A Multi-Input-Port Bidirectional DC/DC Converter for DC Microgrid Energy Storage System Applications
Abstract
:1. Introduction
2. Operation Principle of the Proposed Multi-Input-Port Bidirectional DC/DC Converter
- The currents iL1 and iL2 of the inductors L1 and L2 are both continuous.
- All devices are ideal, regardless of the influence of parasitic parameters.
- The switches S1 and S2 are regulated by an interleaved control strategy with the duty cycle greater than 0.5. While the switches Q1 and Q2 are controlled by an interleaved control strategy with the duty cycle less than 0.5. The operation principle of the converter can be analyzed based on the discharging or charging modes.
2.1. Discharging Mode (Boost)
2.2. Charging Mode (Buck)
3. Performance Analysis
3.1. Voltage Conversion Ratio
3.2. Relationship between the Currents of the Two Inductors
3.3. Voltage Stress of Switch
- Discharging Mode (Boost):
- Charging Mode (Buck):
3.4. Current Stress of Switch
3.5. Power Flow
3.6. Comparison of the Proposed Converter with Other Converters
4. Extension of the Topology
4.1. Topology of the N-Input-Port Bidirectional DC/DC Converter
- Currents of the inductors iL1, iL2, …, and iL2 are all continuous.
- All devices are ideal, regardless of the influence of parasitic parameters.
- Discharging Mode (Boost): during a switching period Ts, S1, S2, ..., and Sn interleaved with 360°/n phase shift are turned on with the duty cycle greater than (1 − 1/n), and Q1, Q2, ..., and Qn are turned off. Charging Mode (Buck): during a switching period Ts, Q1, Q2, ..., and Qn interleaved with 360°/n phase shift are turned on with the duty cycle less than 1/n, and S1, S2, ..., and Sn are turned off.
4.2. Voltage Conversion Ratio
4.3. Relationship between the Currents of the Inductors
5. Experimental Results
5.1. Constant Duty Cycle
5.2. Varying Duty Cycle
5.3. Converter Efficiency and Conversion Ratio
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wu, Y.-E.; Hsu, K.-C. Novel Three-Port Bidirectional DC/DC Converter with Three-Winding Coupled Inductor for Photovoltaic System. Energies 2020, 13, 1132. [Google Scholar] [CrossRef] [Green Version]
- Zhu, B.; Zeng, Q.; Chen, Y.; Zhao, Y.; Liu, S. A Dual-Input High Step-Up DC/DC Converter with ZVT Auxiliary Circuit. IEEE Trans. Energy Convers. 2018, 34, 161–169. [Google Scholar] [CrossRef]
- Zhu, B.; Ding, F.; Vilathgamuwa, D.M. Coat Circuits for DC–DC Converters to Improve Voltage Conversion Ratio. IEEE Trans. Power Electron. 2020, 35, 3679–3687. [Google Scholar] [CrossRef]
- Wang, C.; Li, X.; Tian, T.; Xu, Z.; Chen, R. Coordinated Control of Passive Transition from Grid-Connected to Islanded Operation for Three/Single-Phase Hybrid Multimicrogrids Considering Speed and Smoothness. IEEE Trans. Ind. Electron. 2020, 67, 1921–1931. [Google Scholar] [CrossRef]
- Li, Y.; Vilathgamuwa, D.M.; Choi, S.S.; Xiong, B.; Tang, J.; Su, Y.; Wang, Y. Design of minimum cost degradation-conscious lithium-ion battery energy storage system to achieve renewable power dispatchability. Appl. Energy 2020, 260, 114282. [Google Scholar] [CrossRef]
- Xu, G.; Xu, L.; Yao, L. Wind turbines output power smoothing using embedded energy storage systems. J. Mod. Power Syst. Clean Energy 2013, 1, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.H.; Xiang, X.; Hu, T.H.; Abu-Siada, A.; Li, Z.X.; Xu, Y.C. An improved digital integral algorithm to enhance the measurement accuracy of Rogowski coil-based electronic transformers. INT J. Elec. Power 2020, 118, 105806. [Google Scholar] [CrossRef]
- Lai, C.-M.; Cheng, Y.-H.; Hsieh, M.-H.; Lin, Y.-C. Development of a Bidirectional DC/DC Converter with Dual-Battery Energy Storage for Hybrid Electric Vehicle System. IEEE Trans. Veh. Technol. 2018, 67, 1036–1052. [Google Scholar] [CrossRef]
- Wai, R.-J.; Zhang, Z.-F. Design of High-Efficiency Isolated Bidirectional DC/DC Converter with Single-Input Multiple-Outputs. IEEE Access 2019, 7, 87543–87560. [Google Scholar] [CrossRef]
- Park, H.-S.; Kim, C.-E.; Kim, C.-H.; Moon, G.-W.; Lee, J.-H. A Modularized Charge Equalizer for an HEV Lithium-Ion Battery String. IEEE Trans. Ind. Electron. 2009, 56, 1464–1476. [Google Scholar] [CrossRef]
- Anno, T.; Koizumi, H. Double-Input Bidirectional DC/DC Converter Using Cell-Voltage Equalizer with Flyback Transformer. IEEE Trans. Power Electron. 2014, 30, 2923–2934. [Google Scholar] [CrossRef]
- Ibanez, F.; Echeverria, J.M.; Vadillo, J.; Fontan, L. High-Current Rectifier Topology Applied to a 4-kW Bidirectional DC–DC Converter. IEEE Trans. Ind. Appl. 2013, 50, 68–77. [Google Scholar] [CrossRef]
- Duan, R.-Y.; Lee, J.-D. High-efficiency bidirectional DC-DC converter with coupled inductor. IET Power Electron. 2012, 5, 115–123. [Google Scholar] [CrossRef]
- Zhou, L.-W.; Zhu, B.-X.; Luo, Q.-M. High step-up converter with capacity of multiple input. IET Power Electron. 2012, 5, 524–531. [Google Scholar] [CrossRef]
- Saadat, P.; Abbaszadeh, K. A Single-Switch High Step-Up DC–DC Converter Based on Quadratic Boost. IEEE Trans. Ind. Electron. 2016, 63, 7733–7742. [Google Scholar] [CrossRef]
- Hsieh, Y.-P.; Chen, J.-F.; Yang, L.-S.; Wu, C.-Y.; Liu, W.-S. High-Conversion-Ratio Bidirectional DC–DC Converter with Coupled Inductor. IEEE Trans. Ind. Electron. 2013, 61, 210–222. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, H.; Li, J.; Sumner, M.; Xia, C. DC–DC Boost Converter with a Wide Input Range and High Voltage Gain for Fuel Cell Vehicles. IEEE Trans. Power Electron. 2019, 34, 4100–4111. [Google Scholar] [CrossRef]
- Wu, G.; Ruan, X.; Ye, Z. Nonisolated High Step-Up DC–DC Converters Adopting Switched-Capacitor Cell. IEEE Trans. Ind. Electron. 2014, 62, 383–393. [Google Scholar] [CrossRef]
- Zhu, B.; Wang, H.; Vilathgamuwa, D.M.; Vilathgamuwa, M. Single-switch high step-up boost converter based on a novel voltage multiplier. IET Power Electron. 2019, 12, 3732–3738. [Google Scholar] [CrossRef]
- Varesi, K.; Hosseini, S.H.; Sabahi, M.; Babaei, E.; Vosoughi, N. Performance and design analysis of an improved non-isolated multiple input buck DC–DC converter. IET Power Electron. 2017, 10, 1034–1045. [Google Scholar] [CrossRef]
- Mangu, B.; Akshatha, S.; Suryanarayana, D.; Fernandes, B.G.; Bhukya, M. Grid-Connected PV-Wind-Battery-Based Multi-Input Transformer-Coupled Bidirectional DC-DC Converter for Household Applications. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 1086–1095. [Google Scholar] [CrossRef]
- Wang, Z.; Li, H. An Integrated Three-Port Bidirectional DC–DC Converter for PV Application on a DC Distribution System. IEEE Trans. Power Electron. 2012, 28, 4612–4624. [Google Scholar] [CrossRef]
- Wu, H.; Xu, P.; Hu, H.; Zhou, Z.; Xing, Y. Multiport Converters Based on Integration of Full-Bridge and Bidirectional DC–DC Topologies for Renewable Generation Systems. IEEE Trans. Ind. Electron. 2013, 61, 856–869. [Google Scholar] [CrossRef]
- Hintz, A.; Prasanna, U.R.; Rajashekara, K. Novel Modular Multiple-Input Bidirectional DC–DC Power Converter (MIPC) for HEV/FCV Application. IEEE Trans. Ind. Electron. 2014, 62, 3163–3172. [Google Scholar] [CrossRef]
[22] | [23] | [24] | Proposed | |
---|---|---|---|---|
No. of ports | 3 | 4 | 3 | 3 |
No. of switches | 12 | 4 | 6 | 4 |
No. of diodes | 0 | 4 | 0 | 0 |
No. of inductors | 6 | 4 | 2 | 2 |
No. of capacitors | 3 | 5 | 2 | 2 |
Parameters | Values |
---|---|
Voltage (uin1, uin2) | 24 V |
Voltage (uo) | 200 V |
Output power (Po) | 200 W |
Switching frequency (fs) | 100 kHz |
Switch (S1, S2, Q1, Q2) | C3M0280090D |
Capacitors | Co: 10 uF, C1: 4 uF |
Inductors (L1, L2) | 400 uH |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, B.; Hu, H.; Wang, H.; Li, Y. A Multi-Input-Port Bidirectional DC/DC Converter for DC Microgrid Energy Storage System Applications. Energies 2020, 13, 2810. https://doi.org/10.3390/en13112810
Zhu B, Hu H, Wang H, Li Y. A Multi-Input-Port Bidirectional DC/DC Converter for DC Microgrid Energy Storage System Applications. Energies. 2020; 13(11):2810. https://doi.org/10.3390/en13112810
Chicago/Turabian StyleZhu, Binxin, Hui Hu, Hui Wang, and Yang Li. 2020. "A Multi-Input-Port Bidirectional DC/DC Converter for DC Microgrid Energy Storage System Applications" Energies 13, no. 11: 2810. https://doi.org/10.3390/en13112810
APA StyleZhu, B., Hu, H., Wang, H., & Li, Y. (2020). A Multi-Input-Port Bidirectional DC/DC Converter for DC Microgrid Energy Storage System Applications. Energies, 13(11), 2810. https://doi.org/10.3390/en13112810