Impact of Starch from Cassava Peel on Biogas Produced through the Anaerobic Digestion Process
Abstract
:1. Introduction
2. Material and Methods
2.1. Substrates and Sludge
2.2. Response Surface Methodology (RSM)
2.3. Beating Pre-Treatment
2.4. Total Solid and Volatile Solid
2.5. Anaerobic Digestion (AD)
2.6. Energy Balance
3. Results and Discussion
3.1. General Results
3.2. CP Results
3.3. Model Estimation
3.3.1. Biogas
3.3.2. Biogas g−1-VS
3.3.3. CH4%
3.3.4. CO2%
3.3.5. CH4 g−1-VS
3.3.6. Digestate
3.4. Optimisation and Energy Evaluation
3.4.1. The optimisation
3.4.2. Energy Evaluation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
AD | Anaerobic digestion |
N | Nitrogen |
P | Phosphorous |
K | Potassium |
DOE | Design of experiment |
RSM | Response surface methodology |
Significance level | |
CP | Cassava peel |
VS | Volatile Solid |
TS | Total solid |
MS | Moisture content |
SQ | Sludge quantity |
ANOVA | Analysis of variance |
BBD | Box-Behnken design |
Pred. R2 | Predicted R2 |
Adj. R2 | Adjusted R2 |
Adeq. Precision | Adequate Precision |
Cor total | Total sum of the squares corrected for the mean |
df | Degree of freedom |
Bs | The energy content of biogas produced by CP in [kW h/m3] |
9.67 | The energy content of 1 Nm3 (Normal cubic meter) of biogas. |
Ep | The energy gained from a gram of volatile solid of CP from the biogas produced in [Wh g−1-VS] |
Bp | The biogas volume produced from each gram of volatile solid of CP. |
Ec | The energy consumed by the water bath to digest the gram volatile solid of CP in [Wh g−1-VS]. |
Ept | The electric energy consumed in the digestion process, which was measured by a prodigit kilowatt-hour meter. |
VSm | The total amount of volatile solid in the water bath |
Net Ep | The net energy produced by a gram of volatile solid of treated CP in [Wh g−1-VS] |
References
- Paepatung, N.; Nopharatana, A.; Songkasiri, W. Bio-Methane Potential of Biological Solid Materials and Agricultural Wastes. Asian J. Energy Environ. 2009, 10, 19–27. [Google Scholar]
- Guo, X.; Wang, C.; Sun, F.; Zhu, W.; Wu, W. A comparison of microbial characteristics between the thermophilic and mesophilic anaerobic digesters exposed to elevated food waste loadings. Bioresour. Technol. 2014, 152, 420–428. [Google Scholar] [CrossRef] [PubMed]
- FAO. Food Wastage Footprint Impacts on Natural Resources; Food and Agriculture Organisation of the United Nations—FAO: Rome, Italy, 2013. [Google Scholar]
- The World Bank. Total Greenhouse Gas Emissions (Kt of CO2 Equivalent). 2016. Available online: data.worldbank.org/indicator/EN.ATM.GHGT.KT.CE (accessed on 26 February 2019).
- Slorach, P.C.; Jeswani, H.K.; Cuéllar-Franca, R.; Azapagic, A. Environmental sustainability of anaerobic digestion of household food waste. J. Environ. Manag. 2019, 236, 798–814. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, E.; Pasquini, D.; Curvelo, A.; Corradini, E.; Belgacem, M.; Dufresne, A. Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch. Carbohydr. Polym. 2009, 87, 422–431. [Google Scholar] [CrossRef]
- Ghimire, A.; Sen, R.; Annachhatre, A. Biosolid Management Options in Cassava Starch Industries of Thailand: Present Practice and Future Possibilities. Procedia Chem. 2015, 14, 66–75. [Google Scholar] [CrossRef] [Green Version]
- Sawyerr, N.; Trois, N.; Workneh, T.; Okudoh, V. Co-Digestion of Animal Manure and Cassava Peel for Biogas Production in South Africa. In Proceedings of the 9th Int’l Conference on Advances in Science, Engineering, Technology & Waste Management (ASETWM-17), Parys, South Africa, 27–28 November 2017; pp. 101–106. [Google Scholar]
- Sivamani, S.; Chandrasekaran, A.; Balajii, M.; Shanmugaprakash, M. Evaluation of the potential of cassava-based residues for biofuels production. Rev. Environ. Sci. Bio/Technol. 2018, 17, 553–570. [Google Scholar] [CrossRef]
- Iyayi, E.; Losei, D. Protein Enrichment of Cassava By-products Through Solid State Fermentation By Fungi. J. Food Technol. Afr. 2001, 6, 116–118. [Google Scholar] [CrossRef] [Green Version]
- Aro, S.; Aletor, V.; Tewe, O.; Agbede, J. Nutritional potentials of cassava tuber wastes: A case study of a cassava starch processing factory in south-western Nigeria. Livest. Res. Rural Dev. 2010, 22, 42–47. [Google Scholar]
- Obadina, O.; Oyewole, B.; Sanni, O.; Abiola, S. Fungal enrichment of cassava peels proteins. Afr. J. Biotechnol. 2006, 5, 302–304. [Google Scholar]
- Ezekiel, O.; Aworh, O. Simultaneous saccharification and cultivation of Candida utilis on cassava peel. Innov. Food Sci. Emerg. Technol. 2018, 49, 184–191. [Google Scholar] [CrossRef]
- Okoroigw, E.; Ofomatah, A.; Oparaku, N. Biodigestion of cassava peels blended with pig dung for methane generation. Afr. J. Biotechnol. 2013, 12, 5956–5961. [Google Scholar]
- Andréa, L.; Paussb, A.; Ribeiro, T. Solid anaerobic digestion: State-of-art, scientific and technological hurdles. Bioresour. Technol. 2018, 247, 1027–1037. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Cheng, J.; Creamer, K. Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 2008, 99, 4044–4064. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Park, S.; Zhu, J. Solid-state anaerobic digestion for methane production from organic waste. Renew. Sustain. Energy Rev. 2011, 15, 821–826. [Google Scholar] [CrossRef]
- Tippayawong, N.; Thanompongchart, P. Biogas quality upgrade by simultaneous removal of CO2 and H2S in a packed column reactor. Energy 2010, 35, 4531–4535. [Google Scholar] [CrossRef]
- Rapport, J.; Zhang, R.; Jenkins, B.M.; Williams, R.B. Current Anaerobic Digestion Technologies Used for Treatment of Municipal Organic Solid Waste; California Environmental Protection Agency: Sacramento, CA, USA, 2008. [Google Scholar]
- Jekayinfa, S.; Scholz, V. Laboratory Scale Preparation of Biogas from Cassava Tubers, Cassava Peels, and Palm Kernel Oil Residues. Energy Sources Part. A Recovery Util. Environ. Eff. 2013, 35, 2022–2032. [Google Scholar] [CrossRef]
- Nkodi, T.; Taba, K.; Sungula, J.; Mulaji, C.; Mihigo, S. Biogas Production by Co-Digestion of Cassava Peels with Urea. Int. J. Sci. Eng. Technol. 2016, 5, 139–141. [Google Scholar]
- Zhang, J.; Xu, J.; Wang, D.; Ren, N. Anaerobic Digestion of Cassava Pulp with Sewage Sludge Inocula. BioResources 2016, 11, 451–465. [Google Scholar] [CrossRef]
- Panichnumsin, P.; Nopharatana, A.; Ahring, B.; Chaiprasert, P. Production of methane by co-digestion of cassava pulp with various concentrations of pig manure. Biomass Bioenergy 2010, 34, 1117–1124. [Google Scholar] [CrossRef]
- Glanpracha, N.; Annachhatre, A.P. Anaerobic co-digestion of cyanide containing cassava pulp with pig manure. Bioresour. Technol. 2016, 214, 112–121. [Google Scholar] [CrossRef]
- Montingelli, M.; Benyounis, K.; Quilty, B.; Stokes, J.; Olabi, A. Influence of mechanical pretreatment and organic concentration of Irish brown seaweed for methane production. Energy 2017, 118, 1079–1089. [Google Scholar] [CrossRef] [Green Version]
- Logan, M.; Safi, M.; Lens, P.; Visvanathan, C. Investigating the performance of internet of things based anaerobic digestion of food waste. Process. Saf. Environ. Prot. 2019, 127, 277–287. [Google Scholar] [CrossRef]
- Montingelli, M.; Benyounis, K.; Stokes, J.; Olabi, A. Pretreatment of macroalgal biomass for biogas production. Energy Convers. Manag. 2016, 108, 202–209. [Google Scholar] [CrossRef]
- Adekunle, A.; Orsat, V.; Raghavan, V. Lignocellulosic bioethanol: A review and design conceptualization study of production from cassava peels. Renew. Sustain. Energy Rev. 2018, 64, 518–531. [Google Scholar] [CrossRef]
- Sivamania, S.; Archanaa, K.; Santhosha, R.; Sivarajasekara, N.; Prasad, N. Synthesis and characterization of starch nanoparticles from cassava Peel. J. Bioresour. Bio-Prod. 2018, 3, 161–165. [Google Scholar]
- Toreci, I.; Droste, R.L.; Kennedy, K.J. Mesophilic Anaerobic Digestion with High-Temperature Microwave Pretreatment and Importance of Inoculum Acclimation. Water Environ. Res. 2011, 83, 549–559. [Google Scholar] [CrossRef]
- Wilkins, D.; Rao, S.; Lu, X.; Lee, P. Effects of sludge inoculum and organic feedstock on active microbial communities and methane yield during anaerobic digestion. Front. Microbiol. 2015, 13, 1114. [Google Scholar] [CrossRef] [Green Version]
- Srisowmeya, G.; Chakravarthy, M.; Devi, G.N. Critical considerations in two-stage anaerobic digestion of food waste–A review. Renew. Sustain. Energy Rev. 2019, 1, 109587. [Google Scholar] [CrossRef]
- Alrefai, R.; Benyounis, K.; Stokes, J. Integration approach of anaerobic digestion and fermentation process towards producing biogas and bioethanol with zero waste: Technical. J. Fundam. Renew. Energy Appl. 2017, 7, 243. [Google Scholar] [CrossRef]
- The Official Information Portal on Anaerobic Digestion. Available online: http://www.biogas-info.co.uk/about/digestate/ (accessed on 7 January 2020).
- Mouat, A.; Barclay, A.; Mistry, P.; Webb, J. Digestate Market. Development in Scotland; Scottish Government: Edinburgh, UK, 2010.
- Gowe, C. Review on Potential Use of Fruit and Vegetables By-Products as A Valuable Source of Natural Food Additives. Food Sci. Qual. Manag. 2015, 45, 47–61. [Google Scholar]
- McDonnell, D.; Burke, M.; Dowdall, J.; Foster, P.; Mahon, K. Guidelines for Anaerobic Digestion in Ireland. 2018. Available online: http://www.cre.ie/web/wp-content/uploads/2018/03/Guidelines-for-Anaerobic-Digestion-in-Ireland_Final.pdf (accessed on 19 March 2019).
- Plana, P.V.; Noche, B. A Review of the Current Digestate Distribution Models: Storage and Transport. WIT Trans. Ecol. Environ. 2016, 202, 345–357. [Google Scholar]
- Wang, D.; Xi, J.; Ai, P.; Yu, L.; Zhai, H.; Yan, S.; Zhang, Y. Enhancing ethanol production from thermophilic and mesophilic solid digestate using ozone combined with aqueous ammonia pretreatment. Bioresour. Technol. 2016, 207, 52–58. [Google Scholar] [CrossRef] [PubMed]
Factors and Their Codes | Unit | Lower Level | Centre Point | Upper Level |
---|---|---|---|---|
Temperature (A) | °C | 34 | 37 | 40 |
Volatile Solid (B) | g-VS | 1.1 | 2.65 | 4.2 |
Sludge Quantity (C) | % | 25 | 37.5 | 50 |
Sample No. | Factor 1 | Factor 2 | Factor 3 |
---|---|---|---|
A: Temperature | B: Volatile Solid | C: Sludge Quantity | |
°C | g-VS | % | |
1 | 34 | 4.0 | 50 |
2 | 37 | 4.0 | 50 |
3 | 40 | 4.0 | 50 |
Std. | Run | Factor 1 | Factor 2 | Factor 3 | Resp.1 | Resp.2 | Resp.3 | Resp. 4 | Resp.5 |
---|---|---|---|---|---|---|---|---|---|
A | B | C | Biogas | Biogas g−1-VS | CH4 | CO2 | CH4g−1-VS | ||
°C | g-VS | % | cc | cc g−1-VS | % | % | cc g−1-VS | ||
1 | 10 | 34 | 1.1 | 37.5 | 831 | 755.4 | 56.8 | 19.6 | 428.8 |
2 | 7 | 40 | 1.1 | 37.5 | 1587 | 1442.5 | 54.5 | 21 | 786.7 |
3 | 9 | 34 | 4.2 | 37.5 | 2275 | 541.7 | 39.7 | 36.1 | 214.9 |
4 | 1 | 40 | 4.2 | 37.5 | 3367 | 801.6 | 42.5 | 33.7 | 340.9 |
5 | 12 | 34 | 2.65 | 25 | 1271 | 479.7 | 45.8 | 29.2 | 219.8 |
6 | 4 | 40 | 2.65 | 25 | 1844 | 695.8 | 47.1 | 28.3 | 327.7 |
7 | 8 | 34 | 2.65 | 50 | 1870 | 705.7 | 54.7 | 22.5 | 386.3 |
8 | 5 | 40 | 2.65 | 50 | 2562 | 966.9 | 57.8 | 20.4 | 559.2 |
9 | 6 | 37 | 1.1 | 25 | 1096 | 996 | 43.6 | 32 | 434.2 |
10 | 14 | 37 | 4.2 | 25 | 3064 | 729.5 | 33.8 | 37.8 | 246.6 |
11 | 16 | 37 | 1.1 | 50 | 1552 | 1411 | 60.3 | 15.9 | 850.8 |
12 | 17 | 37 | 4.2 | 50 | 3830 | 911.9 | 39.3 | 35.7 | 358.7 |
13 | 11 | 37 | 2.65 | 37.5 | 2390 | 928.2 | 58.3 | 23.4 | 540.8 |
14 | 3 | 37 | 2.65 | 37.5 | 2169 | 818.6 | 59.8 | 22.9 | 489.8 |
15 | 15 | 37 | 2.65 | 37.5 | 2210 | 833.8 | 61.8 | 22.7 | 515 |
16 | 2 | 37 | 2.65 | 37.5 | 2255 | 851 | 58.5 | 24.6 | 497.5 |
17 | 13 | 37 | 2.65 | 37.5 | 2225 | 839.5 | 57.2 | 22.5 | 480.4 |
Resp. | Control Samples | Predicted Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Biogas | Biogas g−1-VS | CH4 | CO2 | CH4 g−1-VS | Biogas | Biogas g−1-VS | CH4 | CO2 | CH4 g−1-VS | |
Unit | cc | cc g−1-VS | % | % | cc g−1-VS | cc | cc g−1-VS | % | % | cc g−1-VS |
1 | 2766.1 | 691.5 | 40.5 | 35.0 | 280.1 | 2727.7 | 667.3 | 40.2 | 35.2 | 243.0 |
2 | 3558.7 | 889.7 | 42.9 | 33.3 | 381.4 | 3479.2 | 882.8 | 42.7 | 33.9 | 365.2 |
3 | 3630.5 | 907.6 | 41.7 | 32.3 | 378.8 | 3505.9 | 837.3 | 41.5 | 32.6 | 333.2 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 9.539 × 106 | 4 | 2.385 × 106 | 86.14 | <0.0001 | Significant |
A-Temperature | 1.211 × 106 | 1 | 1.211 × 106 | 43.76 | <0.0001 | |
B-Volatile Solid | 6.975 × 106 | 1 | 6.975 × 106 | 251.97 | <0.0001 | |
C-Sludge Quantity | 8.058 × 105 | 1 | 8.058 × 105 | 29.11 | 0.0002 | |
A2 | 5.466 × 105 | 1 | 5.466 × 105 | 19.74 | 0.0008 | |
Residual | 3.322 × 105 | 12 | 27,682.67 | |||
Lack of Fit | 3.038 × 105 | 8 | 37,972.65 | 5.35 | 0.0614 | Not significant |
Pure Error | 28,410.80 | 4 | 7102.70 | |||
Cor Total | 9.871 × 106 | 16 | ||||
Adequacy measuring tools | R2 = 0.9663 | Adjusted R2 = 0.9551 | Predicted R2 = 0.9212 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 9.592 × 105 | 6 | 1.599 × 105 | 31.05 | <0.0001 | Significant |
A-Temperature | 2.536 × 105 | 1 | 2.536 × 105 | 49.24 | <0.0001 | |
B-Volatile Solid | 3.281 × 105 | 1 | 3.281 × 105 | 63.72 | <0.0001 | |
C-Sludge Quantity | 1.497 × 105 | 1 | 1.497 × 105 | 29.08 | 0.0003 | |
AB | 45,624.96 | 1 | 45,624.96 | 8.86 | 0.0139 | |
A2 | 76,839.04 | 1 | 76,839.04 | 14.92 | 0.0031 | |
B2 | 1.152 × 105 | 1 | 1.152 × 105 | 22.37 | 0.0008 | |
Residual | 51,494.42 | 10 | 5149.44 | |||
Lack of Fit | 44,108.57 | 6 | 7351.43 | 3.98 | 0.1011 | Not significant |
Pure Error | 7385.85 | 4 | 1846.46 | |||
Cor Total | 1.011 × 106 | 16 | ||||
Adequacy measuring tools | R2 = 0.9491 | Adjusted R2 = 0.9185 | Predicted R2 = 0.7554 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 1240.05 | 7 | 177.15 | 69.90 | <0.0001 | Significant |
A-Temperature | 3.00 | 1 | 3.00 | 1.18 | 0.3048 | |
B-Volatile Solid | 448.50 | 1 | 448.50 | 176.98 | <0.0001 | |
C-Sludge Quantity | 218.40 | 1 | 218.40 | 86.18 | <0.0001 | |
BC | 31.36 | 1 | 31.36 | 12.37 | 0.0065 | |
A2 | 13.99 | 1 | 13.99 | 5.52 | 0.0434 | |
B2 | 335.20 | 1 | 335.20 | 132.27 | <0.0001 | |
C2 | 148.94 | 1 | 148.94 | 58.77 | <0.0001 | |
Residual | 22.81 | 9 | 2.53 | |||
Lack of Fit | 10.42 | 5 | 2.08 | 0.6729 | 0.6674 | Not significant |
Pure Error | 12.39 | 4 | 3.10 | |||
Cor Total | 1262.86 | 16 | ||||
Adequacy measuring tools | R2 = 0.9819 | Adjusted R2 = 0.9679 | Predicted R2 = 0.9459 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 689.15 | 7 | 98.45 | 114.70 | <0.0001 | Significant |
A-Temperature | 2.00 | 1 | 2.00 | 2.33 | 0.1612 | |
B-Volatile Solid | 375.38 | 1 | 375.38 | 437.35 | <0.0001 | |
C-Sludge Quantity | 134.48 | 1 | 134.48 | 156.68 | <0.0001 | |
AB | 3.61 | 1 | 3.61 | 4.21 | 0.0705 | |
BC | 49.00 | 1 | 49.00 | 57.09 | <0.0001 | |
B2 | 96.96 | 1 | 96.96 | 112.97 | <0.0001 | |
C2 | 22.18 | 1 | 22.18 | 25.84 | 0.0007 | |
Residual | 7.72 | 9 | 0.8583 | |||
Lack of Fit | 4.90 | 5 | 0.9793 | 1.39 | 0.3873 | Not significant |
Pure Error | 2.83 | 4 | 0.7070 | |||
Cor Total | 696.88 | 16 | ||||
Adequacy measuring tools | R2 = 0.9889 | Adjusted R2 = 0.9803 | Predicted R2 = 0.942 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 4.806 × 105 | 7 | 68,651.47 | 50.86 | <0.0001 | Significant |
A-Temperature | 73,095.76 | 1 | 73,095.76 | 54.16 | <0.0001 | |
B-Volatile Solid | 2.242 × 105 | 1 | 2.242 × 105 | 166.14 | <0.0001 | |
C-Sludge Quantity | 1.073 × 105 | 1 | 1.073 × 105 | 79.53 | <0.0001 | |
AB | 13,444.40 | 1 | 13,444.40 | 9.96 | 0.0116 | |
BC | 23,180.06 | 1 | 23,180.06 | 17.17 | 0.0025 | |
A2 | 26,762.41 | 1 | 26,762.41 | 19.83 | 0.0016 | |
C2 | 10,498.41 | 1 | 10,498.41 | 7.78 | 0.0211 | |
Residual | 12,147.72 | 9 | 1349.75 | |||
Lack of Fit | 9874.08 | 5 | 1974.82 | 3.47 | 0.1256 | Not significant |
Pure Error | 2273.64 | 4 | 568.41 | |||
Cor Total | 4.927 × 105 | 16 | ||||
Adequacy measuring tools | R2 = 0.9753 | Adjusted R2 = 0.9562 | Predicted R2 = 0.8693 |
Test | Unit | Result |
---|---|---|
Total phosphorous | mg/kg | 632 |
Potassium | mg/kg | 526 |
Total nitrogen | g/100g | 3886 |
Dry matter | mg/kg | 2.7 |
Factors and Responses | 1st Criteria | 2nd Criteria | 3rd Criteria | |||
---|---|---|---|---|---|---|
Goal | Importance | Goal | Importance | Goal | Importance | |
A: Temperature | In range | 3 | Minimise | 3 | Minimise | 3 |
B: Volatile Solid | In range | 3 | Maximise | 3 | Maximise | 3 |
C: Sludge Quantity | In range | 3 | Minimise | 3 | In range | 3 |
Biogas | In range | 3 | In range | 3 | In range | 3 |
Biogas g−1VS | Maximise | 3 | Maximise | 3 | Maximise | 3 |
CH4 | Maximise | 5 | Maximise | 5 | Maximise | 5 |
CO2 | Minimise | 3 | Minimise | 3 | Minimise | 3 |
CH4 g−1VS | Maximise | 3 | Maximise | 3 | Maximise | 3 |
Criterion | A: °C | B: g-VS | C: % | Biogas cc | Biogas cc g−1-VS | CH4 % | CO2 % | CH4 g−1VS cc g−1-VS |
---|---|---|---|---|---|---|---|---|
1st | 38.6 | 1.2 | 50.0 | 1831 | 1448.1 | 59.8 | 15.9 | 871.5 |
2nd | 36.8 | 2.1 | 39.4 | 2012 | 939.7 | 61.4 | 20.6 | 578.9 |
3rd | 36.5 | 2.0 | 50.0 | 2195.4 | 1053.2 | 60.9 | 17.9 | 652.4 |
Criterion | Energy Nonsumed, kWh | VolAtile Solid Weight, g | Bs, kWh/m3 | Ep, kWh g−1-VS | Ec, kWh g−1-VS | Net Ep, kWh g−1-VS | Energy Balance,% |
---|---|---|---|---|---|---|---|
1st | 70.6 | 1.15 | 5.78 | 0.62 | 0.82 | −0.20 | −23.27% |
2nd | 56.2 | 2.13 | 5.93 | 0.41 | 0.35 | 0.07 | 18.93% |
3rd | 56.2 | 2.05 | 5.89 | 0.47 | 0.37 | 0.10 | 27.26% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alrefai, A.M.; Alrefai, R.; Benyounis, K.Y.; Stokes, J. Impact of Starch from Cassava Peel on Biogas Produced through the Anaerobic Digestion Process. Energies 2020, 13, 2713. https://doi.org/10.3390/en13112713
Alrefai AM, Alrefai R, Benyounis KY, Stokes J. Impact of Starch from Cassava Peel on Biogas Produced through the Anaerobic Digestion Process. Energies. 2020; 13(11):2713. https://doi.org/10.3390/en13112713
Chicago/Turabian StyleAlrefai, Alla Mohammed, Raid Alrefai, Khaled Younis Benyounis, and Joseph Stokes. 2020. "Impact of Starch from Cassava Peel on Biogas Produced through the Anaerobic Digestion Process" Energies 13, no. 11: 2713. https://doi.org/10.3390/en13112713
APA StyleAlrefai, A. M., Alrefai, R., Benyounis, K. Y., & Stokes, J. (2020). Impact of Starch from Cassava Peel on Biogas Produced through the Anaerobic Digestion Process. Energies, 13(11), 2713. https://doi.org/10.3390/en13112713