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Abstract: Accurate electricity demand forecasting for a short horizon is very important for day-to-day
control, scheduling, operation, planning, and stability of the power system. The main factors that
affect the forecasting accuracy are deterministic variables and weather variables such as types of days
and temperature. Due to the tropical climate of Thailand, the marginal impact of weather variables
on electricity demand is worth analyzing. Therefore, this paper primarily focuses on the impact of
temperature and other deterministic variables on Thai electricity demand. Accuracy improvement
is also considered during model design. Based on the characteristics of demand, the overall
dataset is divided into four different subgroups and models are developed for each subgroup.
The regression models are estimated using Ordinary Least Square (OLS) methods for uncorrelated
errors, and General Least Square (GLS) methods for correlated errors, respectively. While Feed
Forward Artificial Neural Network (FF-ANN) as a simple Deep Neural Network (DNN) is estimated
to compare the accuracy with regression methods, several experiments conducted for determination
of training length, selection of variables, and the number of neurons show some major findings.
The first finding is that regression methods can have better forecasting accuracy than FF-ANN for
Thailand’s dataset. Unlike much existing literature, the temperature effect on Thai electricity demand
is very interesting because of their linear relationship. The marginal impacts of temperature on
electricity demand are also maximal at night hours. The maximum impact of temperature during
night hours happens at 11 p.m., is 300 MW/◦C, about 4% rise in demand while during day hours,
the temperature impact is only 10 MW/◦C to 200 MW/◦C about 1.4% to 2.6% rise.

Keywords: short-term electricity demand forecasting; Thai electricity demand; temperature impact
on electricity demand; feed-forward neural network; multiple linear regression

1. Introduction

1.1. Motivation and Background

Thailand has 100% access to electricity [1] for both urban and rural areas with the second-largest
economy and the fourth-largest country by population in Southeast Asia. Such population and
the economic growth lead to an increment of electricity demand by an annual average of 684 MW
since 1987 [2]. Among Asian countries, the People’s Republic of China (PRC) accounts for most
of the energy demand in Asia whereas Thailand stands in the fifth followed after India, Korea,
and Indonesia [3]. The Electric Supply Industry of Thailand consists of Electricity Generating Authority
of Thailand (EGAT), Metropolitan Electricity Authority (MEA), and Provincial Electricity Authority
(PEA); where EGAT is responsible for generation, MEA for distribution in the metropolitan area around
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Bangkok, and PEA distribution in the rest of the country. The scope of our paper is centered on the
metropolitan areas.

Short-term electricity demand load forecasting has become an extremely important issue for
energy suppliers, system operators, and other market participants. In many electricity deregulated
markets, around the world electricity demand is fixed a day before the delivery by concurrent
(semi-)hourly auctions. The improved accuracy of demand load forecasting can save the operating cost
and the reliability of power supply. The volatile and complex behavior of electricity demand is always a
challenging task when developing robust models for the researcher. Smart technologies like the internet
of things, need sufficient power to connects “anything from anywhere” [4]. Industry automation
and large penetration of plug-in electric vehicles are expected for reliable, economically competitive,
environmentally sustainable electric system [4,5]. The fifth assessment report of the Intergovernmental
Panel on Climate Change [6] suggested that global warming already made the world 0.74 ◦C warmer
and forecasted to 1.8–4 ◦C by the end of century [7–9]. This increment in temperature has already
shifted the highest peak demand load occurrence from evening hours to daytime hours due to
the intensive use of the air conditioning (AC) systems in Jordan [7]. The outside temperature is
demonstrated as the most influencing factor among all the variables that can be used to explain
potential variations in demand [10,11]. Furthermore, this influence is typically linked to the penetration
of electric cooling and heating appliances, mainly used by households and firms in residential and
commercial sectors [11]. Heating, ventilation, and the AC system consume more than half of energy in
the buildings of residential area [12]. In addition to temperature, deterministic variables such as day
types and seasons also show their impacts on demand. The behavior of demand is highly dependent
on the sectors where the electricity is used. The influence of residential sector behavior on energy
consumption is getting increasingly significant [13]. Since the electricity cannot be stored efficiently,
end-user demand must be tightly controlled for an effective power system management [14]. Therefore,
the main objective of this article is to construct an accurate forecasting model, and quantitative analysis
of demand load influencing factors that help to ensure the stability of the energy system in operation,
maintain the secure, adequate, and efficient electricity supply by reducing blackout risk. To avoid an
ambiguous presentation, we note that the rest of this paper uses two terms, “demand forecasting” and
“demand” to refer to “electricity demand forecasting” and “electricity demand”.

In fact, electricity consumption fluctuates due to the random behavior of consumers while some
of the predictable patterns such as seasonal, weekly, and daily patterns are found. The variation on
the demand during morning hours, day hours, and night hours causes intraday patterns. To handle
these intraday periodicities, the researcher has two alternatives: the first is to allocate the individual
variables for each hour/half-hour [15,16], while the second is to construct separate models for each
hour/half-hour so that intraday seasonality vanishes [17–19]. Similarly, weekdays seasonality is
due to working and non-working days. To remove such seasonality, a similar methodology of
individual variables for each day using dummy variables is implemented [17–20]. Annual seasonality
occurs due to the hot and cold seasons, and dummy variables are used to remove such seasonality.
Monthly seasonality is also taken care of by dummy variables. To improve the forecasting accuracy,
the interaction of these seasonal variables is implemented in [15] for the Thai dataset.

Demand load forecasting with a linear model is challenging due to several levels of seasonality,
non-linear factors such as temperature, holiday, and special events. Auto-regressive moving average
(ARMA) structures can handle such seasonal and cyclic behavior. So the lag structure-based ARMA
with exogenous variables (ARMAX) models are constructed similar to [16,17,20,21] because such
models have been extensively applied in the demand forecasting literature for better accuracy [16].
The main limitation of ARMAX is over-forecasting for Saturdays and under-forecasting for
Mondays [21]. The reason behind the over-forecasting on Saturday is due to higher demand on
Fridays compared to Saturdays. Since one-day lag demand is used to forecast for Saturday, this causes
the over-forecasting on Saturdays. Similarly, the possibility of under-forecasting on Mondays is due to
the Saturday or Sunday demand based on one-day or two-day lagged demand. A simple way to deal
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with such an issue is the interaction variables between lagged demand with day-of-the-week dummy
variables which is implied in our modeling.

1.2. Review of Related Works

Some existing literature on short-term demand forecasting (STDF) utilized the same 2009–2013
dataset [20,22–25]. This work still gives the norm for improvement in forecasting accuracy for Thailand.
The behavior of Thai demand profiles such as many public holidays, religious long holidays, and special
events which are described in Appendix A still require a careful study to improve the performance.
The unexpected flooding period in Bangkok was approximately three months, also challenged on
forecasting accuracy. For simplicity, related works are divided into the following subsections.

1.2.1. Temperature Effect

Overall peak demand in Thailand was observed on Tuesday, 24 April 2018 at 20.30 h which was
0.84% less than the previous year. However, the energy demand was increased to 1.29% [26]. EGAT has
implemented demand-side management to reduce an unnecessary use of electricity, fuel import,
and carbon dioxide emissions to maintain the overall stability during the peak period. The micro-study
of temperature for short term load forecasting and impact analysis of climate change was conducted
by Parkpoom et al. [8] using a simple regression model for Thai data. They discussed climate
and socio-economic scenarios and predicted that peak electric demand could rise by 1.74–3.43%
by 2020 with a mean annual temperature of 1.74 ◦C rise. Another paper [27] based on Bangkok
metropolitan data studied the impacts of climate and economic factors only on residential electricity
consumption. The paper found that residential demand increased by 6.79% for 1 ◦C rise in temperature.
Cian et al. [28] focus such increment in demand depends on the penetration of air-conditioning
equipment, indoor comfort and thermal quality of buildings. The larger air-condition load increased
consumption by 0.12%. The high degree of correlation between temperature and demand is discussed
by Mirasgedies et al. [29] for Greece. Their study found that future climate change is expected
to influence the annual demand by 3.6–5.5%. For the Bangladesh dataset, [30,31] explores the
temperature sensitivity forecasting using linear regression. The findings of both articles reveal a
similar conclusion that demand is highly dependent on temperature during the summer season
rather than winter. In summer, the increment rate of demand was maximum to 53.14 MW/◦C while
only 2.14 MW/◦C increment in winter. The effect of temperature in the rural area of China was
studied by Zhang et al. [32,33]. They analyzed the impact of temperature using a simple linear model.
Similar to [30,31] for Bangladesh, the effect of temperature in summer was higher than in winter by
0.015% in the rural areas of China. The reason behind a higher rate of demand during summer is
‘temperature accumulation effect’ which is discussed in article [34].

The effect of temperature on demand is highly dependent on the sectors where the electricity
is used. Research works conducted for European data [35], and Chinese data [36] suggested that
demand for industrial, and commercial sectors are not significantly affected by temperature. The study
on Korean demand by [37] found conclusive evidence that non-climatic, such as deterministic
variables, influenced the demand response in the commercial sector rather than the residential sector.
However, the influence of residential sector behavior on energy consumption is getting increasingly
significant [13]. Ang et al. [38] studied two tropical and subtropical cities, Singapore and Hong Kong.
With the comparable population and economy sizes: results show that a 1 ◦C rise in temperature on
sectoral demand corresponds to 4–5% rise in Hong Kong, while 3–4% rise in Singapore. In Hong
Kong, the impact of urban temperature on energy consumption was found to differ according to the
sectors. Fung et al. [39] examined the temperature and demand relationships conducted in domestic,
commercial and industrial sectors which show an increment of 9.2%, 3%, and 2.4%, respectively.
This indicates the highest impact of temperature is in residential sectors rather than other sectors.
The higher demand from the residential sector comes due to cooling purposes rather than heating
purposes in Jiangsu, China. The peak demand and the impacts of global warming in the industrial and
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residential areas of Pune, India based on an extreme value approach [40]. The findings showed that
industrial activities are not much influenced by the temperature whereas residential activities show a
1.5–2% change in average demand for 1 ◦C rise in temperature. Such extreme temperature results in
more cooling demand in residential areas during summer [41].

Weather conditions are widely included in most of the models because of its crucial role in
STDF [42]. The seasonality of commercial demand is higher in winter rather than in summer.
The impact of atmospheric variables including humidity, solar radiation, wind chill, cloud cover,
and the temperature was conducted for Hokkaido [19] which shows that the rise in temperature from
25 to 26 ◦C causes 7% increase in demand during day hours while only 2% increase in night hour at
1 a.m. The AC system saturation data for 39 cities in the United States was studied in [43] to show the
strong correlation between AC saturation and Cooling Degree Day (CDD). A 20% increase in CDD can
rise up the residential electricity consumption by 1% to 9%. Such increment in temperature causes a
rise in demand by 3.7% during the summer season, and 5.4% in peak hours. The econometric model
to analyze the effect of climate change for residential electricity consumption was discussed [41] in
Yangtze river delta, China. The result showed that annual electricity consumption was increased by
9.2%/◦C while 36.1%/◦C during peak demand. The influence of temperature in the urban area of
Shanghai showed two peaks due to heating on winter and cooling effect in summer. The paper [41]
explored the temperature and demand relationships for cold, warm and mild countries and found the
increment in demand by 0.54%, 1.75%, and 0.15%, respectively.

1.2.2. Weekend, Holiday/Special Day Effects

It is obvious that electricity demand variation from Monday to Friday (working days) is quite
stable, while the demand on weekends and holidays is volatile in nature [16,19]. Just one holiday
within a week may result in lower accuracy for the whole week. The weekend and special day
characteristics show a lower level of demand sensitive than working days to the weather condition that
influences the forecasting accuracy. Therefore, [15,34] implemented the interaction of variable concepts
to improve forecasting accuracy. The article [34] proposed the semi-parametric regression with the
interaction of demand and weather variables after the separation of weekend data from working day
demand. Such separation of weekend demand and working days, as well as interactive coupling
with external temperature, reduced the prediction error down to less than 2% which was better than
different Artificial Neural Network (ANN) models. However, ANN is the most implemented method
in the literature of machine learning models that are listed in the SCOPUS database [44]. Therefore,
the special days’ issue is needed much attention because of poor performance on accuracy. Each special
day suffers from higher prediction losses compared to other days of a week. These higher prediction
losses occur at peak hours. Therefore, such cases are special and important for utilities because of large
peak errors. This research focuses on how to provide the proper information about this non-linearity
of special days so that the forecasting model able to forecast accurately. Non-linearity of special days
load profiles are overcome by using separate models for each hour and categorical variables for each
type of day.

1.2.3. Grouping of Dataset

The grouping of a dataset based on working and non-working days helps to train and test two
different groups of a dataset, separately. Initially, Darbellay and Slam [45] suggested splitting a
dataset into working days and holidays which is followed by several studies [15–19,46,47]. The deep
classification of day types and special days is essential for good accuracy. In most of the research
work, all the days are classified into two or three large groups such as working days, weekends
and holidays [17,19,21,44,48]. However, the weekends and holidays create some level of challenge
while grouping the dataset due to the limited number of observational data. The issue of public
holidays referenced from bank holidays similar to [49] is applied in this study and which are just about
10–15 days of a dataset for a Year is very low for training and testing. Such a small number of holidays
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data or special days issues are important and need much attention because of poor performance on
accuracy and large errors on peaks.

Since the Sunday and holiday pattern behaves some similarities, paper [23,24,48] classified the
dataset into three categories: Monday to Friday (working days) group, Saturday group, Sunday and
holiday group. While forecasting for day-ahead leading hours, [48] shows a very attractive MAPE of
value 0.62%, 0.83%, and 1.17% for working days group, weekends, and Sunday with public holiday
groups, respectively. Hippert et al. [46] simply replaced the holiday by Sunday or weighted average of
some past values followed in the Thai dataset by [23,50]. The non-linearity of special days load profile
are overcome by using separate models for each hour and categorical variables for each type of days.
Taylor et al. [16] tried to smooth out the special days by averaging the corresponding periods from
two adjacent weeks before fitting and evaluation. Special-day effects have been explicitly included in
forecasting models using dummy variables deterministic components, such as the trend, seasonality,
and special-day effects. For example, [17] suggested employing dummy variables to reflect the effect of
the day after a holiday. Later, Cottet et al. [51] added five day-type dummy variables, [52] implemented
15 different dummy codes for the days of the week, common holidays, special holidays, working days
before and after a holiday. The study of the cold region conducted by Chapagain and Kittipiyakul [19]
constructed Multiple Linear Regression (MLR) with the ARMAX model that contains 22 dummy
variables including long holidays, and months types to get the impressive 2.51% MAPE for holidays
where more than 51% prediction were less than 2%. Therefore, we have separated the aggregated
dataset into four different groups.

1.3. Model Selection

Several modeling concepts for robust parameter estimation used prior to 1990 were discussed
in [53], and concluded that MLR was superior [19,21,54]. Literature showed that the multiple equations
approach has the potential to achieve a very competitive forecast accuracy. The main advantage of this
approach is the interpretative capability of explanatory factors. Since the primary goal of this paper is
to analyze the marginal impact of temperature on electricity demand, the construction of regression
models is a good option [21]. However, the characteristics of electricity demand are highly non-linear.
Due to the handling capability of artificial intelligence especially: ANN, fuzzy and Support Vector
Machine (SVM) are popular among the researchers. For example, ANN-based methods [46,55,56],
Fuzzy interaction regression methods [57], ANN with Particle Swarm Optimization (PSO) and GA [24]
to optimized the weights to fall into local minima, SVM methods [23], Baysian methods [19], DNN
methods [58] are implemented.

ANN-based STDF models are systematically summarized including the important critics on ANN
by Hippert et al. [56]. They exposed that the existing ANN papers were claimed better performance
without any solid support. An FNN: a simple deep neural network consists of more than the typical
three layers of multiple layer perceptron. The deep structure increases the feature abstraction capability
of neural networks. The number of layers and neurons are the key to modeling neural network
structures. The network, having a single hidden layer can vary the number of neurons in a single
hidden layer while the depth of the network can be varied in DNN. The number of hidden layers
is selected based on forecasting accuracy. Darshana and Chawalit [50] designed a combined PSO
algorithm and forecasted using the ANN technique. The overall MAPE for 2013 was found higher
than 3.14%. The same authors [24] implemented hybrid PSO with the Genetic Algorithm (GA) to
improve the yearly MAPE for 2013 forecasting accuracy to 2.86% which is quite impressive for Thai
data. The minimum and the maximum monthly average MAPE were found 2.164% (April) and
6.761% (December), respectively. The procedure of cleaning the dataset of this paper consists the main
limitation; where the dataset of holidays, bridging days (working days between holidays), and the
abnormal dataset is replaced with a weighted moving average of by randomly selected numbers and
forecasting is performed on cleaning dataset, not the actual demand. Phyo et al. [22] also suggested
the data be cleaned and grouped into similar days. The authors implemented a DNN methodology
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to forecast the year 2013. To improve the prediction accuracy, paper [22] is also tested with cleaned
data similar to [24,50]. Su et al. [23] presented a similar methodology but a different algorithm. In both
papers [22,23] length of training dataset and the temperature variables were equal and focused on
cleansing to obtain better forecasting accuracy. However, their accuracy performance was still at a
lower level compared to [24]. In this study, we used the same dataset provided by EGAT which was
already implemented by papers [20,22–24,50] is implemented.

Due to limited literature for Thai data, similar studies of different regions and similar weather
condition as Thailand are worthy of discussion. For example, Malaysia has approximately similar
weather conditions to Thailand. Ismail et al. [54] implemented an MLR model to investigate the
impact of temperature, holiday types with MAPE 1.71% for a day-ahead forecast. Apart from artificial
intelligence, other traditional and adaptive techniques such as Seasonal ARIMA (SARIMA) and
Regregression ARIMA (RegARIMA) were compared to linear regression for cognate energy prediction
with weather variable selection. The result showed that linear regression was highly effective and better
than other sophisticated techniques for the majority of simulations in [59] in China. A RegSARIMA
model for predicting short-term daily peak demand with a comparative analysis between SARIMA
and Holt–Winters Triple (HWT) exponential smoothing models were discussed by Chikobvu and
Sigauke [60] for South Africa. The empirical results showed that the RegSARIMA model is capable
of capturing important driving factors of demand. In another study of authors [60,61], an additive
regression model used to forecast the daily peak demand. They concluded that the demand in South
Africa was highly sensitive to cold temperatures compared to hot temperatures because of sub-tropical
mild climate. The small number of customers is another reason for the high sensitivity of temperature
to the electricity demand discussed by Haben et al. [62] where they have studied for a low voltage grid
up to 150 customers in the United Kingdom.

As usual, the result shows the correlation between demand and seasonality (temperature)
where the best performing method was AR and HWT exponential smoothing. More robust
modeling techniques comprise our concern to handle the stochastic behavior of variables. The use of
categorical variables is needed to formulate such classification in a linear regression model is very
common [17,21,30,44]. These categorical variables define the types of days translated into dummy
variables that allow the regression model to eliminate each type of individual day. In the short lead
time up to six hours ahead, univariate models are sufficient [16] for good accuracy. Taylor et al. [16]
conducted a comparative study of univariate models against two benchmark models to obtained
the MAPE less than 2%. The hidden reasons behind the selection of univariate models are just a
few leading hours for prediction and the difficulties in accessing the costlier weather data [19,63].
Unlike [16], EGAT makes forecast at 2 p.m. for the next day which is 10 to 34 leading hours. On Friday,
Thailand practice for the forecast is up to 106 h ahead, if Monday is a holiday and even longer during
long holidays such as Songkran and New Year. Such long leading hour prediction is made by EGAT
because the EGAT office is closed on weekends and holidays. However, this study is limited to the
prediction up to 10 to 34 leading hours considering the data up to 2 p.m. is available to forecast for the
next day only.

The MLR model with a dynamic error structure and adaptive adjustment of forecasted error
proposed by Ramanathan et al. [17] was the winner of a demand forecasting competition. The reason
behind the dynamic error structure is to overcome the limitation of simple OLS. The alternative model
of [17] is the quantile regression model which is discussed and implemented by Sigauke et al. [64],
and Botoc and Anton [65], for hourly electricity demand model, and to explain the profitability of firms,
respectively. The Hong et al. [57] reviewed the modeling techniques of winning teams in the Global
Energy Forecasting Competition 2012, where all four winning teams applied regression analysis, while
only two teams implemented ANN. Therefore, we select the AR-based MLR model with uncorrelated
error and adaptive adjustment for correlated error. For a comprehensive study, FF-ANN and hereafter
named FF-ANN model are constructed using the TensorFlow deep learning platform.



Energies 2020, 13, 2498 7 of 29

1.4. Contributions

This paper follows the similar forecasting procedure of EGAT where the data until 2 p.m. is
collected and predicted for the next day. The selection and implementation of the GLSAR model by
taking care of error lags, a comprehensive study on OLS, GLSAR and FF-ANN, provides the novelty
and pioneer contribution for an upcoming researcher. The major findings based on Thai electricity
data for STDF as explained as,

1. The marginal impact of temperature that leads to raising the demand for day hours and night
hours is explored for Thailand which is quite useful for tropical countries.

2. The quantitative analysis among the variables such as the impact of holidays, working days,
working days after a holiday/long holiday, AR effect, special days/events such as Bangkok flood
for the demand is discussed in detail.

3. The unexpected Bangkok flood and lockdown situation were quite similar to the current Covid-19
in terms of electricity demand. Therefore, the researcher can extend this methodology to analyze
the impact on electricity due to Covid-19.

4. Construction of four different scenarios based on similar characteristics of demand which leads to
achieving the best prediction capability among the existing literature of the Thai dataset.

5. The strategy for the selection of variables, determination of the training length of a dataset, hidden
layers and nodes are also major contributions for the improvement of the accuracy are also major
contributions of this study.

The remainder of this paper is organized as follows. Section 2 describes the overall methods
including data pre-processing, modeling strategy, and estimation process of models. Section 3
demonstrates an extensive empirical analysis of forecasting accuracy, the marginal impact of
temperature and the quality of the model fit. Section 4 summaries the comprehensive discussion and
concludes this paper.

2. Methods

In this section, proposed methods as depicted in Figure 1 are described. The proposed methods
can be seen as four frameworks, namely: data pre-processing, model design, MLR/ANN estimation,
and comparative discussions. The details of data pre-processing are presented in Appendix A to avoid
an ambiguous presentation.

After the detailed discussion of data characteristics and variable identification in Appendix A,
and grouping methods of dataset in Section 1.2.3, the Thai dataset is carefully divided into four
different subsets or hereafter named scenarios. Each model is trained and tested for each scenario and
divided as,

• Scenario 1: only demand for working days.
• Scenario 2: only demand for weekends.
• Scenario 3: only holiday demand and highly fluctuated demand from December 24 to New

Years eve.
• Scenario 4: all the demand dataset.

For each scenario, the parametric MLR model and non-parametric FF-ANN model were included in a
comprehensive study.
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Figure 1. Proposed forecasting methods.

2.1. Model Design

The variables are identified and presented in Appendix A.4 to construct the MLR and ANN
models. The experiments show that an MLR forecasting model shows strong capability to build the
relationship between model output and affecting variables. Similarly, ANN models have the strong
capability of mapping the complex input/output relationship where we can construct a robust model
for better results. These models are described as,

2.1.1. MLR Model Description

The electricity demand data is observed every half-hour, therefore there are N = 48 observations
in a day. Since we have total 84,618 observations, these datasets are made the half-hourly sectional
grouping into 48 subsets. Each group contains the demand load for a specific hour of the day. Now,
the individual subset is treated as a single series of data and all 48 series are modeled and estimated
independently. Therefore, we have 48 individual forecasting models to forecast for one-day. The main
advantage of implementing such a sectional form of data is that intra-day patterns are automatically
avoided [17]. The demand at day d and half-hour for h = 1, 2, . . . , 48 modeled as,

Dh,d = Deth,d + Tmph,d + DHisth,d + ITermsh,d + µh,d, (1)

where Deth,d, Tmph,d, DHisth,d and ITermsh,d are groups of deterministic, temperature, historical
electrical demand, and interaction terms, respectively. The residual µh,d modeling is very sensitive
and important in MLR because of the incorporation of an auto-regressive structure in the error term.
Such correlated errors assumed to follow an autoregressive with previous days. Therefore, Equation (2)
describes that the current value of the error term at hour h of the day d is denoted by µh,d, which
is the autoregressive sum of q previous days. We have run several models for different values of q.
Mathematically,

µh,d =
q

∑
i=1

ρh,iµh,d−i + εh,d. (2)

The terms µh,d−i is the serially-correlated error term and εh,d = N(0, σ2). The Durbin–Watson
(DW) test is used to test the hypothesis that the residuals are serially correlated or not. The hypothesis
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being tested as, H0 : σ = 0 for no serial correlation and H1 : σ 6= 0 for serially correlated error.
The demand model can be written conveniently as a linear regression model,

Yd,h = Xd,hβd + µd,h. (3)

Equation (3) consists of p predictor variables and the classification of these p variables are as in
Equation (1), where µ = N(0, ∑). Depending on the properties of ∑, model is classified as,

1. OLS: where errors ∑ = I
2. GLS: for orbitrary covariance ∑
3. GLSAR: where AR(p) ∑ = ∑ ρ

In our analysis, error terms are assumed to follow an AR(p) in days upto p = 7, therefore GLS
turned as GLSAR methods, and implemented as,

µd,h = ρh1µd−1,h + ρh2µd−2,h + · · ·+ ρh7µd−7,h + εd,h (4)

Combining all 48 equations together in Equation (3), the half-hourly demand model can be
written as,

Y = Xβ + µ. (5)

Unlike simple regression context, E(µ µ′) = Ω, which is Seemingly Unrelated Regression
(SUR) system describes that each row of µ corresponds to one day of half-hourly residuals is
contemporaneously correlated but not correlated over a half-hour. This methodology is thoroughly
explained in [17]. The auto-correlation AR(p), p=7 to the previous days was taken into account by
taking lags, but not among the hours. The order of AR is determined by the significance test of ACF
and PACF.

2.1.2. OLS and GLSAR Estimation

The MLR model designed in Equation (5) can be setup as, Yh = Xhβh + µh, for h = 1, . . . , m is the
regression model for each half-hour h. Here, Yh = (Dh,1, Dh,2, . . . , Dh,T)

′, vh = (µh,1, µh,2, . . . , µh,T)
′,

and βh = (βh,1, βh,2, . . . , βh,Ph
)′. These Ph regressors in the regression model are for half-hour h, and Xh

is the corresponding T × Ph size matrix. This matrix contains the regressors from Equations (5).
For instant, if h = 1, . . . , 48, there exists 48 regressions, then y = Xβ + µ where y′ = (y′1, . . . , y′48),
β′ = β′1, . . . , β′48), and X = bdiag(X1, . . . , X48) is a (48d × ∑m

h=1 Pi). The serially correlated error
µh (Equation (4)) term should be transformed to the serially uncorrelated error εh where εh =

µ∗h = µh − ρiµh−i, and i represents the number or order of the lag. Similarly, Y∗h = Yh − ρiYh−i,
and X∗h = Xh − ρiXh−i removes the serial correlation [19].

2.1.3. Performance Measurements

The most common criterion that is used for evaluation of forecasting performance is MAPE.
It measures the deviation of forecasted value from a real value in terms of percentage.

MAPE =
1

N|D| ∑
α∈D

N

∑
k=1

∣∣∣∣∣Dh,d − D̂h,d

Dh,d

∣∣∣∣∣ , (6)

where D represents the set of test days in the test dataset, Dh,d and D̂h,d represents the real demand
and predicted demand, respectively at day d and half-hour h.

2.2. Artificial Neural Network Approach

A neural network is a popular multi-stage powerful modeling tool that can capture the non-linear
behavior and complex input to the output relationship compared to conventional techniques.
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The motivation for ANN construction is because of intelligent characteristics of neurons similar to the
human brain because: a neural network acquired knowledge through learning, and this knowledge is
stored as the weights within the inter-neuron connections. The mathematical expression for learning is,

li =
m

∑
j=0

XjWij + bi. (7)

The output function will be yi = f (li), where Wij are the weights of each neurons; f is a non-linear
activation function.

2.2.1. Structure of ANNs

The structure of ANNs is composed of the numbers of layers and the neurons. The number
of neurons is automatically fixed by the training data and the forecasting period. Moreover,
the highlighted limitations associated with the ANN structure are that the training process oscillates
and possible to converse at local minima. Some authors such as [24] discussed meta-heuristic methods
to find the global minimum and selection of hidden neurons. Normally, the researcher gradually
increases the number of neurons and compared them to the errors. Unlike shallow learning procedures,
DNN refers to the combination of a large number of layers and neurons. Therefore, optimizing
the depth and width of hidden layers is quite time consuming and not feasible to test all possible
combinations. Therefore, we have determined the structure of DNN by the trial and error procedure
and finally selected two hidden layers as discussed in Section 3.3 Table 5.

2.2.2. Activation Function

The activation function maps the resulting values by capturing the trends or feature patterns from
the trained dataset. In ANN, the Rectified Linear Unit (ReLU) is considered as the excellent activation
function to regularize the hidden layers. Since ReLU picks the max(0, x), it avoids the vanishing
gradient problem. Moreover, the advantage of ReLU is very quick to use and train the model so that
computational cost is reduced compared to other activation functions. However, the learning process
gets slow because of bias.

2.2.3. Resolving Overfitting

Over-fitting can be observed from the learning curve which describes the error rate according
to the epochs. An epoch is just one cycle of iteration where the entire dataset is passed forward and
backward in the network. Initially, a testing error is reduced by increasing the number of epochs in a
trained model, but there exists a threshold point from where the testing error starts to increase even
the training error seems improving. Therefore, over-fitting is a serious problem in ANN techniques
which can be minimized by adding more observational data or using the concept of dropout. Dropout
function randomly ignores or drops out some subset of nodes from a given layer during the training
procedure so that it can prevent an over-fitting problem.

3. Results and Discussion

3.1. Selection of Training Length

To determine the best length of the training period, Scenario 1 was chosen due to less variation
in the dataset. This dataset is implemented for OLS estimation considering the absence of serially
correlated-error coefficients. The number of coefficients and size of the training dataset should not
be over-parameterized. Scenario 1 consists of 54 coefficients and 236 to 911 set of observations
obviously avoids the over-fitting problem [17]. Insufficient feature abstraction could happen in a short
length of the training dataset. A longer length of training dataset provides more information to the
forecasting model and obviously results in good accuracy. However, considering a longer training
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dataset, the forecasting accuracy can be affected if the historical pattern of data significantly differs
from the most recent data [66]. Lusis et al. [66] suggested that just one-year length is sufficient for
training to develop the residential electricity model. However, Clements et al. [21] implemented a
three-year length of aggregate data for the Queensland region, Australia, where the model obtained
quite impressive results with MAPE 1.36%. Since the length of the training dataset shows localized
characteristics, four different sizes of training datasets, 911 days, 717 days, 475 days, and 236 days are
tested. These four different sizes or cases are designed as,

• Case I: Training period: 911 days, test period: 239 days in the year 2013.
• Case II: Training period: 717 days, test period: 239 days in the year 2013.
• Case III: Training period: 475 days, test period: 239 days in the year 2013.
• Case IV: Training period: 236 days, test period: 239 days in the year 2013.

Forecasting accuracy and execution time were calculated for all four cases and tabulated in Table 1.
When the training length is more than three years, both the methods: simple OLS, and FF-ANN
forecast with the lowest MAPE. The Table 1 depicted the execution time (both training and testing) for
MLR approach: simple OLS method is about 110 Sec for 239 days which is fairly good and acceptable.
Therefore, more than three years of training length is picked up for further experiments in this paper.

Table 1. Mean Absolute Percentage Error (MAPE) measures for different training lengths using the
Scenario 1 dataset.

Simple OLS FF-ANN

Training Length (Days) Testing Days MAPE (%) Exe. Time (Sec) MAPE (%) Exe. Time (Sec)

Case I 911 239 1.97 109.2 2.96 565.97
Case II 717 239 2.33 87.38 3.41 516.46
Case III 475 239 2.04 114.26 6.00 435.32
Case IV 236 239 2.44 78.82 18.00 309.81

3.2. MLR Approach: Simple OLS Method

3.2.1. Model Selection

Normally, a perfect fit model can always be obtained by using a model with enough parameters
and results in good training accuracy. However, better training accuracy does not guarantee better
accuracy while forecasting with a testing dataset. Moreover, complexity is increased to analyze
the interpretation of the model due to a large number of variables. Therefore, Table 2 presents the
importance of some variables based on forecasting accuracy. The result reveals that the forecasting
accuracy is improved by incorporating more independent variables. In this experiment, Senario 2
performs the best with MAPE of 1.78%. This means the weekend demand forecasting model by the
grouping of weekend data separately can forecast with the best accuracy for Saturday and Sunday.
The Scenario 1 stands with competitive MAPE which is less than 2% because of holiday free working
days, while Scenario 3, which consists of holidays forecast with the worst MAPE of 16%. The model
selection procedure for holiday is always challenging due to the significant variation of demand.
The performance of Scenario 3 is the worst among others because of the most fluctuated dataset. Since
Scenario 4 using all the dataset including holidays, can forecast with MAPE 2.94%, we choose this
Scenario 4 for holiday forecasting purpose.
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Table 2. Effect of variables on MAPE: simple Ordinary Least Square (OLS).

Model Deterministics
and Interaction Temp Temp Square Holiday Holiday 2 MAPE (%)

OLS-(Scenario 1)
Yes Yes Yes Yes Yes 1.97
Yes Yes No No No 2.00
Yes No No No No 3.04

OLS-(Scenario 2) Yes Yes Yes Yes Yes 1.78

OLS-(Scenario 3) Yes Yes Yes Yes Yes 16.00

OLS-(Scenario 4) Yes Yes Yes Yes Yes 2.94

The continuous forecasting curves for Scenario 1 is presented Figure A8. The comparison of
actual demand and prediction demand curves shows that most of the predictions are very closed to real
demand. Since the forecasting is only for working days and non-holidays, only 239 days are predicted.
Some predictions on the second week of December, the first weeks of January and April were found to
have under-forecasted values because of the so-called holiday_effect affecting the bridge days of the
holidays. Such occurrence of holidays adjacent to the working days forces to reduce the accuracy.

The columns of the Table 3 report R-squared, Adjusted R-squared, and DW values, respectively,
for individual half-hours. R-squared and Adjusted R-squared are the goodness of fit measures.

Table 3. Model description paramters: GLSAR-7 (Scenario 1).

HH Rsq Adj-Rsq DW HH Rsq Adj-Rsq DW

OLS GLSAR-7 OLS GLSAR-7 OLS GLSAR-7 OLS GLSAR-7 OLS GLSAR-7 OLS GLSAR-7

0 0.97 0.96 0.97 0.95 1.80 2.00 24 0.86 0.62 0.86 0.59 1.73 1.99
1 0.97 0.96 0.97 0.95 1.86 2.01 25 0.88 0.68 0.88 0.66 1.79 1.99
2 0.97 0.96 0.97 0.95 1.85 2.00 26 0.87 0.67 0.87 0.65 1.77 1.98
3 0.97 0.95 0.97 0.95 1.85 2.00 27 0.86 0.63 0.86 0.61 1.74 1.98
4 0.97 0.95 0.97 0.94 1.85 2.00 28 0.85 0.62 0.85 0.60 1.78 1.97
5 0.97 0.95 0.97 0.94 1.87 2.00 29 0.86 0.63 0.86 0.61 1.67 1.98
6 0.97 0.94 0.96 0.94 1.85 2.00 30 0.87 0.64 0.87 0.61 1.64 1.98
7 0.96 0.94 0.96 0.94 1.86 2.01 31 0.87 0.64 0.87 0.61 1.59 1.98
8 0.96 0.94 0.96 0.93 1.87 2.01 32 0.86 0.64 0.86 0.60 1.57 1.98
9 0.96 0.36 0.96 0.93 1.88 2.00 33 0.86 0.61 0.86 0.58 1.51 1.98
10 0.96 0.93 0.96 0.93 1.88 2.01 34 0.85 0.59 0.85 0.57 1.44 1.99
11 0.95 0.92 0.95 0.92 1.84 1.99 35 0.84 0.56 0.84 0.53 1.40 1.99
12 0.94 0.92 0.94 0.91 1.78 2.00 36 0.80 0.52 0.80 0.49 1.38 2.00
13 0.93 0.90 0.93 0.89 1.80 2.00 37 0.80 0.52 0.80 0.49 1.35 2.00
14 0.93 0.88 0.92 0.97 1.78 1.99 38 0.84 0.60 0.84 0.58 1.33 2.00
15 0.92 0.85 0.92 0.84 1.65 1.99 39 0.86 0.65 0.86 0.63 1.33 2.00
16 0.90 0.78 0.89 0.76 1.67 1.98 40 0.87 0.68 0.87 0.66 1.33 2.00
17 0.88 0.73 0.88 0.71 1.69 1.99 41 0.88 0.72 0.88 0.70 1.17 1.99
18 0.87 0.69 0.86 0.67 1.73 1.99 42 0.90 0.74 0.90 0.73 1.43 1.99
19 0.86 0.65 0.85 0.63 1.74 2.00 43 0.91 0.77 0.91 0.75 1.45 1.99
20 0.86 0.64 0.85 0.61 1.71 2.00 44 0.91 0.77 0.91 0.76 1.45 2.00
21 0.85 0.61 0.84 0.59 1.69 2.00 45 0.91 0.78 0.91 0.77 1.48 2.00
22 0.84 0.59 0.83 0.56 1.70 2.00 46 0.92 0.79 0.92 0.78 1.46 1.99
23 0.84 0.60 0.83 0.57 1.74 1.99 47 0.92 0.80 0.92 0.79 1.46 2.00

Since these data are the results from the testing dataset, 79.7% to 97.4% of the variability in the
testing dataset was accounted for by the predictor variable included in the model. Adjusted R-squared
values are found normally lower than R-square indicating predictor variables improve the model.
Adjusted R-squared increases only if the new term improves the model more than would be expected
by chance. Similarly, the DW test is a statistical technique to determine whether the series follow
auto-correlation or not. The residual for the individual half-hour was analyzed separately. DW statistic
value is always between 0 and 4. Values less than 2 indicate positive auto-correlation and a value
greater than 2 indicates negative autocorrelation. DW value equals 2 means there is no auto-correlation.
Since most of the DW statistics for all 48 half-hours are found between 1.3 to 1.9 for simple OLS, there is
some evidence to reject the null hypothesis. These statistics for simple OLS and GLSAR-7 are tabulated
in Table 3 and compared DW values. The positively-correlated DW statistics (1.17–2.48) after 5 p.m.
(HH≥ 34) which was the evidence of serially correlated error, is now significantly improved nearly 2.0.
This indicates that forecasting errors are now uncorrelated. The selection of a better statistical model
from a set of candidate models is a crucial factor. Since the OLS results for Scenario 1 show MAPE
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1.97% which could still possibly to reduced by implementing AR lags on the model. To determine the
number of AR lags, we have selected peak hour (2 p.m.) and tested for different lags such as 1 to 7
where p-values are found very small (less than 0.09), so we have strong evidence that the errors follow
at least AR(7). Table 4 presents the MAPE for GLSAR(1) to GLSAR(7) indicating that GLSAR(7) got the
lowest MAPE value.

Table 4. MAPE measures for different model structures for Scenario 1.

Methods with AR(p) MAPE(%) Time elapse (Sec)

OLS 1.97 47.00
GLSAR-1 1.92 223.00
GLSAR-2 1.94 247.00
GLSAR-3 1.92 223.00
GLSAR-4 1.90 223.00
GLSAR-5 1.90 230.00
GLSAR-6 1.90 232.00
GLSAR-7 1.88 241.00

3.2.2. Temperature Effect

The temperature-related variable and their effects on demand are expressed in Figure 2. This figure
describes the rate of demand variation per degree temperature change from Monday to Saturday
for individual months of a year 2013. While interpreting the demand variation for a particular day,
Sunday is considered as the reference day. Similarly, Figure 2 presents such a variation for February to
December where January is the reference month.

Figure 2. Demand variation per degree change in temperature.
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The rate of demand variation per degree temperature is minimum 50 MW/◦C approximately at
morning hours 6 a.m.–7 a.m. and evening hours (5–6 p.m.) because most of the people during these
hours are on the way to work or traveling back from work. The increment of 50 MW per 1 ◦C is about
0.6% of the average demand. Flat and consistent demand variation from 100 MW/◦C–200 MW/◦C
which is 1.4–2.6% rise in demand throughout the day hours except on Saturday and Sunday. The graph
line for Saturday and Sunday is significantly lower and different than other working days in the
morning and office hours which is as our expectation. Since electricity demand reaches a peak during
the day hours of summer in Thailand, our results surprisingly explain quite different scenarios.
The highest demand variation per degree rise in temperature exists up to 300 MW/◦C which is 4% rise
per 1 ◦C at 11 p.m. because most of the people are at home during this time. Such increment is lower
than Greece [29], similar to the impact on aggregate demand of Singapore [38]. Since the temperature
impact on residential demand is quite high [28,38], our result matches only to the impact of aggregate
demand. The most interestingly, climate impact studied by Parkpoom et al. [8] also mentioned the
similar result to our findings for the peak electricity demand of Thai data, however, the information
about hours and days are lacking.

3.2.3. Special Day and AR Effect

The STDF models for special days such as Songkran, New Year and other special days are
always challenging. The MAPE performance of these days is also poor in our study. However,
the interpretation of coefficients is found realistic and expressed in Figure 3. The results present the
different and distinct pattern groups. The demand variation after the holiday and after the long holiday
significantly increased; while the demand reduced sharply for the special days. However, the working
day after the special days increased as our expectations. If there is a regular holiday, demand on the
next working day is increased because the people do not have time to travel far and come back to work
quickly. However, on the next working day of other special events such as Songkran, and New Year,
electricity demand significantly decreases because of the festive vibes on people. Many people during
such festive holidays travel out of Bangkok to their hometown or travel plans and return to work a
bit slow. Except for the day after the holiday and the flooding period, the electricity demand had a
similar effect in the morning hours up to 5 a.m. and night hours after 8 p.m., while the demand was
consistently at a high level on the day after a holiday. Similarly, demand was consistently at a lower
level during the flooding period. The sudden and unexpected flooding period happened in Bangkok
because of the shutdown of industries, commercial sectors, and universities. This situation is similar to
the current Covid-19 and lockdown condition of Thailand.
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Figure 3. Demand variation at individual half-hour for special days.
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The contribution of AR error terms is plotted in Figure 4. AR1 represents the error terms of the
same hour but one previous day, and AR2 represents the error terms of the same hour but two previous
days. In this sequence, AR7 represents the error terms of the same hour but seven previous days
which is ultimately the same weekday before a week. In our result, AR2–AR4 and AR6–AR7 show
the normal correlation impact up to 20% in the morning hours till 8 a.m. (HH = 20). The maximum
demand contribution is obtained from the one previous day which is up to 63% while AR5 contributes
to the lowest impact. The contribution pattern of AR1 is minimum early in the morning hours, while
it increases gradually and reached a peak at 8 p.m. Since the demand profile of electricity is quite
similar in the same hour of two consecutive days, it is obvious to have the maximum correlated error.
As our expectation, AR7 contributes to the competitive impact on demand because of the same day
and same hour of previous week i.e., similar day effect. A similar study for the lagged load correlations
discussed in [17,21] also mentioned that the impact of AR1 has the highest contribution to the demand
up to 52%
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Figure 4. Measure of correlated error for individual half-hour.

3.3. ANN Approach: FF-ANN: A Simple DNN

A simple FF-ANN is implemented to predict all the scenarios as defined before: Scenarios 1–4.
Input variables were designed from patsy, a Python package already used for MLR methods. Since
the non-linear relations between the variables are automatically captured by the DNN structure,
initially we ignored the non-linear variables such as squared-temperature, and interactions of variables.
However, later these terms were included in models due to improvement in accuracy.

Therefore, historical demand data with lag load1d_cut2pm, load7d, and Load2pmYesterday and
their dependency terms on the temperature such as MaxTemp, MaxTempYesterday, MA2pmTemp
are included in model. To avoid the over-fitting problem in DNN, selection of the best number of
epochs, a number of hidden layers and nodes are very sensitive. An experiment was performed for
various structures: 1, 2, 3, and 4 hidden layers with different nodes and few are tabulated in Table 5,
explains that two hidden layer structures with 64× 64 nodes shows the best MAPE approx. 2.72% for
testing data.
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Table 5. Selection of hidden layers, nodes and epochs for Scenario 1.

Nos of
Hidden Layers

Nos of
Neurons MAPE (%) Epochs

1
128× 1 2.85 8000
64× 1 2.82 15,000
32× 1 2.92 22,000

2

16× 1 2.78 45,000
8× 1 3.18 55,000
4× 1 3.06 75,000
2× 1 38.79 100,000

128× 128 2.78 3000
128× 64 2.72 4000
64 × 64 2.72 2500

3 64× 64× 64 2.75 3000

4 64× 64× 64× 64 2.92 2500

Unlike ARMAX methods, a trained FF-ANN model was used to forecast all the days of 2013.
While in simple OLS, rolling windows of the training dataset are used to train for one step forward
prediction. The reason behind this unfair methodology implied that FF-ANN took much longer to
train a model compared to simple OLS or GLSAR. Therefore, the test period 2013 is divided into a
small number of prediction intervals, named as pred_intervals. For example, if pred_intervals = 2,
both training and testing dataset is divided into two halves. For the first half, we use the dataset
from 8 March 2009 to 2012 as training to make predictions for January–June, 2013. For the second
half, we used 08 March 2009 to June 2013 as training to make predictions from July–December, 2013
and so on. Moreover, the prediction was still one-day ahead where today’s demand data was used to
predict tomorrow’s demand. The prediction error and computational time in Table 6 compared the
performance of simple OLS and FF-ANN in terms of MAPE and execution time. The result shows that
the forecasting accuracy of simple OLS is better for the same pred_intervals. When pred_intervals
were increased, forecasting accuracy was improved for FF-ANN, but both execution time and MAPE
performance are higher than simple OLS. This tradeoff concludes that simple OLS shows better
performance than FF-ANN for our dataset. Since the FF-ANN method unable to compete with simple
OLS and GLSAR, FF-ANN was therefore excluded for further comparison in Table 7. However,
the MAPE of 2.56–2.89% obtained from FF-ANN was quite lower than some Thai-based published
papers such as [22,23,50], where they implemented ANN-based methods for a half-hourly dataset.

Table 6. Prediction error and computational time.

Pre_Intervals MAPE% Exe Time (Sec.)

Simple OLS FF-ANN Simple OLS FF-ANN

1 2.03 2.89 2.96 273
2 2.03 2.69 3.22 539
3 2.03 2.70 3.04 800
4 2.05 2.65 3.20 1062
5 2.05 2.56 3.40 1585

239 1.97 NA 33.4 NA

A detailed comparison on performance in terms of forecasting accuracy shows that Scenario 1
from simple OLS predicted with lower MAPE compared to GLSAR for most of the working days
except on Friday. The simple OLS can predict for Scenario 1 by MAPE value 1.81% which is quite
impressive. However, forecasting accuracy for Friday, and working days after holidays are found
better in GLSAR compared to simple OLS. The Scenario 3 did not perform well for holidays in either
method, which concludes that grouping of holidays dataset can not forecast well. To predict holidays,
Scenario 4 was better than Scenario 3 indicating that aggregate data grouping all datasets together
provides a good result for holidays. However, the grouping of weekend datasets separately as Scenario
2 outperformed than simple OLS methods with MAPE value 1.74%. Darshana and Chawalit [24]
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implemented the hybrid PSO with GA for the same dataset again and improved the MAPE to 2.86%
which is still higher MAPE compared to this study.

Table 7. Forecasting accuracy (MAPE%) comparison: all scenarios.

Simple OLS (MAPE%) GLSAR (MAPE%)

Parameters Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 1 Scenario 2 Scenario 3 Scenario 4

Mon 1.99 NaN 19.21 4.37 2.10 NaN 18.47 4.70
Tue 1.72 NaN 15.49 2.54 1.84 NaN 22.96 2.89
Wed 1.96 NaN 12.49 2.44 1.99 NaN 25.85 2.96
Thu 1.78 NaN 26.01 2.32 1.9 NaN 30.44 2.86
Fri 1.59 NaN 11.28 2.18 1.55 NaN 23.97 2.87
Sat NaN 1.76 NaN 3.17 NaN 1.77 NaN 2.69
Sun NaN 1.77 NaN 3.62 NaN 1.69 NaN 2.54
Holiday NaN NaN 14.73 9.62 NaN NaN 21.00 10.22
Holiday 2 NaN NaN 16.62 10.92 NaN NaN 22.58 9.68
Songkran NaN NaN 13.54 11.42 NaN NaN 18.48 14.76
Newyear NaN NaN 26.35 17.85 NaN NaN 30.48 17.96
DayAfterHoliday 5.13 NaN NaN 5.22 4.97 NaN NaN 7.06
DayAfterLongHoliday 7.38 NaN NaN 2.73 6.41 NaN NaN 6.59
DayAfterSongkran 3.10 NaN NaN 2.03 1.82 NaN NaN 6.09
DayAfterNewyear 15.77 NaN NaN 12.18 13.82 NaN NaN 6.46
DayAfterLabor 3.39 NaN NaN 5.14 4.85 NaN NaN 9.26
DayAfterReligion 5.54 NaN NaN 5.54 5.18 NaN NaN 6.04

Overall MAPE 1.81 1.77 16.63 2.95 1.88 1.74 22.59 3.08

3.4. Computation Time

A computational time in the forecast system was the length of execution time for a model.
The main parameters of execution time are the length of training data, number of variables, processor
speed of a computer, and forecasting methods. When the online forecast system is implemented for
utility, real-time electricity demand observation data of each day automatically updated in the training
dataset so that the execution time can increase. In our experimental setup three different forecasting
methods were chosen by keeping other parameters constant. Although the computational time is not
in the objective, the computation time of a model could be the crucial factor while choosing the best
forecasting methods on similar performance. In this study, computational time to forecast for 24 h was
approximately 0.79 min for an OLS technique, whereas there was four times more computational time
for GLSAR. If we follow a similar methodology, FF-ANN needs to forecast with Pre_intervals = 365
(Table 6) which may take several days, and we skipped it. These experiments were conducted on the
system having the configuration, Intel Core i5 2.5 GHz processor with 8 GB of RAM.

3.5. Pro and Cons of the Methods

Under the consideration of linearity, homoscedasticity, and independent identically distributed
data, the maximum likelihood solution to OLS is considered the best linear unbiased estimator.
The implementation of OLS and its extension to GLSAR were the most efficient methods even for
heteroscedasticity or auto-correlation to the interpretation of variables. The presence of non-linearity
in the samples of a dataset can not be denied, therefore ANN is also implemented. However, these
methods (OLS, GLSAR, and ANN) are sensitive to the outliers present in the dataset. Increasing the
number of variables possibly causes over-fitting and increases the complexity of the interpretation of
variables. For an unbiased estimate, we need the mean of the infinite beta parameter for an instance.
In a real scenario, we have only one set of data for one instance. So, the possibility of ‘biased estimates’
cannot be denied. If we consider the quartile regression or Bayesian estimation, the possibility of
unbiased estimation could be minimized.

4. Conclusions

This paper presents a novel approach for STDF by constructing four different scenarios so that the
model can be trained with an appropriate training dataset. Selection of the proper variables for a model,
length of the training dataset is conducted based on experiments. The performance on forecasting
accuracy measured in terms of MAPE for Scenario 1 was obtained as 2.72%, 1.88%, and 1.97% for
FF-ANN, GLSAR(7), and OLS, respectively. This means the proposed simple OLS and its extension
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to GLSAR methods outperformed the deep learning methodology on forecasting accuracy among
four scenarios. Nevertheless, GLSAR had longer execution time than OLS, but significantly shorter
than FF-ANN. Therefore, a further comparison of forecasting accuracy is conducted between simple
OLS and its extension GLSAR methods. Normally, the atmosphere of Thailand is very hot during day
hours and the general belief is that this hot temperature results in high demand for electricity during
day hours. The minimum increment rate of demand approximately 50 MW per 1 ◦C rise occurs at
the morning hours (6 a.m.–7 a.m.) and evening hours (4 p.m.–6 p.m.). The low impact in the morning
and evening is because of people at the no work condition as well as the industrial shift changing
time. Throughout the day, the impact of temperature responsible for increases by 100 MW–200 MW
per 1 ◦C rise in temperature. However, the result reveals that the maximum impact of temperature is
during night hours rather than day hours at 11 p.m. In this time most people are at home and there is
excessive use of electric appliances such as television and other cooling appliances. The comparative
study concluded that the forecasting error after the grouping of training dataset according to working
days (1.81%), and weekends (1.74%) provided better accuracy compared to the single group of training
dataset Scenario 4 (2.95%), i.e., Scenario 1 gave a better forecasting accuracy for working days from
simple OLS methods; Saturday and Sunday from Scenario 2. However, Scenario 3 showed the worst
accuracy from both the models for holidays. Therefore, it is better to choose Scenario 4 (all the data
together) rather than Scenario 3 (holidays data) to forecast the holidays.
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Abbreviations

The following abbreviations are frequently used in this manuscript:

AC Air Condition
AR Auto-regression
ARMAX Auto-regressive Moving Average with Exogenous Variable
CDD Cooling Degree Day
Covid-19 Corona Virus Disease 2019
DW Durbin–Watson
EGAT Electricity Generating Authority of Thailand
FF-ANN Feed Forward Artificial Neural Network
GA Genetic Algorithm
GLSAR Generalized Least Square Auto Regression
HWT Holt Winters Triple
MAPE Mean Absolute Percentage Error
MEA Metropolitan Electricity Authority
MLR Multiple linear regression
MW Megawatt
OLS Ordinary Least Square
PSO Particle Swarm Optimization
STDF Short-term Demand Forecasting
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RegSARIMA Regression Seasonal ARIMA
ReLU Rectified Linear Unit
SVM Support Vector Machine

Appendix A. Data Pre-Processing

Figure Section

In this paper, half-hour aggregate demand data provided by EGAT from 1 March 2009 to
31 December 2013 are used. Out of 84,618 samples of observation, only eight half-hour samples
on 10 March 2012 were missing. They filled a simple interpolation from nearby data [67]. The pattern
of overall data over the year 2012 is presented in Figure A1. This figure depicts the demand for working
days, weekends, and holidays (holiday in gray color). The demand for holidays are much lower than
on other days and fluctuated in nature. Most of the case, such fluctuations of demand appears on
January, April, May, and December.

Jan
2012

02 09 16 23 300

5000

D
em

an
d

Feb
2012

06 13 20 27

Mar
2012

05 12 19 26

Apr
2012

02 09 16 23 300

5000

D
em

an
d

May
2012

07 14 21 28

Jun
2012

04 11 18 25

Jul
2012

02 09 16 23 300

5000

D
em

an
d

Aug
2012

06 13 20 27

Sep
2012

03 10 17 24

Oct
2012

08 15 22 290

5000

D
em

an
d

Nov
2012

05 12 19 26

Dec
2012

03 10 17 24 31

Figure A1. Complete demand profile for a year: 2012.

Our study area covers the metropolitan region (Bangkok and surrounding provinces: Bangkok,
Pathum Thani, Nonthaburi, Nakhon Pathom, Samut Sakhon, and Samut Prakan) of Thailand.
The electricity consumption of the metropolitan region alone is about 70% of the total consumption
in Thailand [8]. There are many factories, industrial parks, business offices and universities within
these provinces. These sectors consume approximately 71% of the total consumption in the Bangkok
metropolitan region where only 24% of demand arises from the residential sector [26]. Therefore,
the demand for this region is dominated by industrial/commercial sectors. The pattern of MEA
demand data exhibits a trend, seasonal patterns, weekly, daily, and holiday effects which are the nature
of demand and are similar characteristics to many tropical countries [21,63].

Appendix A.1. Monthly and Seasonal Pattern

The hourly aggregate demand profile for 2012 is plotted in Figure A2a. To observe the stable
variation of demand over time, a rolling window of 336 samples (samples of a week) is taken for the
moving average. This plot indicates that the overall demand follows a linear trend and seasonality
over time.
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(a)

(b) (c)
Figure A2. (a) Hourly demand profile with seasonality and trend. (b) Monthly variation of demand.
(c) Monthly variation of demand: 2010–2013.

Every year, the electricity demand increased from January to the maximum level in May, however
the mean demand in April was lower due to the Songkran festival. The box plot in Figure A2b
shows a level of demand for individual months, where each box represents the first quartile (Q1) and
third quartile (Q3) with the median shown by the line in the box. The green spot near the median
line represents the mean value. Among the months, December shows relatively lower demand than
the rest. Every year, these monthly patterns of demand follow a similar level of demand except in
2011 (Figure A2c). Three month-long flooding during the last quarter of 2011 significantly reduces
the demand.

Appendix A.2. Weekly, Daily and Holiday Patterns

A residential demand is volatile and challenging task to predict [13,37]. In our dataset,
the residential demand is dominated by the demand of commercial sector produced by factories,
offices, and industries so that the volatility of demand is reduced. Therefore, during Monday to Friday,
the day hours demand at 2 p.m. reached to the peak (Figure A3a). During weekends and holidays, all
the governmental and the private offices/factories are closed. This results the evening hours demand
at 8 p.m. reached to peak due to dominant nature of residential sector. The working day, which falls on
the next day of the holiday, demand of electricity is found at a lower level than normal working day as
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presented in Figure A3b. Therefore, this paper considers one important variable for DayAfterHoliday
and included in models.

(a)

(b)
Figure A3. (a) Intra-day variation of demand for working and special days. (b) Intra-day variation of
demand on the working day (next day of holiday)

In Figure A4a–c, a long holiday, New Year, and an Songkran festival, respectively, significantly
pulls down the demand. These events normally falls in the first week of January (long holiday and
New Year holiday, Figure A4a,b), the second week of April (Songkarn holiday, Figure A4c), respectively.
During these periods, factories, universities, and other offices are closed for a week. During long
holidays/religious holidays (Songkran festival), most of the people travel outside the metropolitan
region. Therefore, there is low demand during a holiday or such a special event. Other holidays
such as Mother’s Day (August 12) and Father’s Day (December 5) also affect demand, which is not
as significant compared to Songkran and New Year. These effects on electricity demand are so-called
holiday effect and plays an important role while modeling. Even in working days near to these
holidays, demand is highly volatile e.g., the first week and last week of December; which is the main
challenge to the researcher. These mentioned events falls on a fixed calender. There are some other
festivals which fall on varied date such as Makha Bucha, Visakha Bucha and also locally celebrated
other holidays exist in Thailand. Therefore, forecasting the demand for holidays, special events,
and analyzing the impact during these days is quite challenging because the researcher need to add
the complexity on the model with many variables.

The massive flooding in Thailand, popular known as Bangkok flood caused a significant demand
drop from the October 2011 until the January 2012. Many factories, universities, offices in Bangkok and
surrounding provinces were locked down for entire periods. Figure A4d compares the level of demand
drop on flooding duration with respect to the same date of previous year. During that Bangkok f lood
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the peak demand was reduced approximately by 2000 MW. In this paper, we have discussed the impact
of such a unexpected flooding to the electricity demand.

(a) (b)

(c) (d)
Figure A4. (a) Impact of long holiday on electricity demand. (b) Impact of New Year on electricity
demand. (c) Impact of Sonkran festival on electricity demand (d) Impact of massive Bangkok flood on
electricity demand

Appendix A.3. Temperature

The effect of climate variables, especially the temperature is widely studied and included in STDF
models [19,20,22–25,50,68]. The geographical variability shows strong impacts on heating effect in
cold countries, whereas a strong cooling effect in warm countries [19]. Thailand is a tropical country
having an approximate mean temperature which ranges from 25 ◦C in December to 30 ◦C in May.
People face a warm atmosphere and feel very hot during summer. Therefore, the use of cooling devices
occurs on a large scale in Thailand. Moreover, the economic status of the country is also rising, which
supports the use of cooling devices such as air-conditioners. Regardless, geographic variability and
economic activities are excluded from this study. Figure A5a explains the variation of demand due
to temperature for holiday and non-holiday at peak hours (2 p.m.). Unlike the many articles [19,41],
electricity demand is sharp and linear during working days. There is no significant variation in peak
demand due to temperature. This fact supports the article [11,13] that commercial demand does
not much vary with temperature. When temperature level drops down from 30 ◦C or increase from
35 ◦C high variation of demand on a holiday takes place. Since we are dealing with a separate model
for individual hours, characteristics of demand at two different hours are presented in Figure A5b.
This figure compares the relationship between temperature and peak demand at 2 p.m. and 11 p.m.
Figure A5b indicates that on working days, the night hour at 11 p.m. shows a more linear relationship
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to the demand compared to the demand at 2 p.m., indicating that the impact of temperature should be
more during night 11 p.m.

(a) (b)

Figure A5. (a) Effect of temperature during peak hour. (b) Effect of temperature at two different hours.

In general, most of the papers [19,38,41,68] describe a non-linear relationship between electricity
demand and temperature. Figure A6 presents the relationship between temperature and electricity
demand at 2pm for all the days of a week. The representation of the days is considered as Weekday = 0
means Monday, Weekday = 1 means Tuesday and so on. For each day, this Figure A6 shows the linear
relationship thoroughly over a weekday as the proof for the positive linear impact of temperature for
Thai demand. Such a linear relationship of electricity demand with respect to temperature is due to
the dominant nature of industrial demand of the Bangkok region. This implies that we can exclude
the non-linear terms of temperature. Nevertheless, our experiment shows that forecasting accuracy is
improved by including non-linear terms of temperature. That means some non-linear relationship
cannot be excluded during other hours of the day. Therefore, we have included a non-linear variable
in our models to increase forecasting accuracy.
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Figure A6. Effect of temperature for electricity demand on working day at peak hour: 2 p.m.
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Appendix A.4. Variable Identification

Many authors such as [69,70] proposed and implemented a cross-validation strategy for the
variable selection strategy in their forecasting model. In our study, various aspects of data analysis are
observed in an Appendix A such as seasonal patterns, holiday, weekly, and daily patterns. External
variables such as weather variables (in our case: temperature) and their interactions with days and
months have been explicitly included in our forecasting models.

Figure A7. Demand prediction horizon: practice in Thailand.

Ramanathan et al. [17] suggested to implement the dummy variables and their interactions.
They have considered the Sunday as a public holiday because the demand level of Sunday is quite
similar to the demand for a holiday. Cottet et al. [51] applied five different day-type dummy variables
to the days of a week. Considering these facts, this paper grouped the variables into four different
categories as, deterministic, temperature, lagged, interactions and tabulated in Table A1. For simplicity
lagged terms and prediction horizon for Thailand practice are presented in Figure A7. This study
follows a similar strategy. To forecast for the demand on day ‘d’, one day ahead demand (previous
day) dataset means the demand data of HH = 0 to HH = 28 of day d− 1 and HH = 29 to HH = 47
of day d− 2 represented by same variable load1d_cut2pm. Similarly, two days ahead lagged demand
also implemented in our model represented by variable load2d_cut2pm. The terms load3d_cut2pmR
and load4d_cut2pmR are also implemented by EGAT to make a forecast for Sunday and Monday from
Friday 2 p.m. which is excluded form this paper.

Table A1. List of selected input variables.

Types Variables Description

Deterministic

WD Week dummy [Mon <Tue . . . <Sat<Sun]
MD Month dummy [Feb <Mar <. . . <Nov <Dec]
DayAfterHoliday Binary 0 or 1
DayAfterLongHoliday Binary 0 or 1
DayAfterSongkran Binary 0 or 1
DayAfterNewyear Binary 0 or 1

Temperature

Temp Forecasted temperature
MaxTemp Maximum forecasted temperature
Square temperature Square of the forecasted temperature
MA2pmTemp Moving avearage of temperature at 2pm

Lagged

load1d_cut2pm 1 day ahead untill 2pm and 2 day ahead after 2pm load
load2d_cut2pm 2 days ahead untill 2pm and 3 day ahead after 2pm load
load3d_cut2pmR 3 days ahead untill 2pm and 4 days ahead after 2pm load
load4d_cut2pmR 4 days ahead untill 2pm and 5 days ahead after 2pm load

Interaction

WD:Temp Interaction of week day dummy to temperature
MD:Temp Interaction of month dummy to temperature
WD:load1d_cut2pm Interaction of week day dummy to load1d_cut2pm
WD:load2d_cut2pm Interaction of week day dummy to load2d_cut2pm
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Appendix B. Figures and Tables

Figure Section
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Figure A8. Forecasting performance of OLS (Scenario 1).
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Figure A9. Forecasting performance of OLS (Scenario 4).
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Figure A10. Forecasting performance of OLS for September 2013 (Scenario 4).

(a) (b)
Figure A11. (a) Forecasting during Sonkran festival (Scenario 4). (b) Forecasting during last week of
December (Scenario 4).
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