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Abstract: This manuscript presents an advanced exergo-economic analysis of a waste heat recovery
system based on the organic Rankine cycle from the exhaust gases of an internal combustion engine.
Different operating conditions were established in order to find the exergy destroyed values in the
components and the desegregation of them, as well as the rate of fuel exergy, product exergy, and loss
exergy. The component with the highest exergy destroyed values was heat exchanger 1, which
is a shell and tube equipment with the highest mean temperature difference in the thermal cycle.
However, the values of the fuel cost rate (47.85 USD/GJ) and the product cost rate (197.65 USD/GJ)
revealed the organic fluid pump (pump 2) as the device with the main thermo-economic opportunity
of improvement, with an exergo-economic factor greater than 91%. In addition, the component with
the highest investment costs was the heat exchanger 1 with a value of 2.769 USD/h, which means
advanced exergo-economic analysis is a powerful method to identify the correct allocation of the
irreversibility and highest cost, and the real potential for improvement is not linked to the interaction
between components but to the same component being studied.

Keywords: advanced exergo-economic analysis; waste heat recovery system; ORC; endogenous
exergy; exogenous exergy

1. Introduction

In thermodynamics systems, the irreversibility in the components of the system produce exergy
destruction, and the continuous improvement of the performance of energy conversion systems based
on exergy analysis has been a priority among researchers in this field of study [1], from energy analysis
of the thermal systems [2] and trigeneration systems [3]. However, from all the information available
with these traditional analyses, there is no relevant development on the analysis carried out with this
methods to make further improvements to the components of a system [4], so advanced analyses and
economic analysis are proposed to facilitate the thermal and economic improvement of the system.

In recent years, new concepts of exergy, such as endogenous/exogenous and avoidable/ unavoidable
exergy destruction, have been employed to obtain relevant information for the identification of
irreversibilities and thermodynamic inefficiencies in the systems [5]. In any thermodynamic system,
the exergy destruction in the components can be generated in two ways. The first is due to the
irreversibilities of the component under study, which is called endogenous exergy destruction, while
the second is due to the irreversibilities of the other components that affect the component under study;
this is called exogenous exergy destruction [6]. Thus, its optimization process will depend on the
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technical and economic limitations of the system, so there will only be a part of the exergy destruction
and avoidable/unavoidable investment costs for each component. By uniting these two concepts, it is
possible to identify improvements to the system [7].

Long et al. [8] evaluated the importance of the working fluid in the thermal performance of
an organic Rankine cycle (ORC) by means of an external and internal exergetic analysis, and an
optimization analysis based on a genetic algorithm with exergetic efficiency as an objective function.
The results of the exergy analysis showed that the organic working fluid affects the exergetic efficiency
of the cycle, with the opposite case in the internal part, where the efficiency did not present changes.
The results of the optimization showed that the selection of the working fluid depends, to a greater
degree, on the optimal evaporation temperature, which increases the exergetic efficiency of the
cycle. Long et al. [9] performed an exergy analysis to evaluate the impacts of the evaporation
pressure and ammonia fraction on the ammonia–water mixture of the system performance Kalina,
obtaining that the evaporation pressure plays an important value in the internal and external exergetic
efficiency. Additionally, optimal values are obtained from these in their ideal operation, as well as
the ammonia fractions increasing the exergetic efficiency depending on the evaporation pressure.
However, the exergetic efficiency of the cycle depends on the input temperature of the heat source,
evaluating the impact of this parameter on internal and external exergetic efficiency.

Tian et al. [10] developed a techno-economic analysis of a system consisting of an ORC and
an internal combustion engine operating with 235 kW diesel, in order to study the performance of
20 organic fluids. The results showed that the highest energy generated per unit of mass flow and
the highest energy efficiency are obtained for refrigerant R-141b and refrigerant R-123, respectively.
The study is limited to a single engine operating condition, and a traditional exergetic analysis where
the real opportunities for both endogenous and exogenous component savings are not shown.

On the other hand, Zare V. [11], in order to find savings opportunities, added economic criteria to
the thermal performance studies, applied to three configurations of an ORC. However, this application
was limited to binary geothermal power plants, where the RORC presented better energy results, while
from the economic point of view, the simple ORC was the best option because it is integrated by a
smaller amount of equipment, which implies a lower acquisition cost. The results do not consider
the evaluation of costs by components but of a global system. In addition, studies from the exergetic
point of view have been developed in a traditional way, and thermal-economical studies for waste
heat recovery systems of gas generation engines through ORC have not been widely integrated. Thus,
the literature reports the results of the modeling developed by Kerme and Orfi [12], who studied the
effect of the temperature of the organic fluid at the entrance of an ORC turbine on the energy and
exergy performance, obtaining that the increase of the temperature increases the efficiency while total
exergy destruction decreases it.

The combination of traditional and advanced exergetic analysis can provide significant
thermodynamic information, such as the source and the amount of exergy destroyed by each
component [13], and how much this destruction can be avoided [14], as in the case of solar energy
collectors with a flat plate and a flat plate with a thin plate, resulting in the exergy destruction in the
absorbent plate being greater than the rest of components, but according to the advanced exergetic
analysis performed, this exergy destruction is endogenous and unavoidable, which means that the
irreversibilities of this component are inherent in its operation mode [15].

Mohammadi et al. [16] studied a combination of conventional and advanced exergetic analyses
in a supercritical CO2 recompression cycle to determine the potential for improving the thermal
cycle performance, where the overall exergetic efficiency reached 17.13%, the system’s maximum best
potential was 106.85 MW, and approximately 35% of exergy destruction could be avoided by focusing
on components, such as the heat exchanger, turbine, and main compressor. These investigations can be
complemented with the help of the combination of exergetic analysis [17] and economic analysis to
obtain thermo-economic costs based on the irreversibilities of the components [18].
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In addition, comparative studies have been carried out on different configurations of waste heat
recovery cycles integrated to gas engines [18] and applications, such as Petrakopoulou et al. [19], where
the first application of an exergo-economic analysis in a CO2 capture power plant was evaluated,
revealing that the costs associated with exergy and investment analyses are endogenous for most
components, where it proposed a suggestion for improving some components, such as the reactor,
expander, and compressor. The literature review shows the case of a polygeneration plant operating
in a geothermal cascade system coupled to an organic Rankine cycle that produces 40 kWe, where
improvement potentials were found in the ORC cycle (10.61 kW) and heat exchanger (2.28 kW), while
the exergo-economic analysis revealed an electricity production cost of 7.78 $/h and the advanced
exergo-economic analysis suggests that the plant heat exchanger is the component with the greatest
opportunity to reduce the exergy destruction of the heat exchanger equipment [20].

Another application was in a combined steam-organic Rankine cycle to recover waste heat from a
gas turbine, where an exergo-economic analysis was performed using three different organic fluids
(R124, R152a, and R34a), obtaining that the maximum exergy efficiency and the minimum rate of
product costs are 57.62% and 396 $/h, respectively. In addition, the parametric study was complemented
with genetic algorithm optimization, where it was obtained that the combined cycle with R152a has
the best performance from the thermodynamic and exergo-economic point of view among the fluids
analyzed [21].

Advanced exergetic analyses have focused on the ORC cycle, taking into account the advantage of
adapting this cycle to another thermal system for different applications, such as waste heat recovery [22],
thermodynamic optimization [23], and emergy analysis [24]. Also, several works have combined
these studies to obtain improvement potentials. In applications in turbocharged combustion engines,
conventional exergetic analysis gives the evaporator and the expander priority improvement potential
while advanced exergy analysis suggests the expander and pump as a priority, and the cycle exergy
destruction can be reduced by 36.5% [25]. For applications of advanced exergo-economic analysis
taking into account waste heat recovery in geothermal applications, low-temperature solar applications,
and waste heat recovery from engine gases, the exergetic efficiency of the ORC improves by 20%,
optimizing the system through advanced exergetic analysis and proposing the expander, evaporator,
condenser, and pump as improvement potentials. Different organic fluids have been tested in the
ORCs to improve their performance, obtaining that pentane, cyclohexane, iso-butene, iso-pentane,
and cyclohexane have the highest avoidable endogenous cost corresponding to the heat sources
evaluated. In addition, the avoidable endogenous cost is sensitive to the heat source temperature, and it
is possible to reduce the heat source temperature increase from 100 to 150 ◦C by 28% [26]. Therefore,
it has been identified that advanced exergetic and thermo-economic analysis is one of the alternatives
to achieve technically and economically favorable operating conditions, and to achieve its application
in real conditions.

In response to the inadequate management of energy resources in industrial processes, there is a
need to improve the efficiency of equipment and processes, in addition to reducing the environmental
impact. Thus, the energy recovery of the exhaust line of the natural gas generation engines is one
of the alternatives to increase the thermal efficiency of these systems [27]. However, this issue has
been approached from different approaches but not articulated with alternative generation systems,
which leads to an enormous scientific impact since if it is true that different ORC configurations have
been studied, these have not been studied from an advanced exergetic point of view and integrated
with thermo-economic modeling in real contexts of operation of stationary high-power natural gas
turbocharged engines as a means of heat recovery, in order to obtain technically and economically
viable solutions that allow their commercial application [28].

Thus, the main contribution of this work was to perform an advanced thermo-economic analysis
of an organic Rankine cycle for a bottoming natural gas engine, and its respective comparison with
the results obtained with conventional exergetic and exergo-economic analyses. The analysis of
the irreversibilities of each component is presented, and the possible improvements to the cycle are
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found using the concepts of endogenous/exogenous and avoidable/unavoidable exergy destruction,
combinined with the exergo-economic analysis, thus finding the advance cost rate improvement
opportunities for each component based on the irreversibilities of the thermal system.

2. Methodology

2.1. Description of the Cycle

The cycle to be analyzed can be seen in Figure 1. The natural gas generation engine operates
with an air/natural gas mixture, which is compressed before it enters the cylinders to improve the
engine’s thermal performance. The exhaust gases are expanded by means of a turbo compressor flow
S1 (708 K, 102 kPa), where energy is transferred by means of the heat exchanger 1 (HX1) to the thermal
oil in stream S5, and discharged to the environment in stream S2. The thermal oil circulates through
the energy supplied by the thermal oil pump (P1), and the hot fluid coming out of HX1 in stream S3
(616 K, 101.4 kPa) operates as a thermal source to evaporate and reheat through the heat exchanger 2
(HX2) the organic fluid, which is toluene in this case study. The maximum values of thee pressure and
temperature of the organic Rankine cycle are presented in the turbine inlet (546 K, 675 kPa), where the
organic fluid then expands into the S7 stream (475 K, 22 kPa) in the turbine (T1), generating additional
energy without increasing the fuel consumption. To complete the thermal cycle, the organic fluid
decreases the pressure to its lowest point, passing to the condensation stage from S7 to S8 (338 K,
675 kPa).
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Figure 1. The organic Rankine cycle waste heat recovery system.

The 2 MW Jenbacher engine JMS 612 GS-N. L was modeled and studied, as shown in Figure 2,
with its technical specifications and nominal operating conditions [29]. This engine operates with
natural gas as fuel, since its high robustness allows it to better adapt to variable load regimes.
This engine is widely used for self-generation purposes worldwide and is installed in a company of the
plastic sector in the city of Barranquilla, Colombia without any waste heat recovery system. The engine
regulates fuel consumption to operate between a minimum load of 1000 kWe and a maximum load
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of 1982 kWe, with an excess air number (lambda) of 1.79 and 1.97, respectively, generating unused
exhaust gases in each of its 12 cylinders with a temperature ranging from 580 to 650 ◦C.Energies 2020, 12, x FOR PEER REVIEW  5 of 18 
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2.2. Energy and Exergy Analyses

The exergy analysis is defined from the second law of thermodynamics, which means that, unlike
the analysis of energy, it depends on the ambient temperature and pressure in which the process in
study operates, which allows any system to be investigated in changing environmental conditions.
The following assumptions were considered to develop thermodynamic modeling of the RORC:

• The thermal process and component subsystems were assumed as a steady state condition.
• All thermal devices were assumed in adiabatic conditions.
• The pressure drops in the waste heat recovery based on ORC devices and pipelines were neglected.
• The reference temperature for the physical and chemical exergy calculations was 288 K.

The global equation of exergy balance, valid for any volume control system, is shown in
Equation (1) [21]:

.
Xheat +

∑n

i = 1

( .
mi·εi

)
IN

= P +
∑k

i = 1

( .
mi·εi

)
OUT

+
.
Eex, D, (1)

where
.

Xheat is the exergy of heat transfer in kW,
.

m is the mass flow in kg/s, ε is the specific entropy
in kJ·K

kg , P is the power in kW, and
.
Eex, D is the exergy destruction [30]. The exergy by heat transfer at

temperature T is defined according to Equation (2) [31]:

.
Xheat =

∑(
1 −

T0

T

)
·

.
Q. (2)

The exergy of a fluid flow stream is defined as the energy power of the fluid flow, with the
mass flow ratio of the fluid flow and the pressure and temperature of the fluid flow being necessary,
as well as knowing the environmental conditions (pressure and temperature) in which the fluid flow
operates [32]. Therefore, the exergetic power of the fluid flow stream was calculated according to
Equation (3):

.
Eex, i =

.
mi·εi, (3)

where the specific exergy (εi) was calculated according to Equation (4) [33]:

εi = (hi − h0) − T0·(si − s0). (4)
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Therefore, the exergy efficiency (ηex) for a thermal system was calculated according to Equation (5),
as a function of the exergy output (

.
Eout) and exergy input (

.
Ein) to the system or device:

ηex =

.
Eout

.
Ein

. (5)

Some energy and exergy performance indicators were calculated for the waste heat recovery
system based on the ORC [34], cycle thermal cycle efficiency (ηI, c), calculated according to Equation (6);
the heat recovery efficiency (εhr) as shown in Equation (7); and the overall energy conversion efficiency(
ηI, overall

)
, given by Equation (8) [20]:

ηI, C =

.
Wnet

.
QG

, (6)

εhr =

.
QG

.
m10CP10(T10 − T0)

, (7)

ηI, overall = ηI, C·εhr. (8)

In addition, to measure the thermal efficiency improvement, the increase in thermal efficiency was
calculated through Equation (9), as a function of the net power generated by the ORC (

.
Wnet), and the

heat supplied by the fuel mass rate (
.

m f uel):

∆ηthermal =

.
Wnet

.
m f uel·LHV

. (9)

The specific fuel consumption (BSFC) was calculated by the mean of Equation (10) [20], and the
absolute reduction in the specific fuel consumption as a consequence of the waste heat recovery was
calculated as presented in Equation (11):

BSFCORC−engine =

.
m f uel

.
Wengine +

.
Wnet

, (10)

∆BSFC =

∣∣∣BSFCORC−engine − BSFCengine
∣∣∣

BSFCengine
·100. (11)

2.3. Advanced Exergetic Analysis

In advanced exergetic analysis, the values of exergy destruction are divided into four basic parts:
Endogenous, exogenous, avoidable, and unavoidable exergy destruction. Avoidable and unavoidable
exergy destruction refers to the system improvement potentials. The destruction of avoidable exergy,
.
ED,c

AV
, represents the potential for improvement, during the destruction of unavoidable exergy,

.
ED,c

UN
,

which represents the limitations. The avoidable part of exergy destruction is described in Equation (12):

.
ED,c

AV
=

.
ED,c −

.
ED,c

UN
, (12)

where the destruction of unavoidable exergy can be calculated with Equation (13):

.
ED,c

UN
=

.
EP,c


.
ED,c
.
EP,c


UN

. (13)
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The destruction of endogenous exergy,
.
ED,c

EN
, and exogenous

.
ED,c

EX
are related to the operational

relation between the components of the system. The endogenous part of the exergy destruction is
associated only with the irreversibilities that occur in component c, where all the other components
operate ideally, and component c operates with its real conditions. On the other hand, the exogenous
part of the exergy destruction is produced by the other components. This part can be determined
by subtracting the endogenous exergy destruction from the real exergy destruction of component c,
as shown in Equation (14):

.
ED,c

EX
=

.
ED,c −

.
ED,c

EN
. (14)

In addition, the destruction of unavoidable endogenous exergy,
.
ED,c

UN, EN
, was calculated by the

Equation (15), the destruction of unavoidable exogenous exergy,
.
ED,c

UN,EX
, through Equation (16),

the destruction of avoidable endogenous exergy,
.
ED,c

AV, EN
, with Equation (17), and the destruction of

avoidable exogenous exergy,
.
ED,c

AV,EX
, by mean of Equation (18) [7]:

.
ED,c

UN, EN
=

.
ED,c

EN


.
ED,c
.
EP,c


UN

, (15)

.
ED,c

UN, EX
=

.
ED,c

UN
−

.
ED,c

UN,EN
, (16)

.
ED,c

AV, EN
=

.
ED,c

EN
−

.
ED,c

UN,EN
, (17)

.
ED,c

AV, EX
=

.
ED,c

AV
−

.
ED,c

AV,EN
. (18)

2.4. Conventional Exergo-Economic Analysis

Exergetic analyses are used to determine the location, type, and magnitude of thermodynamic
inefficiencies in system components. On the other hand, exergo-economic analyses combine the concept
of exergy and economic analyses to obtain a tool for the optimization of energy systems [4]. In addition,
the economic model takes into account the components’ cost, including amortization, maintenance,
and fuel costs. To define a cost function that depends on interest optimization parameters, the cost
of components must be expressed in terms of thermodynamic design parameters. The cost balance
equations applied to component c of the system under study show that the sum of rates associated
with all outgoing exergy flows equals the sum of cost rates of all incoming exergy flows, plus those
corresponding to charges due to capital investment and operating and maintenance costs, as shown in
Equation (19) [12]: ∑

e

.
Ce,c +

.
Cw,c =

.
Cq,c +

∑
i

.
Ci,c +

.
Zc, (19)

where the cost rates of input exergy flow (
.
Ci) are defined in Equation (20), the cost rates of output

exergy flow in Equation (21), the heat transfer cost rate in Equation (22), and the cost rate related to
energy transfer by work in Equation (23) [35,36]:

.
Ci = ci·

.
Ei = ci

[ .
miei

]
, (20)

.
Ce = ce

.
·Ee = ce

[ .
meee

]
, (21)

.
Cq = cq

.
·Eq, (22)

.
Cw = cw·

.
W, (23)
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where ci, ce, cq, and cw are the costs per unit of exergy in $/GJ, and
.
Zc is the sum of the cost rates

associated with the cost of capital investment,
.
Zc

CI
, and operation and maintenance costs,

.
Zc

OM
,

as shown in Equation (24) [37]:

.
Zc =

.
Zc

CI
+

.
Zc

CI
= CRF ·

[ϕr

N
·3600

]
·PECc, (24)

where the PECc is the purchase equipment cost of component c, which is given for all components
of the system; N is the number of annual hours that the unit operates; and ϕr is the maintenance
factor, which is generally approximately 1.06 [38]. The modeling and sizing of the plate heat exchanger
equipment was done for each of the evaporator, condenser, and recovery zones [39]. In addition,
thermoeconomic modeling and cost balances for the integrated configuration with the engine were
developed by the authors [40]. Also, the CRF is the capital recovery factor, which depends on the
interest rate and the estimated lifetime of the equipment, which was calculated based on Equation (25):

CRF =
i[1 + i]n

[1 + i]n−
∣∣∣ , (25)

where i is the interest rate, and n is the total period of operation of the system in years.

2.5. Advanced Exergo-Economic Análisis

2.5.1. Unavoidable and Avoidable Costs

The avoidable and unavoidable cost ratios associated with the exergy destruction within each
component of the system were calculated by Equations (26) and (27), respectively:

.
CD,c

UN
= cF,c·

.
ED,c

UN
, (26)

.
CD,c

AV
= cF,c·

.
ED,c

AV
, (27)

where the sum of the avoidable and unavoidable costs of exergy destruction is equal to the total cost
associated with exergy destruction, as shown in Equation (28) [5]:

.
CD.c = cF,c·

.
ED.c =

.
CD,c

UN
+

.
CD,c

AV
. (28)

The unavoidable investment cost was calculated considering an extremely inefficient version
of component c [41]. Therefore, for the calculation of the unavoidable investment cost rate in the
components [42], some operational conditions were proposed, as shown in Table 1.

Table 1. Main assumptions for real conditions, ideal conditions, unavoidable exergy, and unavoidable
investment cost.

Component Real Conditions Theorical
Conditions

Unavoidable Exergy
Destruction

Unavoidable
Investment Costs

Pump 1 ηiso = 75% ηiso = 100% ηiso = 95% ηiso = 60%
Turbine ηiso = 80% ηiso = 100% ηiso = 95% ηiso = 70%

Condenser ∆Tmin = 15 ◦C ηiso = 70% ∆Tmin = 3 ◦C ∆Tmin = 26 ◦C
Evaporator ∆Tmin = 35 ◦C ∆Tmin = 0 ◦C ∆Tmin = 3 ◦C ∆Tmin = 50 ◦C

Pump 2 ηiso = 75% ηiso = 100% ηiso = 95% ηiso = 60%
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The avoidable investment cost was calculated by subtracting the unavoidable cost rate from the
total investment cost, as shown in Equation (29):

.
Zc

AV
=

.
Zc −

.
Zc

UN
. (29)

2.5.2. Endogenous and Exogenous Cost Rates

The endogenous cost rates
( .
CD,c

EN)
and exogenous

( .
CD,c

EX)
are defined according to Equations (30)

and (31), respectively:
.
CD,c

EN
= cF,c·

.
ED,c

EN
, (30)

.
CD,c

EX
= cF,c·

.
ED,c

EX
, (31)

where the sums of the endogenous and exogenous cost rates of exergy destruction are equal to the
total cost rate associated with exergy destruction, as defined in Equation (32):

.
CD.c = cF,c·

.
ED.c =

.
CD,c

EN
+

.
CD,c

EX
. (32)

Therefore, the exogenous investment rate was calculated with Equation (33) as follows:

.
Zc

AV
=

.
Zc −

.
Zc

UN
. (33)

2.5.3. Splitting Cost Rates

The cost rates with respect to exergy desegregation can be calculated with Equations (34)–(37) [6]:

.
CD,c

EN,AV
= cF,c·

.
ED,c

EN,AV
, (34)

.
CD,c

EN,UN
= cF,c·

.
ED,c

EN,UN
, (35)

.
CD,c

EX,AV
= cF,c·

.
ED,c

EX,AV
, (36)

.
CD,c

EX,UN
= cF,c·

.
ED,c

EX,UN
, (37)

where
.
CD,c

EN,AV
represents the unavoidable cost rate without component c, associated with the

operation of the same component, and the value can be reduced by optimizing the component through

technological improvements. Also, the cost
.
CD,c

EX,AV
is the avoidable exogenous cost rate that can be

reduced by optimizing other components of the cycle while the costs
.
CD,c

EN,UN
and

.
CD,c

EX,UN
are the

unavoidable endogenous and unavoidable exogenous cost rates, respectively.
The endogenous cost rate of component c can be calculated with Equation (38), and the rate of

unavoidable endogenous investment costs can be calculated using Equation (39) [7]:

.
Zc

EN
=

.
EP,c

EN
 .

Z
.
EP


c

UN

, (38)

.
Zc

EN,UN
=

.
EP,c

EN


.
Zc
.
EP,c

. (39)

Therefore, the equations used to calculate the desegregated investment costs are presented from
Equations (40) to (42):

.
Zc

EN,AV
=

.
Zc

EN
−

.
Zc

EN,UN
, (40)
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.
Zc

EX,UN
=

.
Zc

UN
−

.
Zc

EN,UN
, (41)

.
Zc

EX,AV
=

.
Zc

EX
−

.
Zc

EN,UN
. (42)

3. Results and Discussion

In this section, the influence of the engine load on the heat recovery system energy and exergy
performance integrated into the natural gas engine was studied, as an alterntive to reduce the global
operational cost and increase the thermal efficiency [43]. The engine power control system adjusts
internal engine variables, such as the pressure and temperature of the air-fuel mixture before entering
the cylinders, and the recirculation percentage, to provide high efficiency in partial load operation of the
gas engine. Some energy indicators were proposed to study the performance of the waste heat recovery
system based on ORC, as shown in Figure 3, while the evaporating pressure was set to 675.8 kPa,
and toluene was selected as the working fluid [33]. For safety restriction, all feasible operating points of
the proposed system at different engine loads ensured that toluene evaporates completely at the outlet
of the evaporator to prevent corrosion of the liquid in the expander, in addition to a gas temperature at
the outlet of the evaporator (state 11) being higher than the acid dew temperature (200 ◦C) to avoid
acidic corrosion of the exhaust [34].Energies 2020, 12, x FOR PEER REVIEW  10 of 18 
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and engine load, (a) met power, (b) Absolute increase in thermal efficiency, (c) specific fuel consumption,
(d) global energy conversion efficiency, (e) ORC thermal efficiency, and (f) global exergetic efficiency.

The results show that the absolute increase in thermal efficiency (Figure 3b) decreases for toluene
and cyclohexane, as does the overall energy conversion efficiency (Figure 3d) with an increasing engine
load, while the net power output (Figure 3a) presents its maximum value with toluene (89.4 kW—97.9%),
cyclohexane (73.2 kW—97.9%), and acetone (53.2 kW—91.81%), respectively. However, in an engine
operating interval, acetone presents a slight increase in thermal efficiency, and then decreases, presenting
a maximum at an 82.68% engine load.
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These results are due to a higher engine load, implying an increase in the exhaust gas flow according
to the first and second laws of thermodynamics [44] while a greater energy loss is presented in the
recuperator heat exchanger 1 (HX1) because of the evaporation pressure and thermal oil temperature
have been limited. As the engine load increases, there is an increase in the fluid evaporating temperature
at the evaporator. Therefore, the power increases, which is the main factor for thermal and exergetic
efficiency. However, the isentropic turbine efficiency decreases slightly as a consequence of the increase
in the thermal oil temperature, causing a decrease in the energy indicators at high engine loads.
Likewise, the tendency to increase the power with the engine load is a consequence of both the increase
in the inlet thermal oil temperature to the evaporator, which leads to an increase in the toluene mass
flow, and the enthalpy difference between the outlet and the inlet of the pump and turbine, but this is
more relevant in the turbine.

In addition, the results obtained from the traditional exergetic and exergo-economic analysis are
shown in Table 2, where the exergy and fraction of exergy destroyed, yD,c, shows that the greatest
values are present in the heat exchanger 1 (shell and tube heat exchanger) with 32.54%, the evaporator
(28.32%), and the condenser with 27.97%. The component with the highest destroyed exergy value
(41.95 kW) is heat exchanger 1, being one of the components with the lowest exergetic efficiency of the
cycle, due to the large heat exchanger area required and the high temperature difference. The greater
the investment and the cost of exergy destroyed, the greater the influence of the component in the
system, therefore, the component with the greatest improvement in cost efficiency of the total plant
can be defined. In the case study, the components with the greatest opportunities for improvement in
this ratio are the condenser and HX 1. Therefore, these components are the most important from a
thermodynamic point of view.

Table 2. The results of conventional analysis for all components in the waste heat recovery system.

Components Ef
[kW]

Ep
[kW]

Ed
[kW]

Eloss
[kW] E [%] Yd,k

Cf
[USD/GJ]

Cp
[USD/GJ]

Cd
[USD/h]

Closs
[USD/h]

Z
[USD/h]

Z + Cd +
Closs

[USD/h]
fc [%]

HX 1 541.20 202.79 41.95 338.40 37.47 32.54 15.22 11.97 2.30 16.24 2.67 21.22 53.79
P1 0.37 0.05 0.31 - 15.60 0.24 47.56 1801.58 0.05 - 0.29 0.34 85.24

Turb 99.48 85.58 13.89 - 86.03 10.77 19.11 47.85 0.95 - 7.89 8.85 89.20
P2 0.75 0.58 0.16 - 77.60 0.13 47.85 197.65 0.02 - 0.28 0.31 90.78

Evap 202.85 166.34 36.51 - 82.00 28.32 12.46 18.48 1.63 - 1.96 2.60 54.58
Cond - - 36.05 66.58 - 27.97 55.48 19.11 7.18 13.27 1.61 22.07 18.35

The exergo-economic factor, fc, is the effective parameter that allows us to compare and evaluate the
components that make up the system. A high value for this parameter indicates that for the component
under study, acquisition costs predominate over operation and maintenance costs. For example, in the
case of the condenser, which is the component with the lowest value of the exergo-economic factor,
it can be concluded that expenses are mostly related to operating and maintenance costs compared to
acquisition costs.

By means of the advanced exergetic analysis, the exergy destruction can be disaggregated for
each one of the components. In this way, the real possibilities of improvement can be determined both
through the operational and design point of view of the component, and the global consideration of the
thermal system. From the solution of Equations (12)–(18), and the unavoidable operation conditions
described in Table 1, the disaggregation of the exergy can be found in its endogenous, exogenous,
avoidable, and unavoidable part, as well as avoidable and unavoidable endogenous and its avoidable
and unavoidable exogenous counterpart. The determination of the avoidable part of the destroyed
exergy is a significant step because it allows identification of opportunities for improvement in the
component and its interaction with the rest of the components. Also, this result allows knowledge of
which is the optimal way to increase the thermal efficiency of the system, besides providing valuable
information about how the components operate together as a global system. Figure 4 presents a
graphical version of the improvement opportunities in each component from the exergetic point.
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Figure 4. Advanced exergy analyses for each component in the ORC cycle, (a) HX 1, (b) P1, (c) turbine,
(d) P2, (e) evaporator, and (f) condenser.

The results of the advanced exergetic analysis and economic exergetic analysis are presented in
Table 3, where the disaggregation of the destroyed exergy was calculated as a function of the endogenous,
exogenous, avoidable, and unavoidable for each of the components under study. The results show
that most of the destroyed exergy is endogenous (78.53% of the total destroyed exergy), emphasizing
that the interaction between components does not have a significant effect on the overall exergetic
performance of the cycle. Similarly, it is noted that the component with the greatest avoidable exergy
destroyed in the system is the turbine, with a value of 11.075 kW, where 69.625% is endogenous and
30.374 is exogenous, which means that in the turbine, there is a real great opportunity for improvement.
On the other hand, in the unavoidable part, the components with the greatest technological limitations
are the HX 1 and evaporator, representing 96.1% of the total unavoidable exergy of the cycle.

Table 3. Splitting exergy destruction for each component.

Components
EEN

D,c
[kW]

EEX
D,c

[kW]
EAV

D,c
[kW]

EUN
D,c

[kW]
EUN,EN

D,c
[kW]

EUN,EX
D,c
[kW]

EAV,EN
D,c
[kW]

EAV,EX
D,c

[kW]

HX 1 37.339 4.615 4.000 37.953 0.000 0.000 0.000 0.000
Pump 1 0.159 0.157 0.011 0.030 0.015 0.290 0.144 −0.133
Turbine 8.661 5.229 11.075 2.819 0.095 1.869 7.711 3.360
Pump 2 0.140 0.029 0.140 0.028 0.011 0.016 0.013 0.012

Evaporator 26.849 9.663 3.542 32.971 0.000 0.000 0.000 0.000
Condenser 24.607 11.451 0.000 0.000 0.000 0.000 0.000 0.000

Total 97.755 31.144 18.768 73.801 0.121 2.175 7.868 3.239
% 75.83% 24.16% - - 0.14% 6.69% 8.14% 10.79%

The equations presented in Sections 2.5.2 and 2.5.3 were used to calculate the advance exergy
destruction costs as shown in Table 4, which is based on the result of the advanced destroyed exergy.

It can be observed that the endogenous exergy destruction is higher than the exogenous cost in
the components of the thermal cycle, which is a consequence of the high endogenous investment costs
values for all components of the system with respect to the exogenous investment cost, as shown in
Table 5. Therefore, it can be established that the interaction between components in terms of investment
costs is not very relevant in the system; however, for the component under study, it is a parameter
of vital importance. Also, it can be observed that the rates of unavoidable investment costs for the
components studied showed an inclination in the unavoidable part.
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Table 4. Advanced exergy destruction cost rates for all components in the waste heat recovery system.

Components CD,k
[USD/h]

CD,k
EN

[USD/h]
CD,k

EX

[USD/h]
CD,k

AV

[USD/h]
CD,k

UN

[USD/h]
CD,k

AV,EN

[USD/h]
CD,k

AV,EX

[USD/h]
CD,k

UN,EN

[USD/h]
CD,k

UN,EX

[USD/h]

HX 1 2.300 2.047 0.253 0.219 2.080 0.000 0.000 0.000 0.000
Pump 1 0.051 0.027 0.027 0.005 0.049 0.025 −0.019 0.002 0.047
Turbine 0.956 0.591 0.3599 0.701 0.254 0.531 0.171 0.065 0.188
Pump 2 0.029 0.024 0.005 0.024 0.005 0.022 0.002 0.002 0.003

Evaporator 1.638 1.205 0.433 0.159 1.479 0.000 0.000 0.000 0.000
Condenser 7.188 4.906 2.283 0.000 0.000 0.000 0.000 0.000 0.000

Table 5. Advanced investment costs for all components in the WHR (Wast Heat Recovery).

Components Zd,k
[USD/h]

ZEN

[USD/h]
ZEX

[USD/h]
ZAV

[USD/h]
ZUN

[USD/h]
ZAV,EN

[USD/h]
ZAV,EX

[USD/h]
ZUN,EN

[USD/h]
ZUN,EX

[USD/h]

HX 1 2.678 2.648 0.030 −0.046 2.724 0.251 −0.297 2.397 0.328
Pump 1 0.295 0.288 0.007 0.001 0.294 −0.170 0.171 0.458 −0.164
Turbine 7.898 5.417 2.480 2.215 5.683 0.053 2.161 5.364 0.319

Evaporator 1.970 1.957 0.013 0.022 1.948 0.025 −0.004 1.932 0.016
Condenser 1.760 1.645 0.115 0.100 1.660 - - - -

Negative values of exogenous investment cost rates (ZEX, ZAV,EX, ZUN,EX) revealed that investment
costs within these components might decrease if investment costs within the other components
are increased.

In order to show a comparison of the destroyed exergy relationship between traditional and
advanced exergetic analysis, Figure 5 is shown. In Figure 5A, a slight difference of the parameter under
study is denoted because the one that was calculated by means of the advanced exergetic analysis
only emphasizes the exergy that is destroyed by each component, that is to say, the endogenous part
(without the interaction that this one has with its surroundings).
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However, the relationship of exergy destroyed by the component was also calculated by
emphasizing which fraction is borne by the component itself or by the interaction of the component with
its surroundings, as shown in Figure 5B. From this graph, what has been mentioned before is supported,
that is, that the interaction between each of the components of the system is not significant in comparison
to the exergy that destroys the component under its own operating conditions. A comparative analysis
was performed by implementing a new exergo-economic factor calculated by advanced exergetic
analysis, as shown in Figure 6.

As a percentage, it can be seen that the exergo-economic factor, as well as the traditional and
advanced approach, presents a similarity in the components that make up the system. So, the main
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efforts should concentrate on designing the most efficient heat exchangers [35], with a smaller heat
transfer area and less exergy destruction, without increasing the purchase equipment costs.
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4. Conclusions

In this paper, the benefit offered by developed traditional and advanced exergetic analysis in
thermal systems was shown, in particular in the organic Rankine cycle systems. Exergetic analysis
allows determination of the sources of irreversibility in a thermal system, and therefore indicates
the starting points of an optimization procedure, and contributes to the rational use of the energetic
resources. In the study carried out, it was possible to determine which equipment that resulted in
greater destruction of exergy introduced in the waste heat recovery system based on the organic
Rankine cycle. The equipment in which the design or operational improvements can be made was
also determined, since the implementation of some recommendations is not practical for optimizing
the cycle due to operational or design limitations. Therefore, traditional exergy, advanced exergy,
and exergo-economic analysis were applied to gain a better understanding of the system performance.
Moreover, a comprehensive comparison was conducted to further assess the system from various
points of view.

The conventional exergy showed that the heat exchanger 1 had the largest exergy destruction and
exergy destruction, and highest investment costs (41.95 kW, 32.54%, and 2.67 USD/h). The results of
the energetic and exergetic analysis of the system showed that the exergy destroyed is a measure of the
degree of process irreversibility. Thus, in the case of heat exchanger 1, the causes of the irreversibility
were due to the heat transfer through a finite temperature difference higher than 100 ◦C. Similarly,
the results of exergy destructions appeared to be in accordance with the exergy efficiencies. That is,
a smaller exergy efficiency implies greater exergy destruction in the system components.

Also, the highest exergo-economic factor was found in the pump 2, turbine, and pump 1,
with 90.78%, 89.20%, and 85.24%, respectively. These results were a consequence of the high effect of
the purchased equipment cost, and the low thermodynamic efficiency in the aforementioned devices,
where the probable solution could be the implementation of low-cost components, which are usually
characterized by a lower energy efficiency.

Most of the exergy destruction calculated was endogenous (78.53%), emphasizing that the
interaction between components does not have a significant effect on the overall exergetic performance
of the cycle. The maximum unavoidable exergy was found for the heat exchanger 1, with 90.44%.
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This indicates that there are not too many ways to improve this component. Nevertheless, other
components, such as pump 2, pump 1, and turbine 1, have the minimum unavoidable exergy
destruction, with 0.028, 0.03, and 2.819 kW. In addition, the component with the highest cost rate was
the condenser with 7.188 USD/h, followed by the heat exchanger 1 with 2.3 USD/h, but the highest
avoidable cost rate was found for the turbine with a value of 0.701 USD/h.

On the other hand, the advanced exergo-economic analyses showed that the turbine is the
component with the major purchase equipment cost in the system, with a value of 7.898 USD/h, which
is 54.09% of the total equipment cost of the system. For all components studied, the endogenous
investment cost was higher than the exogenous part, showing the weak relation between them.
A comparison was realized between the traditional and advanced exergo-economic factor, which
resulted in a similar effect in each component, but the advanced exergy approach presented a slightly
higher value, implying that the advanced exergetic analysis gives greater precision in terms of results
without ignoring the really great opportunities for improvement.
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Abbreviations

The following abbreviations are used in this manuscript:

ICE Internal Combustion Engine
HX 1 Heat Exchanger 1
HX2 Heat Exchanger 2
ORC Organic Rankine Cycle
PP Pinch Point
WHR Waste heat recovery
CRF Capital Recovery Factor
PECc Equipment Purchase Cost of component C
Nomenclature
E Exergy
h Enthalpy
.

m Fuel mass rate
P Pressure
Q Heat
s Entropy
Rp Pressure ratio
T Temperature
W Power
ε Exergy efficiency
η Energy efficiency
y Exergy destruction ratio
.
Zc Investment costs
.
CD,c

EN
Endogenous exergy destruction cost rates

.
CD,c

EX
Exogenous exergy destruction cost rates

N Number of annual operation hours
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Subscripts
0 References condition
Cond Condenser
ch Chemical
D Destruction
Evap Evaporator
F Fuel
iso Isoentropic
k Component
min Minimum
P Product
ph Physical
Pump Pump
Th Theorical
Tot Total
Turb Turbine
Superscripts
AV Avoidable
EN Endogenous
EX Exogenous
EN, AV Endogenous avoidable
EN, UN Endogenous unavoidable
EX, AV Exogenous avoidable
EX, UN Exogenous unavoidable
id Ideal
RS Real
UN Unavoidable
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