Identification of Suitable Areas for Biomass Power Plant Construction through Environmental Impact Assessment of Forest Harvesting Residues Transportation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study Description
2.2. The Life Cycle Assessment (LCA) Approach
- (1)
- Human health, which encompasses the number and duration of illnesses and years of life lost because of early death from environmental impacts. These latter comprise global warming, ozone layer reduction, carcinogenic and respiratory effects, etc. The measurement unit is the disability-adjusted life year (DALY);
- (2)
- Ecosystem quality, which encompasses the effect on animal and plant biodiversity, particularly related to issues linked to acidification, ecotoxicity, and land use including the reduction of agricultural resources such as sand and gravel. Its indicator unit is the potentially disappeared fraction (PDF) of species for a given area and for a precise period (PDF m−2 year−1); and
- (3)
- Resources, which include the excess energy needed in the future to extract lower-quality mineral and fossil resources. Its indicator unit is the surplus of MJ.
2.3. The Geographic Information System (GIS) Analysis
3. Results and Discussion
3.1. Harvesting Residue Availability
3.2. Loading Impacts
3.3. Transport Impacts
3.4. The Territorial Distribution of Impacts
- (1)
- North Area near Muro Lucano municipality, since it is one of the northern municipalities with the most harvesting residues, has low impacts due to the transport, is not located in a protected area, and is well-served in terms of main roads and the electricity network;
- (2)
- Central Area near Marsico Nuovo municipality, given that it is outside the different protected areas that characterize this area of Basilicata, does not have very high transport-related impact levels, and is well-served in terms of roads and the electricity network; and
- (3)
- South Area near Viggianello, one of the municipalities with the highest amount of forest residues (4300 m3), obviously outside the Pollino National Park.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Moon, D.; Kitagawa, N.; Genchi, Y. CO2 emissions and economic impacts of using logging residues and mill residues in Maniwa Japan. For. Policy Econ. 2015, 50, 163–171. [Google Scholar] [CrossRef] [Green Version]
- Kuiper, L.; Oldenburger, J. The Harvest of Forest Residues in EUROPE. Probos. Report on bus ticket no. D15a. 2006. Available online: https://www.probos.nl/biomassa-upstream/pdf/reportBUSD15a.pdf (accessed on 20 January 2020).
- Hoyne, S.; Thomas, A. Forest Residues: Harvesting, Storage and Fuel Value. COFORD (National Council for Forest Research and Development). 2001. Available online: http://www.coford.ie/media/coford/content/publications/projectreports/residues.pdf (accessed on 10 February 2020).
- Bailey, C.; Dyer, J.F.; Teeter, L. Assessing the rural development potential of lignocellulosic biofuels in Alabama. Biomass Bioenergy 2011, 35, 1408–1417. [Google Scholar] [CrossRef]
- Perez-Verdin, G.; Grebner, D.L.; Munn, I.A.; Sun, C.; Grado, S.C. Economic impacts of woody biomass utilization for bioenergy in Mississippi. Prod. J. 2008, 58, 75–83. [Google Scholar]
- Moon, D.; Isa, A.; Yagishita, T.; Minowa, T. The regional economic impacts on the development of wood chip utilization in Maniwa city. J. Wood Sci. 2013, 59, 321–330. [Google Scholar] [CrossRef]
- Rothe, A.; Moroni, M.; Neyland, M.; Wilnhammer, M. Current and potential use of forest biomass forenergy in Tasmania. Biomass Bioenergy 2015, 80, 162–172. [Google Scholar] [CrossRef]
- Norton, M.; Baldi, A.; Buda, V.; Carli, B.; Cudlin, P.; Jones, M.B.; Korhola, A.; Michalski, R.; Novo, F.; Oszlányi, J.; et al. Serious mismatches continue between science and policy in forest bioenergy. GCB Bioenergy 2019, 11, 1256–1263. [Google Scholar] [CrossRef] [Green Version]
- Shabani, N.; Akhtari, S.; Sowlati, T. Value chain optimization of forest biomass for bioenergy production: A review. Renew. Sustain. Energy Rev. 2013, 23, 299–311. [Google Scholar] [CrossRef]
- Saidur, R.; Abdelaziz, E.A.; Demirbas, A.; Hossain, M.S.; Mekhilef, S. A review on biomass as a fuel for boilers. Renew. Sustain. Energy Rev. 2011, 15, 2262–2289. [Google Scholar] [CrossRef]
- Ahtikoski, A.; Heikkilä, J.; Alenius, V.; Siren, M. Economic viability of utilizing biomass energy from young stands—The case of Finland. Biomass Bioenergy 2008, 32, 988–996. [Google Scholar] [CrossRef]
- FAO. Bioenergy and Food Security Rapid Appraisal (BEFS RA). User Manual. Forest Harvesting and Wood Processing Residues. 2014. Available online: http://www.fao.org/sustainable-forest-management/toolbox/tools/tool-detail/en/c/410267/ (accessed on 25 January 2020).
- Merchan, A.L.; Léonard, A.; Limbourg, S.; Mostert, M. Life cycle externalities versus external costs: The case of inland freight transport in Belgium. Transp. Res. Part D Transp. Environ. 2019, 67, 576–595. [Google Scholar] [CrossRef]
- Pokharel, R.; Grala, R.K.; Grebner, D.L.; Grado, S.C. Factors affecting utilization of woody residues for bioenergy production in the southern United States. Biomass Bioenergy 2017, 105, 278–287. [Google Scholar] [CrossRef]
- Fletcher, R.J.; Robertson, B.A.; Evans, J.; Doran, P.J.; Alavalapati, J.R.R.; Schemske, D.W. Biodiversity conservation in the era of biofuels: Risks and opportunities. Front. Ecol. Environ. 2011, 9, 161–168. [Google Scholar] [CrossRef] [Green Version]
- Perez-Verdin, G.; Grebner, D.L.; Sun, C.; Munn, I.A.; Schultz, E.B.; Matney, T.G. Woody biomass availability for bioethanol conversion in Mississippi. Biomass Bioenergy 2009, 33, 492–503. [Google Scholar] [CrossRef]
- Panichelli, L.; Gnansounou, E. Estimating greenhouse gas emissions from indirect land-use change in biofuels production: Concepts and exploratory analysis for soybean-based biodiesel production. J. Sci. Ind. Res. India 2008, 67, 1017–1030. [Google Scholar]
- Law, B.E.; Harmon, M.E. Forest sector carbon management, measurement and verification, and discussion of policy related to climate change. Carbon Manag. 2011, 2, 73–84. Available online: https://content.sierraclub.org/ourwildamerica/sites/content.sierraclub.org.ourwildamerica/files/documents/Law%20and%20Harmon%202011.pdf (accessed on 15 February 2020). [CrossRef]
- Schulze, E.D.; Körner, C.; Law, B.E.; Haberl, H.; Luyssaert, S. Large-scale bioenergy from additional harvest of forest biomass is neither sustainable nor greenhouse gas neutral. GCB Bioenergy 2012, 4, 611–616. [Google Scholar] [CrossRef]
- Farkavcova, V.G.; Rieckhof, R.; Guenther, E. Expanding knowledge on environmental impacts of transport processes for more sustainable supply chain decisions: A case study using life cycle assessment. Transp. Res. D Transp. Environ. 2018, 61, 68–83. [Google Scholar] [CrossRef]
- Pashkevich, A.; Beliakova, M.; Ivanov, A.; Purju, A. Development of Interactive Monitoring System for Urban Environmental Impact Assessment of Transport System. 16th Conference on Reliability and Statistics in Transportation and Communication, Riga, Latvia, 19–22 October 2016. Procedia Eng. 2017, 178, 42–52. [Google Scholar] [CrossRef]
- Murphy, F.; Devlin, G.; McDonnell, K. Forest biomass supply chains in Ireland: A life cycle assessment of GHG emissions and primary energy balances. Appl. Energy 2014, 116, 1–8. [Google Scholar] [CrossRef] [Green Version]
- ISO 14040. Environmental Management, Life Cycle Assessment—Principles and Framework; International Organization for Standardization (ISO): Geneva, Switzerland, 2006. [Google Scholar]
- Muench, S.; Guenther, E. A systematic review of bioenergy life cycle assessments. Appl. Energy 2013, 112, 257–273. [Google Scholar] [CrossRef]
- Gold, S.; Seuring, S. Supply chain and logistics issues of bio-energy production. J. Clean. Prod. 2011, 19, 32–42. [Google Scholar] [CrossRef]
- Whittaker, C.; Mortimer, N.; Murphy, R.; Matthews, R. Energy and green house gas balance of the use of forest residues for bioenergy production in the UK. Biomass Bioenergy 2011, 35, 4581–4594. [Google Scholar] [CrossRef] [Green Version]
- Butnar, I.; Rodrigo, J.; Gasol, C.M.; Castells, F. Life-cycle assessment of electricity from biomass: Case studies of two bio crops in Spain. Biomass Bioenergy 2010, 34, 1780–1788. [Google Scholar] [CrossRef]
- Fantozzi, F.; Buratti, C. Life cycle assessment of biomass chains: Wood pellet from short rotation coppice using data measured on a real plant. Biomass Bioenergy 2010, 34, 1796–1804. [Google Scholar] [CrossRef] [Green Version]
- Gasol, C.M.; Gabarrell, X.; Anton, A.; Rigola, M.; Carrasco, J.; Ciria, P.; Rieradevall, J. LCA of poplar bioenergy system compared with Brassica carinata energy crop and natural gas in regional scenario. Biomass Bioenergy 2009, 33, 119–129. [Google Scholar] [CrossRef]
- Wihersaari, M. Greenhouse gas emissions from final harvest fuel chip production in Finland. Biomass Bioenergy 2005, 28, 435–443. [Google Scholar] [CrossRef]
- González-García, S.; Dias, A.C.; Clermidy, S.; Benoist, A.; Maurel, V.B.; Gasol, C.M.; Gabarrell, X.; Arroja, L. Comparative environmental and energy profiles of potential bioenergy production chains in Southern Europe. J. Clean. Prod. 2014, 76, 42–54. [Google Scholar] [CrossRef]
- Chester, M.; Matute, J.; Bunje, P.; Eisenstein, W.; Pincetl, S.; Zoe, E.; Cepeda, C. Life-Cycle Assessment for Transportation Decision-making. UCLA Center for Sustainable Urban Systems. 2010. Available online: https://www.transitwiki.org/TransitWiki/images/7/73/Life-cycle_assessment_fortransportation_decision-making.pdf (accessed on 30 January 2020).
- Ignea, G.; Ghaffayian, M.R.; Borz, S.A. Impact of operational factors on fossil energy inputs in motor-manual tree felling and processing: Results of two case studies. Ann. Res. 2017, 60, 161–172. [Google Scholar] [CrossRef] [Green Version]
- Picchio, R.; Maesano, M.; Savelli, S.; Marchi, E. Productivity and Energy balance in conversion of a Quercus cerris L. Coppice stand into high forest in Central Italy. Croat. J. For. Eng. 2009, 30, 15–26. [Google Scholar]
- Hiloidhari, M.; Baruah, D.C.; Singh, A.; Kataki, S.; Medhi, K.; Kumari, S.; Ramachandra, T.V.; Jenkins, B.M.; Thakur, I.S. Emerging role of Geographical Information System (GIS), Life Cycle Assessment (LCA) and spatial LCA (GIS-LCA) in sustainable bioenergy planning. Bioresource Technol. 2017, 242, 218–226. [Google Scholar] [CrossRef]
- Sacchelli, S.; Meob, I.D.; Palett, A. Bioenergy production and forest multifunctionality: A trade-off analysis using multi scale GIS model in a case study in Italy. Appl. Energy. 2013, 104, 10–20. [Google Scholar] [CrossRef]
- Angelis-Dimakis, A.; Biberacher, M.; Dominguez, J.; Fiorese, G.; Gadocha, S.; Gnansounou, E.; Guariso, G.; Kartalidis, A.; Panichelli, L.; Pinedo, I.; et al. Methods and tools to evaluate the availability of renewable energy sources. Renew. Sustain. Energy Rev. 2011, 15, 1182–1200. [Google Scholar] [CrossRef]
- Yue, C.; Wang, S. GIS-based evaluation of multifarious local renewable energy sources: A case study of the Chigu area of southwestern Taiwan. Energy Policy 2006, 34, 730–742. [Google Scholar] [CrossRef]
- Ramachandra, T.V.; Krishna, S.V.; Shruthi, B.V. Decision support system to assess regional biomass energy potential. Int. J. Green Energy 2005, 1, 407–428. [Google Scholar] [CrossRef]
- Consiglio Regionale. Piano di Indirizzo Energetico Ambientale Regionale; Consiglio Regionale: Potenza, Italy, 2010; Available online: https://www.regione.basilicata.it/giunta/files/docs/DOCUMENT_FILE_543546.pdf (accessed on 20 December 2019).
- Catullo, G. Sviluppo Agro-Energetico. Benefici Economici e Ambientali Contro la Crisi delle Risorse Fossili. Ufficio Stampa Consiglio regionale della Basilicata. 2012. Available online: https://consiglio.basilicata.it/archivio-news/files/docs/32/36/07/DOCUMENT_FILE_323607.pdf (accessed on 15 January 2020).
- Consiglio Regionale della Basilicata. Regional Law n.42 of 30 November 1998 “Rules on Forestry”. 1998. Available online: https://consiglio.basilicata.it//consiglionew/site/Consiglio/detail.jsp?sec=107173&otype=1150&id=182264&anno=1998 (accessed on 15 December 2019).
- Rauch, P.; Borz, S.A. Reengineering the Romanian Timber Supply Chain from a Process Management Perspective. Croat. J. For. Eng. 2020, 41, 85–94. [Google Scholar] [CrossRef]
- Rauch, P.; Wolfsmayr, U.J.; Borz, S.A.; Triplat, M.; Krajnc, N.; Kolck, M.; Oberwimmer, R.; Ketikidis, C.; Vasiljevic, A.; Stauder, M.; et al. SWOT analysis and strategy development for forest fuel supply chains in South East Europe. Forest Policy Econ. 2015, 61, 87–94. [Google Scholar] [CrossRef]
- Müllerová, J.; Hédl, R.; Szabó, P. Coppice abandonment and its implications for species diversity in forest vegetation. For. Ecol. Manag. 2015, 343, 88–100. [Google Scholar] [CrossRef] [Green Version]
- ISO 14044. Environmental Management, Life Cycle Assessment–Requirements and Guidelines; International Organization for Standardization(ISO): Geneva, Switzerland, 2006. [Google Scholar]
- Spielmann, M.; Scholz, R. Life Cycle Inventories of Transport Services: Background Data for Freight Transport (10pp). Int. J. Life Cycle Ass. 2005, 10, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Cozzi, M.; Di Napoli, F.; Viccaro, M.; Romano, S. Use of Forest Residues for Building Forest Biomass Supply Chains: Technical and Economic Analysis of the Production Process. Forests 2013, 4, 1121–1140. [Google Scholar] [CrossRef] [Green Version]
- Pergola, M.; Gialdini, A.; Celano, G.; Basile, M.; Caniani, D.; Cozzi, M.; Gentilesca, T.; Mancini, I.M.; Pastore, V.; Romano, S.; et al. An environmental and economic analysis of the wood-pellet chain: Two case studies in Southern Italy. Int. J. Life Cycle Ass. 2018, 23, 1675–1684. [Google Scholar] [CrossRef]
- Ecoinvent Version 3. 2013. Available online: http://www.ecoinvent.org/database/database.html (accessed on 14 February 2020).
- HBEFA (Handbook Emission Factors for Road Transport). Umweltbundesamt Wien: Handbuch Emissionsfaktoren des Straßenverkehrs, Version 3.1, Berlin, Bern, Vienna/Germany, Switzerland, Austria. 2010. Available online: http://www.hbefa.net (accessed on 22 January 2020).
- Fraunhofer. Documentation for Truck Transport Processes. 2012. Available online: http://www.gabi-software.com/fileadmin/gabi/documentation5/Documentation_GaBi_Transport_Processes_Truck.pdf (accessed on 15 November 2019).
- Ministry of Housing, Spatial Planning and the Environment. Eco-Indicator 99 Manual for Designers. A damage Oriented Method for Life Cycle Impact Assessment; Ministry of Housing, Spatial Planning and the Environment: The Hague, The Netherlands, 2000; Available online: https://www.pre-sustainability.com/download/EI99_Manual.pdf (accessed on 15 December 2019).
- Clarke, K.C. Advances in geographic information systems. Comput. Environ. Urban Systems 1986, 10, 175–184. [Google Scholar] [CrossRef]
- Fuchs, M.; Teichmann, J.; Lauster, M.; Remmen, P.; Streblow, R.; Müller, D. Work flow automation for combined modeling of buildings and district energy systems. Energy 2016, 117, 478–484. [Google Scholar] [CrossRef]
- Perea-Moreno, A.J.; Perea-Moreno, M.A.; Hernandez-Escobedo, Q.; Manzano-Agugliaro, F. Towards forest sustainability in Mediterranean countries using biomass as fuel for heating. J. Clean. Prod. 2017, 156, 624–634. [Google Scholar] [CrossRef]
- Allegrini, J.; Orehounig, K.; Mavromatidis, G.; Ruesch, F.; Dorer, V.; Evins, R. A review of modelling approaches and tools for the simulation of district-scale energy systems. Renew. Sustain. Energy Rev. 2015, 52, 1391–1404. [Google Scholar] [CrossRef]
- Legge 6 Dicembre 1991, n.394. Legge Quadro Sulle Aree Protette. Available online: http://www.parks.it/federparchi/leggi/394.html (accessed on 16 February 2020).
- Handler, R.M.; Shonnard, D.R.; Lautala, P.; Abbas, D.; Srivastava, A. Environmental impacts of round wood supply chain options in Michigan: Life-cycle assessment of harvest and transport stages. J. Clean. Prod. 2014, 76, 64–73. [Google Scholar] [CrossRef]
- Sonne, E. Greenhouse gas emissions from forestry operations: A life cycle assessment. J. Environ. Qual. 2006, 35, 1439–1450. [Google Scholar] [CrossRef]
- Jäppinen, E.; Korpinen, O.J.; Ranta, T. The Effects of Local Biomass Availability and Possibilities for Truck and Train Transportation on the Greenhouse Gas Emissions of a Small-Diameter Energy Wood Supply Chain. Bio Energy Res. 2013, 6, 166–177. [Google Scholar] [CrossRef]
- Gustavsson, L.; Eriksson, L.; Sathre, R. Costs and CO2 benefits of recovering, refining and transporting logging residues for fossil fuel replacement. Appl. Energy 2011, 88, 192–197. [Google Scholar] [CrossRef]
- Lindholm, E.L.; Berg, S.; Hansson, P.A. Energy efficiency and the environmental impact of harvesting stumps and logging residues. Eur. J. Forest. Res. 2010, 129, 1223–1235. [Google Scholar] [CrossRef]
- Heinimann, H. Life Cycle Assessment (LCA) in Forestry—State and Perspectives. Croat. J. For. Eng. 2012, 33, 357–372. [Google Scholar]
- Zubaryeva, A.; Zaccarelli, N.; Giudice, C.D.; Zurlini, G. Spatially explicit assessment of local biomass availability for distributed biogas production via anaerobic co-digestion—Mediterranean case study. Renew. Energy 2012, 39, 261–270. [Google Scholar] [CrossRef]
- Shi, X.; Elmore, A.; Li, X.; Gorence, N.J.; Jin, H.; Zhang, X.; Wang, F. Using spatial information technologies to select sites for biomass power plants: A case study in Guangdong Province, China. Biomass Bioenergy 2008, 32, 35–43. [Google Scholar] [CrossRef]
AREA | Municipalities | Harvesting Residues Available for Bioenergy | Impacts of Harvesting Residues Loading | Impacts of Harvesting Residues Transport |
---|---|---|---|---|
(m3) | (mPt) | (mPt km−1) | ||
NORTH | Atella | 368 | 128,250 | 1475 |
Balvano | 787 | 274,482 | 3157 | |
Baragiano | 126 | 43,795 | 504 | |
Castelgrande | 233 | 81,105 | 933 | |
Melfi | 746 | 260,138 | 2992 | |
Muro Lucano | 1132 | 394,702 | 4540 | |
Rapone | 2317 | 807,670 | 9291 | |
Rionero | 231 | 80,602 | 927 | |
Ruoti | 1584 | 552,146 | 6351 | |
Satriano di Lucania | 253 | 88,271 | 1015 | |
Savoia di Lucania | 89 | 31,113 | 358 | |
Total North | 7867 | 2,742,273 | 31,545 | |
CENTER | Abriola | 4430 | 1,544,438 | 17,766 |
Brienza | 2618 | 912,635 | 10,498 | |
Grumento Nova | 623 | 217,092 | 2497 | |
Marsico Nuovo | 1948 | 678,995 | 7811 | |
Paterno | 738 | 257,324 | 2960 | |
Accettura | 1560 | 543,811 | 6256 | |
Brindisi di Montagna | 224 | 78,074 | 898 | |
CorletoPerticara | 2439 | 850,363 | 9782 | |
Garaguso | 234 | 81,503 | 938 | |
Laurenzana | 2246 | 782,865 | 9005 | |
Oliveto Lucano | 689 | 240,222 | 2763 | |
San Chirico Nuovo | 94 | 32,834 | 378 | |
Tolve | 508 | 176,939 | 2035 | |
Total Center | 18,351 | 6,397,095 | 73,587 | |
SOUTH | Castel Saraceno | 544 | 189,744 | 2183 |
Cersosimo | 311 | 108,491 | 1248 | |
Chiaromonte | 135 | 47,223 | 543 | |
Colobraro | 256 | 89,372 | 1028 | |
Lauria | 151 | 52,474 | 604 | |
Rotondella | 46 | 15,993 | 184 | |
San Giorgio Lucano | 873 | 304,436 | 3502 | |
San Paolo Albanese | 1270 | 442,786 | 5093 | |
Sant’Arcangelo | 49 | 17,057 | 196 | |
Terranova di Pollino | 1875 | 653,603 | 7518 | |
Viggianello | 4287 | 1,494,381 | 17,190 | |
Total South | 9798 | 3,415,561 | 39,290 | |
TOTAL | 36,015 | 12,554,929 | 144,421 |
Impact Categories | Unit | Total | Diesel | Forest Machinery |
---|---|---|---|---|
Carcinogens | DALY | 1.2 × 10−3 | 1.8 × 10−4 | 1.0 ×10−3 |
Respiratory organics | DALY | 5.3 × 10−4 | 4.3 × 10−4 | 1.1 × 10−4 |
Respiratory inorganics | DALY | 1.3 ×10−1 | 1.1 × 10−1 | 2.2 × 10−2 |
Climate change | DALY | 4.2 ×10−2 | 3.4 × 10−2 | 7.3 ×10−3 |
Radiation | DALY | 1.8 ×10−5 | 1.5 × 10−5 | 3.3 × 10−6 |
Ozone layer | DALY | 1.1 ×10−5 | 9.6 × 10−6 | 1.6 × 10−6 |
Ecotoxicity | PDFm−2 year−1 | 4.5 × 103 | 1.2 × 103 | 3.4 × 103 |
Acidification/Eutrophication | PDFm−2 year−1 | 1.2 × 104 | 1.2 × 104 | 5.7 × 102 |
Land use | PDFm−2 year−1 | −2.8 × 103 | −7.0 × 102 | −2.1 × 103 |
Minerals | MJ surplus | 7.3 × 103 | 2.8 × 102 | 7.1 × 103 |
Impact Categories | Unit | Values per KM |
---|---|---|
Carcinogens | DALY | 1.8 × 10−5 |
Respiratory organics | DALY | 2.8 × 10−6 |
Respiratory inorganics | DALY | 4.5 × 10−4 |
Climate change | DALY | 6.9 × 10−4 |
Radiation | DALY | 5.9 × 10−8 |
Ozone layer | DALY | 5.5 × 10−9 |
Ecotoxicity | PDFm−2year−1 | 5.6 × 10−0 |
Acidification/Eutrophication | PDFm−2 year−1 | 1.6 × 102 |
Land use | PDFm−2 year−1 | 0.0 × 100 |
Minerals | MJ surplus | 2.5 × 10−1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pergola, M.; Rita, A.; Tortora, A.; Castellaneta, M.; Borghetti, M.; De Franchi, A.S.; Lapolla, A.; Moretti, N.; Pecora, G.; Pierangeli, D.; et al. Identification of Suitable Areas for Biomass Power Plant Construction through Environmental Impact Assessment of Forest Harvesting Residues Transportation. Energies 2020, 13, 2699. https://doi.org/10.3390/en13112699
Pergola M, Rita A, Tortora A, Castellaneta M, Borghetti M, De Franchi AS, Lapolla A, Moretti N, Pecora G, Pierangeli D, et al. Identification of Suitable Areas for Biomass Power Plant Construction through Environmental Impact Assessment of Forest Harvesting Residues Transportation. Energies. 2020; 13(11):2699. https://doi.org/10.3390/en13112699
Chicago/Turabian StylePergola, Maria, Angelo Rita, Alfonso Tortora, Maria Castellaneta, Marco Borghetti, Antonio Sergio De Franchi, Antonio Lapolla, Nicola Moretti, Giovanni Pecora, Domenico Pierangeli, and et al. 2020. "Identification of Suitable Areas for Biomass Power Plant Construction through Environmental Impact Assessment of Forest Harvesting Residues Transportation" Energies 13, no. 11: 2699. https://doi.org/10.3390/en13112699
APA StylePergola, M., Rita, A., Tortora, A., Castellaneta, M., Borghetti, M., De Franchi, A. S., Lapolla, A., Moretti, N., Pecora, G., Pierangeli, D., Todaro, L., & Ripullone, F. (2020). Identification of Suitable Areas for Biomass Power Plant Construction through Environmental Impact Assessment of Forest Harvesting Residues Transportation. Energies, 13(11), 2699. https://doi.org/10.3390/en13112699