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Abstract: The performance of ground-coupled heat pump systems (GCHPs) operating under
significant groundwater flow can be difficult to predict due to advective heat transfer in the
subsurface. This is the case of the Carignan-Salières elementary school located on the south shore
of the St. Lawrence River near Montréal, Canada. The building is heated and cooled with a GCHP
system including 31 boreholes subject to varying groundwater flow conditions due to the proximity
of an active quarry being irregularly dewatered. A study with the objective of predicting the borehole
temperatures in order to anticipate potential operational problems was conducted, which provided
an opportunity to evaluate the impact of groundwater flow. For this purpose, a numerical model was
calibrated using a full-scale heat injection test and then run under different scenarios for a period of
twenty years. The heat exchange capacity of the GCHP system is clearly enhanced by advection when
the Darcy flux changes from 6 × 10−8 m s−1 (no dewatering) to 8 × 10−7 m s−1 (high dewatering).
This study further suggests that even the lowest groundwater flow condition can be beneficial to
avoid a progressive cooling of the subsurface due to the unbalanced building loads, which can have
important impacts for design of new systems.

Keywords: geothermal; ground-coupled heat pump; numerical modelling; groundwater; FEFLOW;
building; simulation

1. Introduction

Groundwater flow can have a significant impact on the long-term performance of vertical ground
heat exchangers (GHEs), especially when the Darcy flux is greater than 1 × 10−7 m s−1 [1,2]. Flow in
the subsurface can actually improve long-term GHE performance by dissipating heat injected into or
extracted from the ground [3]. However, the design of ground-coupled heat pump (GCHP) systems
is commonly based on the assumption of conductive heat transfer in the subsurface [4]. Although
numerical tools are available to optimize the operation of a GCHP system under the influence of
groundwater flow [5,6], an estimate of the specific groundwater flux affecting a GHE field can be
difficult to define accurately. Alternatively, different authors have performed thermal response tests
(TRTs) on a single GHE subject to groundwater flow to evaluate the equivalent subsurface thermal
conductivity impacted by advection [7,8]. Practitioners commonly using such a heat conduction
approach to simulate the long-term operating temperature of GHEs, based on an equivalent subsurface
thermal conductivity assumption, have tried to cope with systems influenced by groundwater flow.
This simplified approach can be useful, but neglects the fact that flow conditions can change over time.
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The Carignan-Salières elementary school is an example of such a building, which is heated and
cooled with a GCHP system operating under varying groundwater flow conditions because of its
location within a kilometer of two quarries, one of which is being actively dewatered. In addition,
because of the significant groundwater flow rates, upon installation the GHEs were backfilled with sand
instead of using a geothermal grout. The grouting procedure was attempted but was not successful
because the high flow rate most likely dispersed the fine grout particles into the fractures of the
geological formations. This change of borehole filling material from the initial design plans, as well as
the variable groundwater flow conditions, has likely affected the long-term operating temperature of
the GHEs and their performance. The objective of this study is, therefore, to better understand the heat
transfer mechanisms affecting the long-term operating temperature of the GHEs, including variable
groundwater flow conditions, to anticipate potential operational problems.

Previous studies have been conducted to evaluate the impact of groundwater flow on the operating
temperature of GHEs. For example, different authors simulated the operation of thermal energy
storage systems with GHEs influenced by groundwater flow [9–11], while similar modelling was
completed for GCHP systems by Dehkordi et al. [1]. However, most available studies are based on
theoretical modelling exercises and have not been validated with operational data from systems that
are influenced by significant groundwater flow conditions. This study provides a unique field case,
where the GCHP system is located near an active quarry, at which groundwater flow conditions and
ground thermal properties could be assessed. The GHE operating temperature could thus be accurately
predicted based on a large-scale heat injection test carried out for the whole bore field, rather than
a single GHE used for a TRT. Long-term numerical simulations of the system temperature under
different field-based scenarios were carried out for a period of twenty years. A comparison between
the simulated scenarios allowed a quantitative evaluation of the ground physical parameters affecting
the GHE temperature, including the site hydraulic gradient. The knowledge gained can be used to
improve the design and construction of new GCHP systems under the influence of groundwater flow.

2. Site Description

The Carignan-Salières elementary school is located on the south shore of the St. Lawrence
River near Montreal (Figure 1) and was built above the Nicolet Formation. This sedimentary rock
formation belongs to the Loraine Group, known to have a thermal conductivity on the order of
3 W m−1 K−1 [12–14], and is part of the St. Lawrence Lowlands sedimentary basin [15]. From a
structural perspective, the St. Lawrence Lowlands are characterized by a series of normal faults
extending from the southwest to the northeast, and which dip toward the southeast [16,17].
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2.1. Geological and Hydrogeological Setting

The Nicolet Formation, hosting the school GHE field, consists of sequences of silty gray shale, with
interbedded sandstone, siltstone and limestone [18]. Gabbro dykes, which are observed in the school
area, are oriented EW and cut the stratigraphic sequence [19–21]. Most of the dykes are sub-vertical
and have a varying thickness of 0.5 to more than 20 m [22]. One of the two quarries near the school
is currently active and water is pumped irregularly (Figure 2). Regional aquifers in this area of the
south shore of the St. Lawrence River are hosted in fractured rocks. The direction of groundwater
flow at the site is oriented toward the active quarry where water is being pumped. The average
hydraulic conductivity of the host rock reported in the area is 10−5 m s−1, varying from 3.2 × 10−7

to 1.6 × 10−4 m s−1, and the annual net recharge of the aquifer is approximately 100 mm y−1 [23].
The town of Carignan has a humid continental climate with an annual average air temperature of
5.9 ◦C and an amplitude of 30 ◦C [24]. The heating period is mostly from October to June while the
cooling period is from July to September.
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2.2. Ground Heat Exchanger Characteristics

The GCHP system consists of thirty-one GHEs connected to fifty heat pumps distributed in the
school building. Each heat pump has a net heating capacity of 3.62 to 44.2 kW. The system has sufficient
capacity to supply the entire heating and cooling loads of the building. The GHEs are spaced by 6 m and
each borehole is ~152 m deep. A high-density polyethylene single U-pipe with omega-shaped spacers
constitutes the GHEs. During the installation, the boreholes could not be sealed with grout because
groundwater flow along the intersecting fractures flushed the fine particles from the grout mixture.
The boreholes were consequently filled with olivine sand instead of a common thermally-enhanced
grout made of bentonite and sand. The olivine sand has a thermal conductivity of 1.75 W m−1 K−1,
a value that was measured in the laboratory during a previous study [25]. The heat carrier fluid is a
mixture of water and propylene glycol at 25 vol. % and circulates in the closed loops with an average
flow rate of 1017 m3 d−1 within the entire GHE field. The GHEs are connected in parallel so the flow
rate in each borehole is similar and around 3.8 × 10−4 m s−1. Two TRTs were performed in two different
boreholes, by injecting heat in order to evaluate the in-situ thermal conductivity of the subsurface.
The first TRT was carried out before the GHE installation and revealed a bulk subsurface thermal
conductivity of 2.58 W m−1 K−1 [26]. The second TRT was conducted after the GHE installation and
indicated a lower value of 2.27 W m−1 K−1 [27]. The difference between the two tests is believed to be
due to water pumping in the neighbouring and active quarry, inducing changes in the groundwater
flow regime near the school.

3. Methodology

Taking advantage of the two quarries, field activities were undertaken to estimate the thermal
conductivity of the subsurface and the groundwater flow conditions near the school site using
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representative values characteristics of a heterogeneous system. Twelve rock samples (6 shales,
1 calcarenite and 5 gabbros) were collected in the quarries to be analyzed in the laboratory. Water
levels in the two quarry lakes were measured with a global positioning system to calculate the local
hydraulic gradient. A heat injection test was further carried out for the entire GHE field with the
system operating in cooling mode during the summer. Field-based observations allowed developing a
representative numerical model of the GHE field, taking into account hourly building heating and
cooling loads transferred to the ground.

3.1. Laboratory Measurement of Thermal Conductivity

The thermal conductivity assessments were made with two different methods: (1) a needle
probe for hard rocks [12,28–30] and (2) the modified transient plane source (MTPS) method for friable
rocks [30–32]. The KD2 Pro unit [33], part of a standardized method under the ASTM D5334 norm, was
used for the needle probe analysis with gabbro samples, while the C-therm heating plate following the
ASTM D7984 norm was used for the MTPS analysis with shales and calcarenites [34]. Before making
the measurements, the samples were immersed for 24 h in distilled water to saturate the samples and
obtain a value representative of subsurface conditions.

The samples analyzed with the needle probe were cut and a hole was drilled in each sample to
insert a 6 cm long and 4 mm thick needle injecting heat at a rate of 6 W m−1; the probe was covered
with thermal grease to reduce contact resistance. After completing a measurement with a reference
polyethylene sample, each rock sample was analyzed in a controlled-temperature room with at least ten
measurements. An interval of 1 h was adopted for thermal equilibrium to be restored and a correction
factor was taken into account to consider the reference sample measurements. With the MTPS method,
a polished surface of the soft rock samples was placed on the heating plate to evaluate its thermal
conductivity according to the transient increase of temperature. The heating plate has a disk shape
and the electric signal used for the heat source serves as a proxy for temperature. The power level
applied to the heat source is 90 V. Thermal conductivity of each sample was measured five times and
an average was then calculated to obtain the final value.

3.2. In-Situ Heat Injection Test

The heat injection test to evaluate the thermal response of the entire GHE field was carried out
during a hot summer period in July 2015. The test was completed by using the cooling system at its full
capacity over 16.9 days, while the school windows had been opened to allow the outdoor heat to enter
the building. The cooling system was then stopped, and the heat carrier fluid was kept circulating in
the loop to monitor the thermal recovery during an additional 13.3 days. The flow rate of the heat
carrier fluid and the temperature at the inlet and outlet of the entire GHE field were measured during
the test by using the temperature sensors and flowmeters installed in the mechanical room of the
GCHP system near the heat pump inlets. The temperature sensors and flowmeter have an accuracy of
±0.1 ◦C and ±1.5%, respectively. The instruments allowed taking measurements every 30 s. The heat
injection rate was calculated from the temperature and flow rate measurements.

3.3. Building and Ground Load Evaluation

The school building loads were simulated using the program eQuest, a graphical interface for the
DOE-2 program [35]. The simulations were used to establish a thermal energy budget of the building,
which depends essentially on the building dimensions, the construction and insulation materials, the
size and number of windows and doors, the operation schedule, as well as the internal and external
temperature. Heat losses and gains of the indoor spaces were evaluated hourly to determine heating
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and cooling loads every hour over a full year. Simulated building loads, used as inputs in the numerical
GHE model, were converted to ground loads according to:

Pground = Pbuilding
COPheating–1

COPheating
(1)

and

Pground = Pbuilding
COPcooling + 1

COPcooling
(2)

where Pground and Pbuilding [W] are the loads for the ground and the building, respectively, and
COPheating and COPcooling [–] are the heat pump coefficients of performance in heating and cooling
modes, respectively. An average and constant COP for all heat pumps of the building throughout the
simulation time was assumed for simplification.

3.4. GCHP System Simulation

Numerical simulations to calibrate the model using the short-term heat injection test and to
subsequently evaluate the long-term operating temperature of the GHEs over 20 years were carried out
with the finite element program FEFLOW [36]. This program was used because it allows simulating
transient heat transfer and groundwater flow in 3D porous media hosting GHEs embedded as 1D
elements. A general iterative finite element strategy is used to solve the overall flow and heat transfer
problem coupling the ground with the GHEs [37]. The numerical approach of Eskilson et al. [38],
which represents GHEs with equivalent resistances, was selected instead of the more general numerical
approach of Al-Khoury et al. [39,40]; both being available in FEFLOW. This choice was made because
the Eskilson approach requires less computational effort and has been demonstrated to be accurate for
long-term predictions [37].

3.4.1. Governing Equations

The global fluid flow and heat transfer problem is solved in the form of fluid, mass and thermal
energy balances for the subsurface s and the groundwater gw. The flow equation is described by [36]:

Ss
∂h
∂t

+∇·q = Q + QEOB (3)

where Ss [m−1] is the specific storage coefficient, h [m] is the hydraulic head, Q [m3 s−1] is a source/sink
term for flow and EOB refers to the Extended Oberbeck-Boussineq approximation. In Equation (3),
q [m s−1] is the Darcy flux in the porous medium and is expressed with Darcy’s law:

q = −K(∇h) (4)

where K [m s−1] is the hydraulic conductivity tensor. The heat transport equation with conductive and
advective terms is described by [41]:

(ρc)s
∂T
∂t

= ∇
(
λ∇T − (ρc)gw q T

)
+H (5)

where λ [W m−1 K−1] is the thermal conductivity, ρc [J m−3 K−1] is the volumetric heat capacity and H
[W m−3] represents in this case heat sources and sinks that can be, for example, tied to the GHEs.

The GHE equations used in the present model apply for single U-pipe heat exchangers, that,
according to the thermal resistance and capacity model of Bauer et al. [42], consist of four components,
namely an inlet-pipe denoted with subscript il, an outlet-pipe with subscript ol and two filling material
zones (grout) with exponent or subscript g, and can be written as [36]:
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∂
∂t

(
ρ2crTil

)
+∇·(ρrcru Til) − ∇·(2r

· ∇Til) = Hil (6)

∂
∂t

(ρrcrT0l) +∇·(ρ
rcruTol) − ∇·(2

r
· ∇Tol)= Hol (7)

∂
∂t

(
εgρ

gcgTg1
)
−∇ ·

(
εgλ

g
∇Tg1

)
= Hg1 (8)

∂
∂t

(
εgρ

gcgTg2
)
−∇ ·

(
εgλ

g
∇Tg2

)
= Hg2 (9)

where ρ [kg m−3] and c [J kg−1 K−1] are the density and the specific heat of the heat carrier fluid r
and grout g, respectively, T [K] is the pipe temperature, H [W m−3] is the thermal sink or source term,
u [m s−1] is the vector of the heat carrier fluid velocity, 2r [W m−2 K−1] is the thermal hydrodynamic
dispersion tensor for the heat carrier fluid, λg [W m−1 K−1] is the thermal conductivity of the grout
and εg [−] is the volume fraction of the grout or filling material. The relations are used to express
the heat exchange between the borehole with 1 U-pipe and the subsurface. The effect of the 1 U-pipe
components is lumped into effective heat transfer coefficients, which represent the sum of thermal
resistances between the different components of the GHE elements [37].

3.4.2. Model Geometry and Properties

The surface area of the numerical GHE model is 500 m × 500 m and extends from ground surface
to a depth of 300 m, divided into 6 layers of 50 m each. The same lithological characteristics of the
subsurface, such as hydraulic conductivity, thermal conductivity of both fluid and solids, as well as
porosity are assigned to the six layers that have a different initial temperature based on the geothermal
gradient. The model mesh consists of 3D triangular prismatic elements for a total of 195,720 elements
and 114,450 nodes. A 2D horizontal-plane mesh was built and then extended in 3D to cover the entire
domain (Figure 3). Each GHE was surrounded by 6 nodes. Thirty-one GHEs were added to the
domain, following the same layout as at the Carignan-Salières elementary school. In the plan view, the
triangular mesh dimensions are up to approximately 4 m at the boundaries of the model (Figure 3),
decreasing to 0.06 m around each GHE.
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3.4.3. Initial and Boundary Conditions

Type-1 constant hydraulic heads with different values according to chosen simulation scenarios
were imposed on the eastern and western boundaries of the model. This head gradient was applied



Energies 2020, 13, 96 7 of 19

to represent local groundwater flow conditions due to pumping in the active quarry, which is 1 km
west (down-gradient) of the school location. The bottom surface was set impermeable and an annual
net recharge of 100 mm y−1 was imposed at the top surface [23]. The initial ground temperature was
assigned to each layer according to the geothermal gradient of the area (Figure 4), which is equal
to 23.1 ◦C km−1 [12]. A fixed temperature boundary condition was used at the top of the model,
while a constant heat flux was imposed at the bottom of the model in order to represent the Earth’s
heat flux in the St. Lawrence lowlands, which is assumed equal to 35 mW m−1 [43]. The lateral side
boundaries were considered as Type-2 for heat transfer, with a zero temperature gradient assuming
no conductive heat transfer. The GHEs in FEFLOW are Type-4 boundary conditions for which two
approaches were used for the simulations. First, the inlet temperature was specified with an average
flow rate of 1076 m3 d−1 for the short-term calibration simulations to reproduce the outlet temperature
during the heat injection test. Second, a total flow rate of 1017 m3 d−1, anticipated for the long-term
operation of the system, and ground loads defined from the building simulation and the assumed heat
pump COPs (Equations (1) and (2)), were assigned to predict the operating temperature of the GHE
field for twenty years. For all numerical simulations, including model calibration, hourly time steps
were used to ensure accurate results.
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Figure 4. 3D model showing the boundary conditions and initial temperature for each layer.

3.4.4. Model Calibration

The model was calibrated to reproduce the outlet temperature recorded during the heat injection
test. Parameters with the highest uncertainty, which are the thermal conductivity of the subsurface
solids and the borehole backfill material, as well as the subsurface hydraulic conductivity, were manually
adjusted to provide the best match between measured and simulated temperature. The objective was
to identify possible ranges for uncertain parameters, which have an influence on the operating GHE
temperature. All other parameters were kept constant during the calibration (Table 1), which are
basically linked to the subsurface and the GHE entities. The constant parameters are the GHE pipe
spacing, inlet and outlet pipe diameters, pipe thermal conductivity, pipe thickness, heat carrier fluid
thermal conductivity and density, volumetric heat capacity of the fluid and subsurface solids, thermal
conductivity of the fluid and specific storage of the subsurface.
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Table 1. Constant parameters used for ground-coupled heat pump system (GCHP) simulations.

Parameter Value

Subsurface

Specific storage 10−4 m−1

Volumetric heat capacity of water 4.2 × 106 J m−3 K−1

Volumetric heat capacity of subsurface solids 2.52 × 106 J m−3 K−1

Thermal conductivity of water 0.65 W m−1 K−1

GHE

Pipe spacing 0.10 m
Inlet and outlet pipe diameter 0.032 m

Pipe thermal conductivity 0.39 W m−1 K−1

Pipe wall thickness 0.0038 m
Heat carrier fluid thermal conductivity 0.48 W m−1 K−1

Heat carrier fluid density 1033 kg m−3

4. Results

4.1. Groundwater Flow Conditions

Field observations combined with GHE drilling reports allowed to define a geological cross-section
used as a conceptual model (Figure 5). The 2800 m cross-section is bounded by a stream and the
active quarry that are considered constant-head hydraulic boundaries defining the water table at these
locations. The thickness of the unconsolidated sediment cover was determined from well logs of the
bore field [26]. The abandoned quarry closest to the school is 189 m down-gradient from the GHE
field, while the active quarry is approximately 1 km down-gradient. The water level depth in the
abandoned quarry was 21 m above sea level (asl) during the field work. Water is pumped irregularly
in the active quarry to maintain the groundwater level below the excavation, which affects the local
groundwater flow regime. The water level in the active quarry was measured at −3 m asl, but can vary
by a few meters.
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Steady-state groundwater flow in a simplified unconfined aquifer system with surface recharge
was considered to calculate the level of the water table and the hydraulic gradient near the school
site. A total distance of 2800 m separates the active quarry from the stream beyond the school, in
the direction of the groundwater flow. Under an assumed constant hydraulic head maintained in
the quarry and the stream, the hydraulic head near the GHE field was calculated using the Dupuit
formulation according to [44]:

h2 = h2
2 −

(h2
2 − h2

1)x

L
+

w
K
(L− x)x (10)

where h [m] is the hydraulic head between h1 [m], the water level in the active quarry, and h2 [m], the
water level at the stream. The distance L [m] between the active quarry and the stream (2800 m), the
average annual recharge w [m s−1], the hydraulic conductivity of the subsurface K [m s−1] and the
distance x [m] measured from the stream (where x = 0) were considered to calculate the hydraulic
head at the GHE field. Hydraulic conductivity and recharge were thus manually adjusted considering
values reported by Carrier et al. (2013) to reproduce the hydraulic head measured in the abandoned
quarry considered as an observation point. The conditions that best match the observation point
(h = 20.7 m asl in the abandoned quarry) correspond to a hydraulic conductivity of 1.26 × 10−5 m s−1

and a net recharge of 100 mm y−1, resulting in a hydraulic gradient at the GHE field of 0.008 m m−1.
Varying the hydraulic conductivity and the recharge rate with plausible literature values revealed a
low sensitivity of the hydraulic gradient at the GHE field that changed by about 2.5 × 10−3 m m−1.

4.2. Subsurface Thermal Conductivity

Gabbro samples taken from a dyke in the quarry and analyzed with both the needle probe and
the MTPS have a thermal conductivity below 2.0 W m−1 K−1, which is lower than the shales and
calcarenites, due to the mineralogy of the intrusive rock containing abundant feldspars (Table 2).
Thermal conductivity of gabbro was measured in another case study and ranged between 1.65
and 2.29 W m−1 K−1 [45], which is consistent with our results. Shale samples have an average
thermal conductivity ranging between 2.4 and 2.9 W m−1 K−1 (Table 2), which is in agreement with
a value of 2.8 W m−1 K−1 measured for other samples of similar lithology in the St. Lawrence
lowlands [10,12,44,46]. The calcarenite sample has the highest thermal conductivity among all the
samples collected in the quarry, with a value of 3.5 W m−1 K−1. Results obtained from the laboratory
analyses were considered to constrain the range of the solids thermal conductivity between 2 and
3 W m−1 K−1 in the subsequent numerical model since the thermal response tests reported in Section 2.2
were believed to be affected by groundwater flow.

Table 2. Average thermal conductivity of rock samples from the active quarry.

Rock Type Measurement Method Number of Samples
Analyzed

Average Thermal Conductivity
(W m−1 K−1)

Gabbro Needle probe 3 1.87
Gabbro MTPS 2 1.82

Calcarenite MTPS 1 3.58
Dark shale MTPS 3 2.42
Light shale MTPS 3 2.85

4.3. In-Situ Heat Injection Test

The heat injection test was carried out at an average heat injection rate of 305 kW for the entire
bore field or 9.8 kW per borehole (Figure 6). The total average flow rate was 39.9 L min−1. The injection
period lasted 406 h with GHE water temperature fluctuating between 15 ◦C to over 35 ◦C. Monitoring
of the temperature recovery, where the fluid is kept circulating in the GHE field without heat injection,
lasted 318 h and the GHE water temperature eventually recovered to about 13 ◦C.
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Figure 6. Fluid temperature recorded at the inlet and outlet of the GHE field during the heat injection
test. Flow rate and heat injection rate are also presented.

4.4. GCHP System Simulation

4.4.1. Ground Loads

The building simulation using eQuest revealed that the total annual heating energy consumption
of the school building is 171 MWh and the total cooling energy consumption is 119 MWh for a regular
year of operation. The peak heating load of 494 kW occurs in January while the peak cooling load of
253 kW occurs during July. The building loads were converted to ground loads using Equations (1)
and (2) assuming a COP of 4.7 and 4.1 in heating and cooling modes, respectively (Figure 7). The COPs
were chosen according to the heat pump specifications provided by the manufacturer and represent
average conditions. Heating loads are greater than cooling loads, which makes the ground loads
unbalanced and can affect the long-term thermal response of the system.
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Figure 7. Simulated heating and cooling loads imposed on the GHE field of the school building
calculated with eQuest from January to the end of December.

4.4.2. Model Calibration

The total duration for the calibration simulation was 724 h, which corresponds to the duration
of the heat injection test, including the heat injection and the thermal recovery periods. Calibration
parameters were adjusted one at a time (Table 3) until the calibrated model best reproduced the GHE
outlet temperature with a maximum error of 2% (Figure 8). Calculation time using a workstation with
a 3.3 GHz-core processor and 32Gb RAM was about 30 min for the calibration simulations.



Energies 2020, 13, 96 11 of 19

Table 3. Range of parameter uncertainty in the calibration simulations.

Calibration Parameter Possible Range Chosen Value

Kx (m s−1) 10−5–10−3 10−4

Ky (m s−1) 10−7–10−3 10−4

Kz (m s−1) 10−9–10−3 10−6

λ borehole filling material (W m−1 K−1) 1.5–1.9 1.75
λ host rock solids (W m−1 K−1) 2.1–2.4 2.4

Porosity (%) 3–5 3
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Figure 8. Best match between measured and simulated GHE outlet temperature during the heat
injection test.

4.4.3. System Operation—Twenty-Year Simulations

The eight simulation scenarios used to evaluate the long-term operating GHE temperature at
the Carignan-Salières elementary school were based on field observations and calibration results,
varying key parameters one at a time to determine the impact of associated heat transfer mechanisms
(Table 4). The start time of the simulation was the month of September, when the GHE system was
put in operation. Each simulation took 5 days using the same workstation as reported above for the
calibration simulations. Scenario A is a base case scenario, considering measured data for the thermal
conductivity of the solids and the borehole filling material as well as hydraulic conductivity of the
host rock reported in the literature [23] and a moderate hydraulic gradient, when compared to the
hydraulic gradient measured during the field work. Scenario B was defined according to the best-fit
parameters identified with the calibration and has a small change of solids thermal conductivity when
compared to Scenario A. Only the thermal conductivity of the borehole filling material was changed in
Scenarios C and D with respect to the base case. Scenarios E and F focused on thermal conductivity of
the host rock solids, while Scenarios G and H were run to verify the influence of groundwater flow
with a change of hydraulic head at the eastern and western boundaries of the model (Figure 4).

Table 4. Scenarios considered for GCHP system simulations at the Carignan-Salières elementary school.

Scenario
Hydraulic Head at
Lateral Boundaries

(m)

Hydraulic
Gradient
(m m−1)

Thermal Conductivity of
Subsurface Solids

(W m−1 K−1)

Thermal Conductivity of
Borehole Filling Material

(W m−1 K−1)

A 26–24 0.002 2.5 1.75
B 26–24 0.002 2.4 1.75
C 26–24 0.002 2.4 1.90
D 26–24 0.002 2.4 1.50
E 26–24 0.002 2.0 1.75
F 26–24 0.002 3.0 1.75
G 26–25.7 0.0006 2.4 1.75
H 26–22 0.008 2.4 1.75
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Simulation results for Scenarios A and B do not show significant differences in the simulated
GHE fluid temperature at both the outlet and inlet (Figure 9 and Table 5). The small decrease of
the subsurface thermal conductivity in Scenario B did not have a significant impact on the results.
Scenario D shows a GHE fluid temperature that is 0.4 ◦C higher than the maximum and lower than
the minimum temperature when compared to Scenario C, which is due to the decrease of the thermal
conductivity of the backfilling material. A low thermal conductivity of the subsurface (Scenario E)
affects the maximum and the minimum GHE fluid temperature by up to 0.9 ◦C, when compared to the
case with a high thermal conductivity (Scenario F).
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Table 5. Minimum and maximum GHE inlet temperature for the different scenarios during the 20th year
of simulation. The variations given in percentage of the input parameters (Table 4) and the simulated
temperature refer to scenario A.

Scenario

Hydraulic
Gradient

Thermal
Conductivity of

Subsurface
Solids

Thermal
Conductivity of
Borehole Filling

Material

GHE Outlet Minimum/Maximum Temperature
during Year 20

(%) (%) (%)
Heating Mode Cooling Mode

(◦C) (%) (◦C) (%)

A − − − 6.4 − 25.6 −

B 0 −4 0 6.4 0 25.6 0
C 0 −4 9 6.5 2 25.4 −1
D 0 −4 −14 6.1 −5 26.1 2
E 0 −20 0 6.1 −5 26.0 2
F 0 20 0 6.9 8 25.1 −2
G −70 −4 0 2.0 −69 31.7 24
H 300 −4 0 8.3 30 23.1 −10

Simulations with differences in hydraulic gradient imposed across the model domain show the
most significant differences in GHE fluid temperature. In Scenario G, the GHE inlet temperature
reaches 40 ◦C and drops to −3 ◦C and the GHE outlet temperature reaches more than 30 ◦C and
drops to less than 2 ◦C. However, in Scenario H, the GHE inlet temperature reaches 32 ◦C and falls
to only 3 ◦C while the GHE outlet temperature is between 23 ◦C and 8 ◦C. The maximum GHE fluid
temperature in Scenario H is 8 ◦C lower than the maximum of Scenario G, while the minimum GHE
fluid temperature is 6 ◦C higher than minimum of Scenario G. This trend can be explained by the
higher imposed hydraulic gradient of 0.008, which was considered for Scenario H that represents
conditions with significant pumping in the active quarry. This last scenario provides better heat
exchange with the subsurface and therefore better GHE temperature or performance. The lower
hydraulic gradient can represent a case where pumping in the active quarry is stopped or reduced,
which has a negative impact on the GHE temperature and consequently a potential negative impact on
the system performance. Overall, the thermal conductivity of the grouting material has a small impact
on twenty-year predictions of the GHE inlet and outlet temperature. The thermal conductivity of the
subsurface has a moderate impact on the maximum and minimum GHE temperature. The hydraulic
gradient, which is thought to be affected by pumping water in the active quarry, has the greatest impact
on heat exchange with the subsurface. Therefore, long-term GHE performance mostly depends on the
local groundwater flow conditions. As the minimum GHE outlet temperature drops, the performance
of the heat pump can decrease. Despite the significant differences between the simulated temperature
of the heat carrier fluid in Scenarios G and H, the twenty-year simulations show an appropriate thermal
response of the subsurface with constant temperature changes from year to year, although ground
loads are unbalanced. A low groundwater flow rate appears enough to reduce the effect of unbalanced
loads that can potentially cool the subsurface since this is not noticed in the long-term simulation.
The main impact of groundwater flow is on yearly temperature changes. The minimum GHE outlet
temperature dropped to 2 ◦C in Scenario G, which is still far from the minimal operating temperature
of the heat pump system recommended by the manufacturer (−9.62 ◦C). However, the minimum
GHE inlet temperature dropped to −3 ◦C. The freeze protection provided by the 25 vol. % propylene
glycol solution circulating in the GHE is −10 ◦C and geothermal system designers recommend a
minimum fluid temperature 5 to 7 ◦C higher than the freezing point of the solution. Therefore, under
low groundwater flow conditions, care should be taken to follow the minimum operating system
temperature during winter periods to avoid potential freezing problems at the GHE inlet.

5. Discussion

Previous studies that involved the numerical evaluation of GHE performance under the influence
of groundwater flow identified the conditions where advection becomes the dominant heat transfer
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mechanism affecting GHE operation, which has been compared in terms of Darcy flux in the following
discussion. For example, Chiasson et al. [47] concluded that groundwater flow can be expected to
affect GHE performance, with finite element simulations of groundwater flow and heat transfer that
indicated a higher minimum GHE water temperature when increasing Darcy flux from 1.9 × 10−6 to
1.9× 10−5 m s−1. In addition, Fujimoto et al. [48] studied a GCHP system where significant groundwater
flow was shown to have more effect on the thermal response of GHEs when compared to the ground
thermal conductivity, even under different building load scenarios. In less permeable subsurface layers,
which had a groundwater Darcy flux of 2 × 10−10 m s−1, Fujimoto et al. [48] showed that the operating
temperature of a GHE exhibits more changes than that of the permeable layer having a Darcy flux
of 6 × 10−7 m s−1. Another study that used numerical simulations has shown that increasing the
Darcy flux in a theoretical aquifer system from 10−9 to 10−7 m s−1 resulted in a longer and narrower
thermal plume propagating from the GHE [1]. Further increasing the Darcy flux to 10−6 m s−1 made
the thermal plume dramatically smaller. Dehkordi et al. [1] concluded that groundwater flow can
substantially improve heat transfer by enhancing advection. This was confirmed by Ferguson [2], who
provided a screening tool indicating that the boundary between GCHP systems with heat conduction
versus advection as a dominant heat transfer mechanism is when the Darcy flux is on the order of
1 × 10−7 m s−1.

The GCHP system at the Carignan-Salières elementary school has been operating near this
boundary. Constant hydraulic heads imposed at the lateral boundaries of the model presented in
this study were varied to evaluate the operating temperature of the GHE under specific Darcy fluxes
varying from 8 × 10−7 to 6 × 10−8 m s−1, which represented conditions with high to low groundwater
flow rates in situations with and without pumping, respectively, in the neighbouring active quarry.
The subsurface heat exchange capacity of the GCHP system appears to be enhanced by groundwater
flow, as a consequence of pumping in the active quarry. The simulation carried out under the most likely
operating conditions, assuming a thermal conductivity of the grouting material and the subsurface
solids of 1.75 and 2.4 W m−1 K−1, respectively, and with groundwater flow conditions that induce
a Darcy flux of 2 × 10−7 m s−1 at the GHE field, indicates a reasonable operating GHE temperature
for the next twenty years. However, if pumping activity ceases in the active quarry and the specific
groundwater flux drops below 6 × 10−8 m s−1, the minimum GHE outlet temperature can become
critical and may drop closer to the minimum heat pump working temperature.

Underground thermal energy storage systems can also be affected by groundwater flow when the
Darcy flux is on the same order of magnitude as that reported for GCHP systems (1 × 10−7 m s−1) [11].
However, the impact of groundwater flow on underground thermal energy storage systems is negative
because it increases heat loss around GHEs used as a heat storage medium. Giordano and Raymond [10]
demonstrated that ~10% of the energy lost by the bore field of an underground energy storage system
can be due to advection when the Darcy flux is 8 × 10−7 m s−1, while this heat loss can be reduced by
~60 % if the connection and layout of the GHEs is designed considering the magnitude and direction of
groundwater flow.

The present study further highlights the potential of groundwater flow to help operating GHEs
with unbalanced ground loads, which were affected in this study by ~30 % more heat extraction due to
greater heating than cooling of the building. The minimum GHE water temperature is expected to
decrease year after year when simulating heating-dominated GCHP systems using a heat conduction
approach to represent heat transfer in the subsurface. Jaziri et al. [49] previously simulated the
operation of the GCHP system at the Carignan-Salières elementary school with such a heat conduction
approach based on the HyGCHP program [50], where GHEs were represented with the duct storage
model with no groundwater flow contribution [51]. The GHE minimum operating temperature at
the beginning of the simulations was similar to simulations made with FEFLOW for the case with a
low groundwater flow rate (Scenario G) but decreased by 4 to 6 ◦C over the twenty-years of system
operation. On the other hand, GHE simulations made with FEFLOW and considering advection did not
show a significant decrease of the minimum GHE water temperature over the expected life-span of the
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system, even with a low groundwater flow rate (Figure 9). This finding has important implications for
GCHP system design. When calculating the required GHE length according to building energy needs,
and considering the thermal state and properties of the subsurface [52], practitioners will ensure that
the desired minimum GHE temperature is not reached before 10 to 20 years, assuming heat conduction
only in the subsurface. This approach can overestimate the required GHE length if advection becomes
significant. The present study suggests that this can be the case, even at a low groundwater flow rate
with a Darcy flux on the order of 10−8 m s−1. Possible approaches to design GCHP systems under the
influence of groundwater flow are to assume heat conduction only, but calculate the GHE length for
a one-year heat pulse [53] or consider advection with a moving line-source solution to complete the
sizing calculation [54,55].

6. Conclusions

Field characterization and modelling work conducted at the Carignan-Salières elementary school
has shown that the installed GCHP system can be influenced by the varying groundwater flow
conditions due to dewatering of a neighbouring quarry located approximately 1 km down-gradient of
the borehole field. The specific groundwater Darcy flux in the host rock, in which the GHE system
is installed, has been estimated near 10−7 m s−1 at the time when the water levels in the nearby
quarries were measured. The school building is constructed above fractured shale and limestone of the
Nicolet Formation in the Lorraine Group of the St. Lawrence Lowlands and the groundwater flow is
oriented westward toward the active quarry. Measurement of thermal conductivity of the rock samples
collected in the active quarry revealed that the most abundant rock types have a thermal conductivity
ranging from 1.8 to 3.6 W m−1 K−1. A TRT conducted at the site, which reported an equivalent
subsurface thermal conductivity of 2.58 W m−1 K−1 [26], was likely affected by groundwater flow.
A heat injection test was therefore carried out with the purpose of evaluating the thermal response
of the entire GHE field subject to groundwater flow. The data collected were used to calibrate a
groundwater flow and heat transfer model built using FEFLOW to simulate the operating temperature
of the GHEs. The numerical model was developed according to the characteristics of the subsurface and
the GHE field to reproduce the heat injection test and then predict the long-term response according to
different scenarios.

The parameters that impact the GHE operating temperature in order of increasing importance are:
the thermal conductivity of the backfilling material, the thermal conductivity of the subsurface and the
groundwater flow rate. The impact of the thermal conductivity of the borehole filling material and the
subsurface (Scenarios B to F) on the inlet and outlet temperature of the GHEs was actually shown to be
minor when compared to the possible change of groundwater flow conditions at the site (Scenarios G
and H). The Carignan GCHP system is a unique field case with GHEs interfering with the groundwater
drawdown around the quarry and where the local thermal and hydraulic conditions of the GCHP
system have uncommonly been assessed at a large scale. The subsurface heat exchange capacity of the
GCHP system is clearly enhanced by groundwater flow inducing significant advective heat transfer
when the specific Darcy flux increases from 6 × 10−8 m s−1 (no dewatering) to 8 × 10−7 m s−1 (high
dewatering). This study further suggests that even the lowest groundwater flow rates expected at the
site can be beneficial to avoid a progressive cooling of the system over its expected lifetime due to the
unbalanced heating and cooling loads.

Further research is necessary to define the conditions where groundwater flow can help to cope
with unbalance ground loads. While it is clear that advection plays an important role on heat transfer
when the Darcy flux is 10−7 m s−1 or higher, a lower groundwater flow rate may be sufficient to
ensure a constant minimum GHE temperature year after year, depending on the magnitude of the
unbalanced loads.
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Nomenclature

c Specific heat capacity [J kg−1 K−1]
COP Coefficient of performance [−]
ε Volume fraction [−]
H Heat source/sink term [W m−3]
h Hydraulic head [m]
K Hydraulic conductivity tensor [m s−1]
K Hydraulic conductivity [m s−1]
L Distance [m]
P Heating load [W]
Q Hydraulic source/sink term [m3 s−1]
q Darcy flux tensor [m s−1]
λ Thermal conductivity tensor [W m−1 K−1]
λ Thermal conductivity [W m−1 K−1]
ρ Density [kg m−3]
ρc Volumetric heat capacity [J m−3 K−1]
Ss Specific storage coefficient [m−1]
T Temperature [K] or [◦C]
t Time [s]
2 Thermal hydrodynamic dispersion tensor [W m−2 K−1]
u Heat carrier fluid velocity tensor [m s−1]
w Annual recharge [m s−1]

Subscripts

EOB Extended Oberbeck-Boussineq approximation
g Grout
gw Groundwater flow
il Inlet pipe
ol Outlet pipe
r Heat carrier fluid
s Subsurface

Abbreviations

asl Above sea level
E East
GCHP Ground-coupled heat pump
GHE Ground heat exchanger
MTPS Modified transient plane source
TRT Thermal response test
W West
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