facilitates the distinction between anomalies
that largely result in daytime zero-production (i.e., internal faults) and those that result in reduced
nonzero production (i.e., external factors). A brief overview of these two major types of PV system
anomalies is provided below and highlights their impact on electricity production.

2.1. Internal PV System Faults

Typical PV system faults include component failure, system isolation due to maintenance work,
inverter shutdown due to power cuts or variations in grid voltage, and inverter dropout due to
maximum power point tracking (MPPT; [11]). Table 1 presents a short description of these common
PV system faults and indicates their impact on electricity production. PV systems consisting of a single
module are considered in Table 1, which therefore does not include faults in PV systems comprising
several modules (e.g., failure of single PV modules and module mismatch). Most PV system faults
analysed by [11] lead to episodes of brief or sustained zero-production, whereas nonzero production
occurs only in case of inverter dropout.
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Table 1. Description of photovoltaic (PV) system faults and their impacts (Adapted from [11], Elsevier:
2010).

Fault Description Impact

Component failure No production due to component failure Sustained zero-production

Sustained system isolation No production when system is switched
off (e.g., for maintenance work) Sustained zero-production

Inverter shutdown No production due to power cut or
variation in grid voltage Brief zero-production

Brief system isolation No production when system is switched
off (e.g., for maintenance work) Brief zero-production

Inverter dropout Reduced production due to MPPT Reduced nonzero production

2.2. External Factors Impairing PV System Performance

There are other factors besides PV system faults, which are external to PV systems and prevent
the generation of maximum electrical power (Table 2). High wind speed may either increase or
decrease power generation [21]. Specifically, high wind speed increases the efficiency of PV systems by
reducing relative humidity, whereas it can decrease efficiency by scattering dust, and causing shading.
Vandalism and theft also affect power generation in PV systems, although their impact remains poorly
studied [22].

Table 2. External factors impairing electricity production.

Factor Impact 1 Source

Shading Up to 79% decrease in power generation [23]
High temperature Up to 15% decrease in power generation [24]

Suboptimal tilt/orientation Up to 59% decrease in power generation [25]
Soiling Up to 90% decrease in power generation [26]

High humidity Up to 50% decrease in power generation [21]
Snow cover Up to 90% decrease in power generation [27]

1 Maximum power loss relative to Standard Test Condition operation.

3. Methods

3.1. Algorithms for Anomaly Detection

We developed five algorithms for anomaly detection, which also allow for the identification of
several types of anomalies: daytime zero-production, low maximum production, daytime shading,
sunrise/sunset shading, and suboptimal orientation. That is, the algorithms are designed to pinpoint
the cause of production anomalies in PV systems, so that these production anomalies may be readily
solved. The proposed algorithms are summarised in Figure 1 and detailed in the following sections.

3.1.1. Daytime Zero-Production

Anomalies leading to daytime zero-production include most of the internal PV system faults
shown in Table 1. It is assumed that time-series with daytime zero-production have at least one
daytime observation where production, Pday,i, is sufficiently close to zero (i.e., where Pday,i ≤ 10−3 kWh;
see Figure 1A). That is, the threshold for daytime zero-production has been set at 10−3 kWh. Although
this is an arbitrary value, the sensitivity of the algorithms to changes in the threshold for zero-production
was tested, and we found that a threshold of 10−3 kWh is the most satisfactory. Specifically, lower
thresholds result in lower detection rates of daytime zero-production, whereas higher thresholds result
in higher percentage of false daytime zero-production detections.
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Figure 1. Overview of the algorithms for anomaly detection. (A) Daytime zero-production algorithm;
(B) low maximum production algorithm; (C) daytime shading algorithm; (D) sunrise/sunset shading
algorithm; and (E) suboptimal orientation algorithm.

To determine the daytime period, we propose to first calculate the hour angle, ωs, at which sunrise
(−ωs) and sunset (ωs) occur:

ωs =


0 if − tan(φ) tan(δ) ≥ 1
π if− tan(φ) tan(δ) ≤ −1

arccos(− tan(φ) tan(δ)) if− 1 < − tan(φ) tan(δ) < 1
, (1)

where ϕ is the latitude at which the PV system is located and δ is the Sun’s declination angle:

δ = 23.45
π

180
sin

(
2π

284 + n
365.25

)
, (2)
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which varies daily throughout the year, where n is the day number. Subsequently, the sunrise/sunset
hour angle is converted to decimal hours using the equation of time [28], and the daytime period is
defined as the following interval:

day = [tSR + offset, tSS − offset], (3)

where tSR and tSS are the sunrise and sunset time in decimal hours, respectively, and offset = 2.5 h
prevents the false detection of daytime zero-production (e.g., due to sunrise/sunset shading; see below).
The offset has been defined at 2.5 h after investigating the sensitivity of the algorithms to this parameter,
and finding that their performance is most satisfactory at this value. Specifically, shorter offsets result
in more false detections of daytime zero-production, whereas longer offsets result in lower detection
rates of daytime zero-production.

If a given time-series has episodes of daytime zero-production, then this algorithm determines
whether such episodes are sustained or brief. According to Table 1, sustained daytime zero-production
can result from component failure or sustained system isolation, whereas brief daytime zero-production
can result from inverter shutdown or brief system isolation. On the one hand, sustained daytime
zero-production is considered to last at least one day, such that the maximum production during
daytime on a given day, Pmax,day, is sufficiently close to zero (i.e., Pmax,day ≤ 10−3 kWh). On the other
hand, brief daytime zero-production is considered to last less than one day, such that the maximum
production on a given day during the daytime is sufficiently higher than zero (i.e., Pmax,day > 10−3 kWh).

3.1.2. Low Maximum Production

It is assumed that low maximum production may result from high humidity, soiling or suboptimal
tilt/orientation of the PV system, all of which incur substantial output losses (Table 2). These anomalies
contrast with high temperature, which incurs relatively small output losses of up to 15%. To detect
low maximum production (Figure 1B), we propose an algorithm that determines whether maximum
production on a given day, Pmax,day, is sufficiently higher than zero and substantially lower than a
reference value, Pmax,ref, so that 10−3 < Pmax,day ≤ 0.85 Pmax,ref. That is, low maximum production is
detected whenever output losses are greater than 15%, in which case PV system performance is likely
impaired by high humidity, soiling or suboptimal tilt/orientation.

The reference value of maximum production corresponds to a standard PV system capacity (i.e.,
62.5 kWh, 125 kWh, 187.5 kWh, 250 kWh, and so on for a period of 15 min), and is calculated based
on the historical maximum of production. Specifically, the reference value is the closest standard
capacity above the historical maximum, where the historical maximum is a median of the 25 highest
observations for a given PV system over the analysed five-week period. For example, if maximum
production on a given day is 90 kWh and the reference value is 125 kWh, then the PV system is assumed
to be operating substantially below capacity (i.e., at 72%) on that day.

3.1.3. Daytime Shading

To detect episodes of shading during the daytime, we propose an algorithm that determines
whether a given time-series shows regular local minima (Figure 1C). It is assumed that time-series
with local minima have at least one observation that is a local minimum. To ensure the detection of
consecutive local minima and avoid the detection of negligible local minima, we adopt a somewhat
more stringent definition of a local minimum than it is common. More specifically, the daytime
observation Pday,i is considered a local minimum if the production of either both its nearest neighbours,
Pday,i−1 and Pday,i+1, or both its second-nearest neighbours, Pday,i−2 and Pday,i+2, are at least 1% higher
than Pday,i.

If a time-series has local minima, then this algorithm determines whether such local minima occur
regularly (i.e., at least four days in a week) at a specific time of the day. This repetitive pattern is likely
due to shading, which causes a recurrent drop in production at a particular time of the day. Local
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minima that otherwise occur irregularly are assumed to result from adverse weather conditions (e.g.,
overcast or rainy weather).

3.1.4. Sunrise/Sunset Shading

Shading may occur not only during daytime, but also at sunrise/sunset. Shading at sunrise/sunset
can be readily detected if the slope of production at sunrise/sunset is substantially less steep than
expected. To detect episodes of sunrise/sunset shading, we developed an algorithm that compares
the steepness of the observed slope of production at sunrise/sunset with that of an optimum slope of
production (Figure 1D).

To obtain an optimum slope of production at sunrise/sunset, the optimum PV system efficiency is
modelled under ideal weather conditions, eopt. Specifically, the hourly solar irradiation on a PV system
is first estimated based on [29], assuming that the PV system has optimum tilt/orientation and taking
into account its geographical location. Subsequently, the estimated hourly solar irradiation is used
to simulate the efficiency of a model PV system as described by [30]. We refer to Appendix A for a
detailed description of the estimation of hourly solar irradiation, and to Appendix B for a detailed
description of the estimation of optimum PV system efficiency.

To calculate the observed slope of production at sunrise/sunset, we first draw a curve of weekly
mean efficiency of the PV system, e. This curve is obtained by calculating the ratio between the weekly
average of electricity production throughout the day, and the reference value of maximum production.
Subsequently, the slope of weekly mean efficiency is calculated at sunrise and sunset, SSR and SSS,
respectively:

SSR =
eSR+offset − eSR

offset
, (4)

SSS =
eSS − eSS−offset

offset
, (5)

where eSR (eSS) is the weekly mean efficiency at sunrise (sunset), and eSR+offset (eSS−offset) is the weekly
mean efficiency after sunrise (before sunset). These observed slopes of weekly mean efficiency are then
compared with optimum slopes, Sopt,SR and Sopt,SS, obtained from the PV system model:

Sopt,SR =
eopt,SR+offset − eopt,SR

offset
, (6)

Sopt, SS =
eopt,SS − eopt, SS−offset

offset
, (7)

where eopt,SR and eopt,SS are the optimum efficiency at sunrise and sunset, respectively. Thus, sunrise
and sunset shading are detected if observed slopes are at most 40% as steep as optimum slopes (i.e., if
|SSR| ≤ 0.4 |Sopt,SR| and |SSS| ≤ 0.4 |Sopt,SS|, respectively). We investigated the sensitivity of the algorithm
to changes in this steepness threshold, and found that a steepness threshold either lower or higher
than 40% impairs algorithm performance.

3.1.5. Suboptimal Orientation

PV systems with suboptimal orientation are characterised not only by substantial losses in
electricity production (Table 2), but also by a temporal mismatch between observed weekly mean
efficiency and optimum efficiency (Figures 1E and 2). The extent to which the orientation of a PV
system deviates from optimum conditions is determined by calculating its orientation index at sunrise
and sunset, ISR and ISS, respectively:

ISR = topt,SR − tSR, (8)

ISS = topt,SS − tSS, (9)

where topt,SR is the moment when optimum efficiency increases to 10% of maximum optimum
efficiency, and tSR is the moment when weekly mean efficiency increases to 10% of maximum optimum
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efficiency. Conversely, topt,SS is the moment when optimum efficiency drops to 10% of maximum
optimum efficiency, and tSS is the moment when weekly mean efficiency drops to 10% of maximum
optimum efficiency.
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and points where observed and optimum efficiency increase or decrease to 10% of the optimum
efficiency maximum.

The orientation index of a given PV system simply corresponds to the average of its sunrise and
sunset orientation indices:

I =
ISR + ISS

2
. (10)

Thus, the orientation of a PV system is assumed to be equator-facing and potentially optimal if I =

0. Conversely, the orientation of a PV system is assumed to be suboptimal if I , 0, and considered to be
west-facing if I < 0 and east-facing if I > 0.

3.2. Estimation of Anomaly Severity

Although the detection algorithms described above can be used to identify several types of
anomalies, these algorithms do not measure the severity of anomalies. However, anomaly severity is
important to determine, because it indicates the extent to which a given anomaly impairs PV system
performance. To address this issue, we introduce simple metrics that quantify the severity of two
anomalies, namely daytime shading and suboptimal orientation.

3.2.1. Daytime Shading Magnitude and Length

In case daytime shading events are detected in a time-series, the severity of daytime shading is
measured by calculating its magnitude and length. To this end, we first draw a curve showing the
weekly mean efficiency of a PV system, e. Typically, PV systems affected by daytime shading will have
weekly mean efficiency curves with one local minimum, emin, and two local maxima, emax,1 and emax,2

(Figure 3). Subsequently, the weekly mean efficiency curves are used to determine the magnitude and
length of daytime shading. On the one hand, shading magnitude, M, is calculated as the standardised
difference between the expected efficiency in the absence of daytime shading, eexp, and the observed
local efficiency minimum:

M =
eexp − emin

eexp
, (11)

where the expected efficiency is estimated by linear regression through the two local efficiency maxima
(Figure 3A). On the other hand, shading length, L, is calculated as the time interval between the moment
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of one of the local efficiency maxima, tmax,1 or tmax,2, and the moment when observed efficiency matches
expected efficiency, texp (Figure 3B):

L =

{
texp − tmax,1 if emax,2 > emax,1

tmax,2 − texp if emax,2 < emax,1
. (12)
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Figure 3. Estimation of daytime shading severity from a weekly mean efficiency curve. (A) Shading
magnitude, and (B) shading length. Blue curves indicate the observed weekly mean efficiency. Black
solid circles denote the local efficiency minimum, emin, and the expected efficiency in the absence of
daytime shading, eexp. Gray solid circles denote the two local efficiency maxima, emax,1 and emax,2,
associated with daytime shading.

We propose this definition of shading length, instead of simply calculating tmax,2 − tmax,1, because
it prevents overestimation in some cases. Specifically, daytime shading may briefly occur before or
after electricity production peaks, such that the time interval tmax,2 − tmax,1 is actually much longer
than the shading itself. We found that Equation (12) effectively reduces this overestimation.

Hence, the severity of daytime shading is determined by calculating its magnitude and length,
such that severe daytime shading events are assumed to have a larger magnitude and last for more
extended periods. More specifically, the severity of daytime shading is classified into three different
categories: mild shading if M ≤ 15% and L ≤ 1.5 h, severe shading if M ≥ 30% and L ≥ 3 h and moderate
shading otherwise.

3.2.2. Orientation Index

Similar to daytime shading, the severity of suboptimal orientation is classified into three different
categories, which depend on the orientation index described above. Hence, a PV system is assumed to
have mildly suboptimal orientation if 0 h < |I| ≤ 1 h, moderately suboptimal orientation if 1 h < |I| ≤ 2
h, and severely suboptimal orientation if |I| > 2 h.

3.3. Algorithm Performance Indicators

We manually annotated time-series with sustained or brief daytime zero-production, daytime
shading and sunrise/sunset shading, in order to evaluate the performance of the anomaly detection
algorithms. Subsequently, two indicators were used to measure the performance of the detection
algorithms for these anomalies. First, the detection rate, DR, was calculated as the ratio between the
number of time-series correctly detected as anomalous by a given algorithm, Correct, and the total
number of time-series annotated with a given anomaly, Annotated:

DR =
Correct

Annotated
× 100. (13)
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Second, the percentage of false positives, FP, was calculated as the ratio between the number of
time-series incorrectly detected as anomalous by a given algorithm, Incorrect, and the total number of
time-series detected as anomalous by that algorithm, Total:

FP =
Incorrect

Total
× 100, (14)

where Incorrect = Total − Correct. In other words, FP is the proportion of time-series identified by a
given detection algorithm as anomalous, which are in fact not annotated as such. Therefore, it is
assumed that the performance of a given detection algorithm depends on its detection rate (also known
as recall or sensitivity; [31]) and percentage of false positives, such that robust algorithms will have
high detection rate and produce a low percentage of false positives.

We note that time-series annotation is particularly difficult for low maximum production and
suboptimal orientation, because we do not have prior knowledge about the maximum capacity and
orientation of the PV systems. Thus, we did not determine the detection rate and percentage of false
positive detections of these two algorithms.

3.4. Electricity Time-Series

To assess the performance of the proposed anomaly detection algorithms, a dataset including 1676
univariate time-series of electricity production in Portugal was analysed. Each time-series corresponds
to a differently located PV system, and consists of electricity production measurements recorded every
15 min over several months to years (Figure 4). This dataset was used to test algorithms of anomaly
detection and metrics of anomaly severity, as described below.
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Time-series for two short periods of five weeks with contrasting weather conditions were analysed,
and anomaly detection was performed on the last week of these two periods. Specifically, we performed
anomaly detection over the week of 1 to 7 August 2016, which was particularly favourable for PV
system activity, and the week of 18 to 24 November 2016, which was particularly adverse for PV system
activity. For simplicity, it is assumed that the daytime period is the same for all PV systems analysed in
this study, and perform anomaly detection using the daytime period in Lisbon for 1 August 2016, and
for 18 November 2016.

Several time-series have erroneous values or missing values, which are due to communication
problems and preclude a proper analysis of the data. Therefore, anomaly detection was only performed
on time-series that do not have erroneous values, which were detected as nonzero production levels
recorded during night-time (i.e., between 00:00 and 04:00). Furthermore, time-series that are empty for
either one of the whole two five-week periods of analysis were discarded. Hence, anomaly detection
was performed on both complete and incomplete time-series, and a measure of accuracy was used
to determine the reliability of anomaly detection. In particular, the accuracy of anomaly detection
corresponds to the ratio between the number of observations in a given time-series, and the maximum
possible number of observations that time-series can have. For illustration purposes, figures shown in
the Results section correspond to complete time-series that were 100% accurate for anomaly detection.
Data pre-processing yielded 407 eligible time-series for the favourable week in August, and 886 eligible
time-series for the adverse week in November.

Hourly solar irradiation and the resulting PV system efficiency were estimated during 1 August
2016, and 18 November 2016, assuming that the PV system has optimum tilt/orientation and is located
in Lisbon.

4. Results and Discussion

4.1. Algorithm Performance under Favourable Weather Conditions

4.1.1. Anomaly Detection

The algorithms developed in this study readily detected several types of anomalies under
favourable weather conditions (Figure 5). First, 31 PV systems were detected with sustained daytime
zero-production anomalies (Figure 5A), and 21 PV systems with brief daytime zero-production
anomalies (Figure 5B). Following the time-series annotation, 27 PV systems were identified
with sustained daytime zero-production and 31 PV systems with brief daytime zero-production.
The detection rate of the algorithm for sustained and brief daytime zero-production was therefore 96%
(16% false positives) and 61% (9.5% false positives), respectively.

Second, the daytime shading algorithm detected 11 PV systems with regular local minima
(Figure 5C), whereas the time-series annotation identified 17 PV systems with daytime shading. As a
result, the detection rate of the daytime shading algorithm was 65%, and this algorithm did not
produce any false positives. Moreover, the sunrise/sunset shading algorithm detected 35 PV systems
with sunrise shading and 98 PV systems with sunset shading (Figure 5D), whereas the time-series
annotation identified 53 PV systems with sunrise shading and 71 PV systems with sunset shading.
Thus, the detection rate of the algorithm for sunrise and sunset shading was 57% (14% false positives)
and 96% (31% false positives), respectively.

Third, the algorithms for low maximum production and suboptimal orientation detected 263 PV
systems and 333 PV systems, respectively, with each type of anomaly (Figure 5E,F).



Energies 2020, 13, 225 11 of 21

Energies 2020, 13, x FOR PEER REVIEW 10 of 20 

 

production levels recorded during night-time (i.e., between 00:00 and 04:00). Furthermore, time-
series that are empty for either one of the whole two five-week periods of analysis were discarded. 
Hence, anomaly detection was performed on both complete and incomplete time-series, and a 
measure of accuracy was used to determine the reliability of anomaly detection. In particular, the 
accuracy of anomaly detection corresponds to the ratio between the number of observations in a 
given time-series, and the maximum possible number of observations that time-series can have. For 
illustration purposes, figures shown in the Results section correspond to complete time-series that 
were 100% accurate for anomaly detection. Data pre-processing yielded 407 eligible time-series for 
the favourable week in August, and 886 eligible time-series for the adverse week in November. 

Hourly solar irradiation and the resulting PV system efficiency were estimated during 1 August 
2016, and 18 November 2016, assuming that the PV system has optimum tilt/orientation and is located 
in Lisbon. 

4. Results and Discussion 

4.1. Algorithm Performance Under Favourable Weather Conditions 

4.1.1. Anomaly Detection 

The algorithms developed in this study readily detected several types of anomalies under 
favourable weather conditions (Figure 5). First, 31 PV systems were detected with sustained daytime 
zero-production anomalies (Figure 5A), and 21 PV systems with brief daytime zero-production 
anomalies (Figure 5B). Following the time-series annotation, 27 PV systems were identified with 
sustained daytime zero-production and 31 PV systems with brief daytime zero-production. The 
detection rate of the algorithm for sustained and brief daytime zero-production was therefore 96% 
(16% false positives) and 61% (9.5% false positives), respectively. 

 
Figure 5. Examples of photovoltaic (PV) systems detected with production anomalies under 
favourable weather conditions. (A) PV system with sustained daytime zero-production; (B) PV 
system with brief daytime zero-production; (C) PV system with daytime shading; (D) PV system with 
sunrise and sunset shading; (E) PV system with low maximum production; and (F) PV system with 
suboptimal orientation. 

Second, the daytime shading algorithm detected 11 PV systems with regular local minima 
(Figure 5C), whereas the time-series annotation identified 17 PV systems with daytime shading. As 
a result, the detection rate of the daytime shading algorithm was 65%, and this algorithm did not 
produce any false positives. Moreover, the sunrise/sunset shading algorithm detected 35 PV systems 
with sunrise shading and 98 PV systems with sunset shading (Figure 5D), whereas the time-series 
annotation identified 53 PV systems with sunrise shading and 71 PV systems with sunset shading. 

Figure 5. Examples of photovoltaic (PV) systems detected with production anomalies under favourable
weather conditions. (A) PV system with sustained daytime zero-production; (B) PV system with brief
daytime zero-production; (C) PV system with daytime shading; (D) PV system with sunrise and sunset
shading; (E) PV system with low maximum production; and (F) PV system with suboptimal orientation.

4.1.2. Anomaly Severity for Daytime Shading

To investigate daytime shading severity, the shading magnitude and length of the 11 PV systems
correctly detected by the algorithm were calculated (Table 3). Shading magnitude varies considerably
among PV systems and ranges from M = 7.9% to M = 59.8%. In other words, the local minima of weekly
mean efficiency of the PV systems caused drops between 7.9% and 59.8% relative to the expected
efficiency in the absence of shading. Similarly, shading length also varies considerably among PV
systems and ranges from L = 0.75 h to L = 5.75 h.

Table 3. Photovoltaic (PV) systems correctly detected with daytime shading under favourable weather
conditions, and their respective shading magnitude, shading length and shading severity.

ID Shading Magnitude, M (%) Shading Length, L (h) Shading Severity (-)

C0449 33.5 4.75 Severe
C0494 7.9 1.25 Mild
C0527 13.5 4.25 Moderate
C0536 22.0 1.50 Moderate
C0541 26.2 2.00 Moderate
C0582 59.8 2.00 Moderate
C0773 23.8 4.75 Moderate
C0832 56.9 1.50 Moderate
C0940 14.5 0.75 Mild
C1420 25.3 4.25 Moderate
C1432 55.0 5.75 Severe

The shading magnitude and length of each PV system should be considered together, so that
shading severity can be assessed. Thus, PV systems mildly affected by daytime shading will have
low shading magnitude and short shading length, whereas PV systems severely affected by daytime
shading will have high shading magnitude and long shading length. Figure 6 shows the contrast
between electricity production and weekly mean efficiency of a PV system with mild daytime shading
(Figure 6A,C), and those of a PV system with severe daytime shading (Figure 6B,D).
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Figure 6. Two photovoltaic (PV) systems with contrasting daytime shading severity. Time-series of
electricity production for (A) a PV system with mild daytime shading, and (B) a PV system with severe
daytime shading. Weekly mean efficiency curves for (C) a PV system with mild daytime shading, and
(D) a PV system with severe daytime shading.

4.1.3. Anomaly Severity for Suboptimal Orientation

To investigate whether a given PV system has proper orientation, its orientation index was
calculated (Figure 7). Similar to daytime shading magnitude and length, the orientation index varies
considerably among PV systems and ranges from I = −5 h to I = 2 h. That is, the orientation index
varies between negative and positive values, indicating that the weekly mean efficiency of PV systems
with suboptimal orientation (i.e., with I , 0 h) can be either lagging or leading, relative to the optimum
efficiency curve.
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Figure 7. Weekly mean efficiency curves of three photovoltaic (PV) systems with contrasting orientation
index. (A) PV system with an orientation index of I = 0 h; (B) PV system with negative orientation index
(I = –0.625 h); and (C) PV system with positive orientation index (I = 1.125 h). Blue curves indicate
the observed weekly mean efficiency, and black dashed curves indicate the simulated efficiency under
optimum conditions.

From the 353 PV systems eligible for orientation analysis, 20 PV systems have an orientation index
of I = 0 h (Figure 7A), which indicates a potentially optimal orientation towards the equator. Therefore,
the majority of PV systems appear to have suboptimal orientation. Specifically, 131 PV systems have a
negative orientation index and are potentially west-facing (Figure 7B), whereas 202 PV systems have a
positive orientation index and are potentially east-facing (Figure 7C).
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4.2. Algorithm Performance Under Adverse Weather Conditions

4.2.1. Anomaly Detection

Similar to the anomaly detection under favourable weather conditions, the algorithms developed
in this study also detected several types of anomalies under adverse weather conditions (Figure 8).
First, 58 PV systems were detected with sustained daytime zero-production anomalies (Figure 8A), and
216 PV systems with brief daytime zero-production anomalies (Figure 8B). Following the time-series
annotation, 49 PV systems were identified with sustained daytime zero-production and 143 PV systems
with brief daytime zero-production. The detection rate of the algorithm for sustained and brief daytime
zero-production was therefore 100% (16% false positives) and 67% (56% false positives), respectively.Energies 2020, 13, x FOR PEER REVIEW 13 of 20 
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Figure 8. Examples of photovoltaic (PV) systems detected with production anomalies under adverse
weather conditions. (A) PV system with sustained daytime zero-production; (B) PV system with brief
daytime zero-production; (C) PV system with daytime shading; (D) PV system with sunrise and sunset
shading; (E) PV system with low maximum production; and (F) PV system with suboptimal orientation.

Second, the daytime shading algorithm detected 61 PV systems with regular local minima
(Figure 8C), whereas the time-series annotation identified 26 PV systems with daytime shading. As a
result, the detection rate of the daytime shading algorithm was 69% (71% false positives). Moreover, the
sunrise/sunset shading algorithm detected 589 PV systems with sunrise shading and 373 PV systems
with sunset shading (Figure 8D), whereas the time-series annotation identified 415 PV systems with
sunrise shading and 134 PV systems with sunset shading. Thus, the detection rate of the algorithm for
sunrise and sunset shading was 91% (35% false positives) and 78% (72% false positives), respectively.

Third, the algorithms for low maximum production and suboptimal orientation detected 643 PV
systems and 796 PV systems, respectively, with each type of anomaly (Figure 8E,F).

4.2.2. Anomaly Severity for Daytime Shading

The shading magnitude and length of the 16 PV systems correctly detected by the algorithm
were calculated (Table 4). Similar to the analysis under favourable weather conditions, shading
magnitude varies considerably among PV systems and ranges from M = 0.6% to M = 60.7%. In other
words, the local minima of weekly mean efficiency of the PV systems caused drops between 0.6% and
60.7% relative to expected efficiency in the absence of shading. Similarly, shading length also varies
considerably among PV systems and ranges from L = 0.75 h to L = 3.25 h.
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Table 4. Photovoltaic (PV) systems correctly detected with daytime shading under adverse weather
conditions, and their respective shading magnitude, shading length and shading severity.

ID Shading Magnitude, M (%) Shading Length, L (h) Shading Severity (-)

C0056 21.1 1.50 Moderate
C0123 35.7 1.75 Moderate
C0144 5.4 0.75 Mild
C0148 19.5 1.50 Moderate
C0211 60.7 1.50 Moderate
C0221 24.1 1.25 Moderate
C0323 13.5 1.50 Mild
C0467 44.9 1.25 Moderate
C0491 7.2 1.00 Mild
C0689 13.2 0.75 Mild
C0870 0.6 3.25 Moderate
C1091 19.0 3.25 Moderate
C1196 25.6 3.25 Moderate
C1338 44.9 1.50 Moderate
C1643 34.9 1.50 Moderate
C1648 4.6 3.25 Moderate

4.2.3. Anomaly Severity for Suboptimal Orientation

The orientation index varies considerably among PV systems under adverse weather conditions
and ranges from I = −4 h to I = 1.125 h. From the 813 PV systems eligible for orientation analysis, 17
PV systems have an orientation index of I = 0 h, which indicates a potentially optimal orientation
towards the equator. Therefore, the majority of PV systems appear to have suboptimal orientation.
Specifically, 784 PV systems have a negative orientation index and are potentially west-facing, whereas
12 PV systems have a positive orientation index and are potentially east-facing.

4.3. Discussion

4.3.1. Anomaly Detection

The results indicate that the algorithms proposed in this study perform well on anomaly detection
under favourable weather conditions. In particular, the majority of PV systems labelled with either
sustained or brief daytime zero-production, and either daytime or sunrise/sunset shading, were
successfully detected (Table 5). Furthermore, most anomaly detections are correct, because these
algorithms also produced a relatively low percentage of false positives.

Table 5. Performance of detection algorithms under favourable versus adverse weather conditions.

Anomaly Favourable Weather Conditions Adverse Weather Conditions

Detection Rate False Positives Detection Rate False Positives

Sustained
zero-production

96% 16% 100% 16%

Brief zero-production 61% 9.5% 67% 56%
Daytime shading 65% 0% 69% 71%
Sunrise shading 57% 14% 91% 35%
Sunset shading 96% 31% 78% 72%

Under adverse weather conditions, the detection rate of the proposed algorithms is similarly
high, and often higher than under favourable weather conditions. The percentage of false positive
anomaly detections is also substantially higher, however, such that the algorithms are more robust
under favourable weather conditions. In particular, the daytime shading algorithm performs much
better under favourable than under adverse weather conditions, even though it requires that local
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minima repeatedly occur at exactly the same time of the day. Thus, it will be prudent to check weather
conditions before using this algorithm, which can be misleading under adverse weather conditions.
When environmental data are not available, one may alternatively check the percentage of false
positives produced by this algorithm before concluding that a given PV system is indeed affected by
daytime shading. That is, if the percentage of false positives is too high (e.g., greater than 50%), then
one should carefully draw conclusions about daytime shading.

The analysis also suggests that a majority of PV systems either have low maximum production,
or are suboptimally oriented. On the one hand, 263 PV systems (i.e., 65% of the total) were detected
with low maximum production, whereas 333 PV systems (i.e., 82% of the total) were detected with
suboptimal orientation under favourable weather conditions. On the other hand, 643 PV systems (i.e.,
73% of the total) were detected with low maximum production, whereas 796 PV systems (i.e., 90% of
the total) were detected with suboptimal orientation under adverse weather conditions. These results
indicate that low maximum production and suboptimal orientation are particularly prevalent, and that
the detection algorithms may be useful to alert users for these two common types of anomalies.

Although the anomaly detection algorithms seem to perform well, their performance is rather
inferior to other algorithms proposed in the literature (e.g., [9,12,32–34]). For example, ref. [12] develop
an algorithm for anomaly detection in PV systems, which first models AC power production using
solar irradiance and PV panel temperature data. Subsequently, this algorithm performs anomaly
detection based on the comparison between observed and modeled AC power production, and thereby
achieves detection rates greater than 90%. It is important to note, however, that such algorithms are
considerably more complex and require environmental data to operate. In contrast, the algorithms
developed in this study have the advantage of being more widely applicable.

4.3.2. Anomaly Severity

An important goal of this study is to determine anomaly severity, which measures the impact of
anomalies on PV system activity. The proposed metrics for anomaly severity seem to perform well,
and indicate that daytime shading and suboptimal orientation can have a substantial impact on PV
system activity (Figures 6 and 7). On the one hand, daytime shading can lead to efficiency losses of up
to 60% (see Tables 3 and 4), which are in agreement with a decrease in power generation of up to 79%
reported by [23]. Although daytime shading was only detected in less than 5% of the analysed PV
systems, this type of anomaly can have a substantial impact on PV system performance and should
therefore be taken into account.

On the other hand, suboptimal orientation can shift the weekly mean efficiency curve of a PV
system, and thereby lead to large mismatches relative to the optimum efficiency curve (Figure 7).
Indeed, suboptimal orientation may cause the PV system to either lag up to 5 h behind the optimum
efficiency curve, or lead up to 2 h ahead of the optimum efficiency curve. It is important to point out
that a lag of 5 h is rather long. However, such a long lag corresponds to a PV system that is severely
affected by sunrise/sunset shading, which exacerbates the orientation index. Although we did not
measure losses in PV system efficiency associated with such mismatches, theoretical studies show
that suboptimal orientation can drive a substantial decrease in power generation [25]. Given that
suboptimal orientation affects more than 80% of the analysed PV systems, the impact of this prevalent
anomaly on PV system efficiency merits further investigation.

5. Conclusions

Five tailored algorithms were proposed for the detection of several PV system anomalies, and the
severity of such anomalies was assessed based on specific metrics. In particular, the algorithms were
developed to detect brief and sustained daytime zero-production, daytime and sunrise/sunset shading,
low maximum production and suboptimal orientation. The detection algorithms were applied to
several time-series of electricity production in Portugal, which were obtained for two periods with
contrasting weather conditions. Under favourable weather conditions, the majority of time-series
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labelled with either sustained or brief daytime zero-production, and either daytime or sunrise/sunset
shading, were successfully detected. Importantly, the percentage of false positives was relatively low,
indicating that most anomaly detections were correct. As expected, the algorithms tend to perform
better under favourable than under adverse weather conditions.

The severity of daytime shading varied substantially among PV systems, and caused efficiency
losses of up to 60%. Such large efficiency losses indicate that daytime shading can have a strong
impact on PV system performance and should therefore be taken into account, even though it only
affects a small proportion of PV systems. Suboptimal orientation was detected on more than 80%
of the analysed PV systems, and drove a temporal shift in observed PV system efficiency relative to
optimum efficiency. Although the orientation of a PV system is ultimately constrained by the surface
(e.g., the roof) where it is installed, our research suggests that a significant proportion of PV systems
could probably be better oriented under such installation constraints. Hence, the high prevalence of
suboptimal orientation indicates that this type of anomaly is rather common, and therefore warrants
further investigation into its impact on PV system efficiency.

The results suggest that the approach developed in this study is well capable of detecting several
types of PV system anomalies and estimating their severity, especially when weather conditions are
favourable. Yet, this study has three important limitations, which deserve further scrutiny and should
be addressed in future work. First, the approach relies on several heuristic parameters, which were
fine-tuned to optimise the performance of detection algorithms. For example, it is assumed that
electricity production is effectively zero if it falls below the threshold of 10−3 kWh, and that maximum
electricity production is substantially lower than PV system capacity if it falls below 85% of an arbitrary
reference value. Although such parameters require empirical support, they have the advantage of
being readily adjustable to improve algorithm performance. Hence, future work on the detection
algorithms should carefully consider these heuristic parameters, which may need to be modified to
further improve algorithm performance.

Second, most of the algorithms perform anomaly detection during the daytime period, which is
defined as the interval between sunrise and sunset minus an offset of 2.5 h (see Equation (3)). That is,
the offset used in the algorithms effectively reduces the daytime period by 5 h. Although this offset
decreases the number of false positive detections, it also reduces the detection rate of the algorithms.
This problem is particularly pertinent if the analysed PV systems are located at high latitudes during
wintertime, in which case this daytime period becomes too short for anomaly detection. Thus, a more
operational definition of daytime period will be necessary for the algorithms to detect anomalies on
any PV system, regardless of its location and time of the year.

Third, two metrics to determine the severity of daytime shading were developed, namely shading
magnitude and shading length. Although these two daytime shading metrics appear to work well
(see Figure 6), they can be misleading in some cases. In particular, two PV systems with exactly the
same shading magnitude and length may be differently affected by daytime shading, such that total
losses in electricity production differ between the two PV systems. Future studies may alternatively
estimate the total loss in electricity production due to daytime shading and investigate how this metric
performs compared to shading magnitude and length.
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Appendix A

To detect sunrise/sunset shading and suboptimal orientation, we use optimum PV system efficiency
curves that are obtained from estimations of hourly solar irradiation on a tilted PV system. The hourly
solar irradiation on a tilted PV system,

.
H(β), is estimated as follows [29]:

.
H(β) =

.
B

.
Rb +

.
D
(

1 + cos(β)
2

)
+

(
1− cos(β)

2

)
ρ

.
H, (A1)

where
.
B is the hourly beam component of solar irradiation,

.
Rb is the ratio of the average beam radiation

on a tilted surface to that on a horizontal surface,
.

D is the hourly diffused irradiation for the average
day of each month, β is the tilt of the PV system from horizontal, ρ is the ground reflectance, and

.
H

is the total hourly irradiation for the average day of each month. Below, we briefly explain how the
terms in Equation (A1) are obtained.

The total hourly irradiation for the average day of each month can be estimated as follows:

.
H = rtH, (A2)

where rt and H are the average hourly irradiation for each month and the monthly average daily
irradiation on a horizontal plane, respectively. The monthly average daily irradiation on a horizontal
plane corresponds to the amount of extraterrestrial irradiation that reaches Earth’s surface:

H = KTH0h, (A3)

where KT is the clearness index and H0h is the total amount of extraterrestrial irradiation reaching the
Earth’s atmosphere. The total amount of extraterrestrial irradiation reaching Earth’s atmosphere is a
fraction of the solar constant, ISC, and varies throughout the year:

H0h =
24
π

ISC

[
1 + 0.034 cos

(
2π

n
365.25

)]
×(cos(φ) cos(δ) sin(ωs) +ωs sin(φ) sin(δ)), (A4)

where n is the day number, φ is the latitude at which the PV system is located, δ is the Sun’s declination
angle, and ωs is the hour angle at which sunrise and sunset occur:

ωs =


0 if − tan(φ) tan(δ) ≥ 1
π if− tan(φ) tan(δ) ≤ −1

arccos(− tan(φ) tan(δ)) if− 1 < − tan(φ) tan(δ) < 1
. (A5)

Hence, at a given latitude, the extraterrestrial irradiation reaching the Earth’s atmosphere is
essentially driven by the Sun’s declination angle:

δ = 23.45
π

180
sin

(
2π

284 + n
365.25

)
, (A6)

The average hourly irradiation for each month varies throughout the day, and is calculated
as follows:

rt =

{ π
24 r0 if r0 > 0
0 if r0 ≤ 0

, (A7)

where r0 =
cos(ω)−cos(ωs)

sin(ωs)−ωs cos(ωs)
and ω is the hour angle. The hourly beam component of solar irradiation

corresponds to the total hourly irradiation that is not diffused:

.
B =

.
H −

.
D. (A8)
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The hourly diffused irradiation for the average day of each month:

.
D = rdD, (A9)

depends on the diffused component of total irradiation:

rd =

{ π
24 r0 if r0 > 0
0 if r0 ≤ 0

, (A10)

and on the monthly average daily diffused irradiation on a horizontal surface:

D =


(
1.391− 3.560KT + 4.189K

2
T − 2.137K

3
T

)
H if ωs < 81.4◦(

1.311− 3.022KT + 3.427K
2
T − 1.821K

3
T

)
H if ωs ≥ 81.4◦

. (A11)

If we assume that the PV system is optimally oriented towards the equator, then the ratio of the
average beam radiation on a tilted surface to that on a horizontal surface can be calculated as follows:

.
Rb =


0 if cos(θi)

cos(θZ)
≤ 0

cos(θi)
0.25 if 0 ≤ cos(θz) < 0.25

cos(θi)
−0.25 if −0.25 < cos(θz) ≤ 0

cos(θi)
cos(θZ)

otherwise

, (A12)

where
cos(θi)

cos(θZ)
=

cos(δ) cos(φ− β) cos(ω) + sin(δ) sin(φ− β)
cos(δ) cos(φ) cos(ω) + sin(δ) sin(φ)

. (A13)

We refer to Table A1 for the parameters used to estimate hourly solar irradiation on a tilted
PV system.

Table A1. Parameters used to estimate hourly solar irradiation on a tilted PV system.

Symbol Definition Unit Value Source

ISC Solar constant W m−2 1367 [35]
ρ Ground reflectance - 0.1 [36]

KT Clearness index - 0.75 [37]
φ Latitude radians 40π/180 -
β PV system tilt radians φ [38]

Appendix B

The hourly solar irradiation on a tilted PV system estimated with Equation (A1),
.

H(β), is used to
simulate optimum PV system efficiency under ideal weather conditions. To this end, we first calculate
the efficiency of a solar cell following [30]:

η =
p

100

q
.

H(β)
.

H0(β)
+


.

H(β)
.

H0(β)


m(1 + r

Tc

T0

)
, (A14)

where p, q, r, and m are regression parameters empirically estimated by [30],
.

H0(β) and T0 are the
hourly solar irradiation and solar cell temperature at standard testing conditions (STC), respectively,
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and Tc is the solar cell temperature. The solar cell temperature is assumed to depend on air temperature,
Ta, and increase with solar irradiation:

Tc = Ta + h
.

H(β), (A15)

where h is the Ross coefficient, which measures the warming rate of the solar cell with solar irradiation.
In line with expectation, Equation (A14) predicts that solar cell efficiency will tend to increase with
solar irradiation and decrease with solar cell temperature. Solar cell efficiency can be subsequently
used to estimate optimum PV system efficiency:

eopt =
ηA

.
H(β)

250
, (A16)

where A = 1.6 m2 is the area of a typical PV system with 250 W of power generation capacity. Model
parameters are listed in Table A2.

Table A2. PV system model parameters.

Symbol Definition Unit Value Source

p Empirical regression parameter - 24 [30]
q Empirical regression parameter - −0.3 [30]
r Empirical regression parameter - −0.1 [30]
m Empirical regression parameter - 0.2 [30]
h Ross coefficient ◦C (W m−2)−1 0.03 [30]

T0 Solar cell temperature (STC) ◦C 25 [30]
.

H0(β) Hourly solar irradiation (STC) W m−2 1000 [30]
Ta Air temperature ◦C 15–25 -
A PV system area m−2 1.6 -
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