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Abstract: Recently, eco-friendly energy conversion policies have been being promoted through
de-nuclearization and de-coal. For this purpose, a super grid should be built to optimize sustainable
renewable energy resources such as solar and wind power. Accordingly, considering the various
problems such as technology and cost, a system for efficient energy transmission is required. Hence,
research is being actively conducted to apply it, owing to the development of the high voltage direct
current (HVDC) system. Among HVDC systems, the cable system is extremely important, in addition
to the measurement of the dielectric breakdown strength, space charge, and volume resistivity
of insulating materials. The existing resistivity measurement method measures both the volume
and surface resistivity using a three-terminal electrode that is used in the international standards
of American Society for Testing and Materials (ASTM) D 257 and International Electrotechnical
Commission (IEC) 60093. However, the circuit configuration differs depending on the measurement
of the volume and surface resistivity; moreover, when a DC voltage is applied to the insulator,
a charging current flows and there are multiple samples to be measured, which takes a considerable
amount of time. Therefore, in this study, we proposed a new type of resistivity measurement system
that is based on the existing three-terminal electrode system. Furthermore, we produced a system
capable of simultaneously measuring the volume and surface resistivity. Finally, using this system,
we compared and analyzed the volume and surface resistivity of five insulating materials.

Keywords: volume resistivity; surface resistivity; leakage current

1. Introduction

Both developing and developed countries are facing a transition period for electrification. Because
of the increase in power demand in city centers in large cities, several studies have focused on efficiently
transmitting electricity between cities, countries, and continents. Moreover, over the past few years,
an eco-friendly energy conversion policy has been promoted via de-nuclearization and de-coal. For this
purpose, a new super grid is required to optimize sustainable renewable energy resources such as
solar and wind power. European and G8 leaders have announced that, by 2050, they will cut their
countries’ greenhouse gas emissions by 80%. Instead of improving the system of an existing high
voltage alternating current (HVAC) grid, they intend to use the HVDC grid to interconnect EU countries.
Furthermore, Northeast Asia is pushing for the efficient transmission of power energy and power
production via nuclear power plants and renewable energy [1–3].

Such transmission technology should be selected while considering both social and environmental
impacts and limitations such as technology and cost. Accordingly, the HVDC system is considered
a system for efficient energy transmission. The existing HVAC system has been a pivotal power
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transmission technology for >100 years; however, the HVDC transmission system’s importance has
emerged because of the increase in power transmission capacity and the liberalization of the power
industry. Generally, the HVDC has a higher allowable current of the conductor than the HVAC;
therefore, it can transmit more power, which can reduce the equipment cost of pylons and wiring.
Moreover, because the HVAC system suffers from high loss because of the limitation of reactive
power during long-distance transmission, studies on the application of a HVDC transmission system
capable of relatively extended loss and large-capacity transmission have been actively conducted.
Because the HVDC system is operated in a DC environment rather than an existing AC environment,
a new insulation design technology is required. Moreover, additional research is required to develop
power devices to apply this system and improve insulation performance [1,4–7]. For an insulating
material of an electric power device exposed in an external environment, deterioration occurs where the
chemical and mechanical properties of the material change because of environmental factors, thereby
deteriorating the insulating property. Note that it is extremely important to understand the reliability
of the insulating material because the deteriorated insulating material loses insulating properties and
the leakage current flows and eventually breaks the insulation, which can lead to serious accidents [8].

The HVDC system can be divided into operation, conversion, and cable systems; moreover, it is
the most important element of the cable system. The most important properties of the insulation
material for cables are insulation breakdown strength, space charge, and volume resistivity. Generally,
the AC cable has a capacitive electric field distribution determined by the dielectric constant; however,
the DC cable has a resistive electric field distribution determined by the resistivity. Moreover, regardless
of changes in the shape, size, and measurement position, because the resistivity measurement has the
inherent electrical properties of the insulating material, a reliable measurement is required to apply
the insulating material to power equipments. Measuring the volume and surface resistivity of these
high-resistivity dielectrics is the most difficult task. The method of measuring the volume and surface
resistivity of the insulating material is described in detail in the international standard of IEC 60093 and
ASTM D 257 approved in 1980 by the International Electrotechnical Commission; furthermore, both
the volume and surface resistivity are measured using a three-terminal electrode [9,10]. The resistivity
measurement results are greatly influenced by factors such as the applied voltage, electrode materials
and shape, temperature, relative humidity, and surface and space charges stored in the sample
before measurement, causing errors. Moreover, since the circuit diagram is different depending on
the measurement of the volume and surface resistivity, a simultaneous measurement is impossible;
therefore, there are disadvantages in individual measurements. Furthermore, for the DC electric
field, when an electric field is applied to the dielectric, an absorption phenomenon occurs because
of polarization; therefore, it must be measured after a sufficient time for the instantaneous charging
current to escape because of the charging current [11–14]. For a voltage applied for measuring the
resistivity, it is measured at a voltage as low as 500–1000 V; if the thickness of the specimen is difficult
to process, it cannot be measured.

In this study, based on the existing three-terminal electrode system for measuring the volume and
surface resistivity, we present a new type of resistivity measurement system. Furthermore, a system
capable of simultaneously measuring the volume and surface resistivity is developed. Moreover,
we can see the change in resistivity depending on the voltage magnitude. Finally, the volumes and
surface resistivities can be compared and analyzed using four insulating materials: polyethylene (PE),
polypropylene (PP), polytetrafluoroethylene (PTFE), and polyvinylchloride (PVC).

2. Experimental Section

2.1. Specimens

In this experiment, we used four types of polymers (PE, PP, PTFE, and PVC) as samples that were
used as general insulating materials. The sample sizes suggested in ASTM D 257 and IEC 60093 have
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diameters of 50–100 mm and thicknesses of 1 mm. However, in this experiment, we used a diameter
of 100 mm.

2.2. Theoretical Background

Polymer materials are often used in power devices because of their excellent electrical insulation
properties. Recently, research channeled towards improving electrical insulation properties has
been actively conducted by mixing nanofillers such as h-BN and MgO with insulating materials.
Both polarization and charge injection phenomena occur when an electric field is formed in the polymer.
Polarization is a phenomenon in which dipoles, which are electric charges existing in an insulator, are
arranged according to the direction of an electric field applied from the outside, while charge injection
is a phenomenon in which electric charges are injected from a conductor such as an electrode into an
insulator when a high electric field is applied. When these phenomena accumulate in the polymer
over a long period, they have considerable influence on the dielectric strength. In particular, a treeing
phenomenon occurs in cable insulation, causing considerable problems [15–18].

The electric field exhibits different characteristics because of the movement of positive and negative
charges, and Equation (1) gives the governing equation for the potential distribution that forms the
electric field using the definition of the electric field of the current continuous equation, the Gaussian
law, and Ohm’s law:

σ∇2V +
∂
∂t
ε∇2V = 0 (1)

The governing equation of Equation (1) can be expressed as Equation (2) by rearranging the
conductivity and dielectric constant as differential equations over time:(

σ+ ε
∂
∂t

)
·

(
∂2V
∂x2 +

∂2V
∂y2 +

∂2V
∂z2

)
= 0 (2)

In the DC electric field distribution, there is no differential term with respect to time; therefore,
the coefficient of the dielectric constant becomes 0. Hence, the conductivity term dominates, yielding
an equation for obtaining the DC electric field distribution:

σ·

(
∂2V
∂x2 +

∂2V
∂y2 +

∂2V
∂z2

)
= 0 (3)

Furthermore, for the DC insulation, because the voltage is always applied with the same polarity,
the influence of the space charge injected into the insulator is considerable. If it is assumed that a
negative voltage is applied, the effective insulation thickness decreases because of the expansion of the
electric field region due to the continuous accumulation of electrons. At this time, when the opposite
polarity (positive polarity) flows through the conductor, a very large electric field is formed, and a local
insulation breakdown phenomenon occurs. Therefore, to measure the dielectric breakdown strength
and conductivity, it is very important to measure the resistivity [19].

2.2.1. Resistivity Measurement

Because the conductivity of the solid dielectric is the reciprocal of the resistivity, the specimen
to be measured is placed between the conductive electrodes, and then the resistance is measured.
The resistance value is then calculated by measuring the current flowing through the sample at the
voltage applied to the electrode. The value is affected by the dimensions of the electrode and the
specimen. Note that it can be measured through the three-terminal electrode measurement method
suggested by the international standard IEC 60093 (methods of testing for the volume resistivity and
conductance of solid electrical insulating materials) and ASTM D 257 (DC resistance or conductance of
insulating materials).
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Figure 1a shows the abovementioned three-terminal electrode structure. It comprises three
electrodes (top, bottom, and guard electrodes). Figure 1b is a plane figure of each electrode and should
be configured using Equation (4).

D0 =
D1 + D2

2
(4)

where D0 is the product of the distance from the origin to the midpoint of g, D1 is the diameter of
the bottom electrode, D2 is the diameter of the bottom electrode +g (spacing between the guard and
bottom electrode), and D3 is the diameter of the top electrode.
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When measuring the resistivity, a three-terminal electrode is installed on an insulator. When a DC
high voltage is applied, the generated leakage current is measured and converted into a resistivity.
Figure 2 shows the circuit diagram for measuring the volume resistivity: (+) is applied to the top
electrode, and (−) is applied to the bottom and guard electrodes. The current flowing from the
top electrode to the guard electrode is designed to reduce the error in the volumetric resistance
measurement by flowing directly to the ground.

Through the modeling of the circuit diagram for measuring the volume resistivity, the flow of the
volume leakage current can be seen (Figure 3). The leakage current flows through the volume of the
insulating material at the top electrode, and the measured leakage current is calculated as the volume
resistivity using Equations (5) and (6). Depending on the leakage current, the measured resistivity can
be measured to about G-PΩ [20,21].

Rv = ρv
l
A

=
Va

IL
(5)

ρv = Rv·
A
d
= Rv·

πr2

d
(6)
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where Rv is the volume resistance, ρv is the volume resistivity, IL is the leakage current, Va is the applied
voltage, d is the sample thickness, and A is the main electrode area.Energies 2020, 13, x FOR PEER REVIEW 5 of 13 
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Figure 4 is the circuit diagram for measuring the surface resistivity. Unlike the circuit for measuring
the volume resistivity, (+) is applied to the guard electrode and (−) is applied to the two flat (top and
bottom) electrodes. Then, the surface leakage current flowing between the guard electrode and the
bottom electrodes can be measured to obtain the resistivity using Equation (7). Because the leakage
current flowing from the guard electrode to the top electrode flows to the ground, it does not affect
the surface leakage current measurement [22,23]. Figure 5 is a simulation of the circuit diagram for
measuring the surface resistivity. Since the guard electrode is (+) and the lower and upper electrodes
are (−), it can be seen that the current flows differently from the volume resistivity. It can be seen that
a current flows from the guard electrode to the lower electrode, and there is a constant current over the
upper part.

ρs = Rs
2π

ln(D2/D1)
(7)

where Rs is the surface resistance, ρs is the surface resistivity, and D1 and D2 are the diameters of the
inner and outer electrodes, respectively.

As shown in Figures 2 and 4, the circuits are configured differently, according to the volume
and surface resistivity measurements. Since the leakage current flows are different, a simultaneous
measurement is impossible and individual measurements must be made.
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2.2.2. Charging Current

For general insulating materials, when an electric field is applied to the dielectric, it is one dielectric,
and various other types of polarization occur. Because of this polarization phenomenon, immediately
after the DC voltage of the insulating material is applied, the instantaneous charging current Ic flows
and tends to decrease as the application time increases. This polarization phenomenon is called the
absorption phenomenon of the dielectric, and the decreasing current is called the absorption current
Ia. For an ideal insulator, the current is almost zero; however, in a real environment, a constant
microcurrent is observed, even after a sufficient time. This constant current is called the leakage current
Il, and Figure 6 is the current flowing through the insulator when the DC voltage is applied.

• Ic (Instantaneous charging current): It is the current part that rapidly rises along with the voltage,
and it refers to the current component generated by the electrostatic capacity and electron and
atomic polarization formed in the insulator.

• Ia (Absorption current): It is the current part that continuously flows and gradually decreases in
the charging current, and it refers to a current component based on a relatively gentle electric
polarization (such as orientation and interface polarizations).

• Il (Leakage current): It means the current part reaching a steady state where the current is maintained
at a constant value. It is very difficult to calculate the pure leakage current in a short time.

Both the volume and surface resistivity can be calculated by measuring the leakage current.
In general, after applying a particular voltage, select a certain time period (5, 10, and 30 min, etc.), wait
for the instantaneous charging current to drain, and then decrease the current. The current (leakage
current) at this time becomes constant. Note that there is a problem that involves taking a long time
when many samples have to be measured [24,25].
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2.2.3. Guard-Ring Terminal Electrode Type Resistivity Measurement System

A new guard-ring type resistivity measurement system is proposed to improve the difference
between the volume and surface resistivity measurement circuit configurations and the long-time
measurement time based on the charging current in the three-terminal electrode resistivity measurement
methods of IEC 60093 and ASTM D 257. The shape of the guard-ring electrode is modified from the
basic frame of the existing three-terminal electrode, and the top and bottom electrodes are identically
configured. For the guard-ring electrode, it has a shape attached to the side and bottom of the insulator;
moreover, it is configured as shown in Figure 7. For there to be a perfect contact of the electrode to the
edge of the material, it must have a tight tolerance. To this end, the ring electrode on the side has a
thickness of 0.5 mm, so that it is easy to bend. Using this, it was adhered to the material and used as a
single electrode by attaching it to the bottom ring electrode and to the outside using conductive tape.
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The flow of the volume and surface leakage current when the voltage is applied is as shown in
1O and 2O in Figure 7. For each leakage current measurement and the flow of the leakage current,

the voltage application method is as follows.

• 1OWhen the voltage for measuring the volume resistivity is applied (+) to the top electrode and
(−) to the bottom and guard-ring electrodes, the internal leakage current of the insulator flows
through the top and bottom electrodes.

• 2O The voltage application method of the surface resistivity measurement is applied in the same
way as the volume resistivity measurement. In the surface leakage current of the insulator,
a leakage current generated from the top electrode flows along the surface of the insulator to the
guard-ring electrode on the side surface.

Table 1 shows the parameters of the electrode and the insulating material used in this study. For the
electrode, stainless steel, which is relatively easy to process and has excellent corrosion resistance, was
used because the material and size have a large influence on the measurement results. After modeling
was performed through the parameters in Table 1, power was connected to each electrode. The current
density distribution and leakage current flow generated at this time were simulated.
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Table 1. Parameters of electrodes and insulating materials.

Item

Top electrode diameter: 60 mmΦ
Bottom electrode diameter: 60 mmΦ

Guard-ring electrode
inner diameter: 90 mmΦ

outer diameter: 100 mmΦ
highest: 1 mm

Insulation material diameter: 100 mmΦ
thickness: 1 mm

Figure 8 shows the simulation results. As shown in Figure 8, the internal leakage current flows
from the top electrode to the bottom electrode, and the surface leakage current flows from the top
electrode to the guard-ring electrode. Moreover, the leakage current flows from the bottom electrode
to the guard-ring electrode, which indicates that the electric current flows as a result of the potential
difference attributed to the formation of an electric field because the insulator is a dielectric material.
However, because it has a very small value, it is considered not to cause a large error in measurement.
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Figure 8. Current density simulation of the guard-ring terminal electrode structure for measuring the
insulator resistivity.

Figure 9 shows the circuit diagram of the guard-ring terminal electrode structure for measuring
the volume and surface resistivity. The volume and surface leakage current can be simultaneously
measured. At this time, if a potential difference occurs in two measurement parts or if, due to a failure,
a fault current does not fall to the ground and flows back to the measuring device, which affects the
measurement, a large error is introduced in the measurement result. Therefore, to prevent reverse
currents, the diodes D1 and D2 were installed after the measurement devices were installed on each
electrode to increase the reliability of the measured values.

To measure the surface resistivity through the existing three-terminal electrode, because the
size of the bottom and guard-ring electrodes varies depending on the size of the top electrode, there
is a relatively short interval between the electrodes; therefore, there is a disadvantage in the fact
that the applied voltage for measuring the resistivity is low. This is because a corona discharge
may occur between electrodes as the applied voltage increases because of a short electrode interval;
furthermore, the corona current generated at this time may be measured and may cause an error.
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However, because the electrode structure that is proposed is a wide electrode spacing for the surface
resistivity measurement, it is possible to measure resistivity even at a high voltage. Moreover, because
there is a difference in the resistivity value according to the voltage magnitude, this measurement
system can measure the change in the resistivity for each voltage magnitude.Energies 2020, 13, x FOR PEER REVIEW 9 of 13 
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Figure 9. Circuit diagram of the guard-ring terminal electrode structure for measuring the insulator resistivity.

2.3. Experimental Methods

Figure 9 shows the schematic of the experiment to measure the volume and surface resistivity of
the insulating material. DC voltage is applied to the top electrode, and the ground is connected to the
bottom and guard-ring electrodes. To avoid exposure to the external environment, the experimental
apparatus was installed in an insulated chamber with temperature and humidity control. Note that the
experiment was carried out in air (21 ± 2 ◦C 32 ± 2% RH) in an experimental chamber. The high voltage
DC power source (0–30 kV, 20 mA, Spellman, Suzhou, China) is used, and a Keithley picoammeter,
model 485 is used to measure the generated leakage current. The applied voltage increased by 2 kV,
and the leakage current was measured after waiting for a sufficient time period to reduce the influence
on the charging current after applying the voltage.

3. Results and Discussion

Figure 10 shows a typical time chart of the volume and surface leakage current of PP at an applied
voltage of 500 V. Because of the polarization, the instantaneous charging current flows from the start of
the DC voltage application, and the absorption current attenuates over a certain time. The leakage
current (Ia) flows stably and continuously after the reduction of the sufficient absorption current has
started. From the results of the experiment, it is judged that a sufficient reduction started at about 500 s.
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Figure 11 shows the volume and surface leakage current measured through the guard-ring
terminal electrode structure proposed in this work. For the volume leakage current, according to
the insulating material, the applied voltage showed a rapid increase in the current at around 20 kV,
and the surface leakage current increased at about 15 kV. Note that the corona discharge occurred as
the surface insulation between the top electrode and the guard-ring electrode was destroyed with the
increase in voltage; furthermore, the current rapidly increased because of the corona current. Therefore,
when the voltage increased to some extent, the measurement of the resistivity was inaccurate at the
point where the current rapidly increased because of corona discharge. If the sizes of the top and
bottom electrodes are changed, the generation of leakage current and the timing of corona discharge
are different. As a result of the experiment, it is understood that PVC has the largest volume and
surface leakage current, which indicates that both the surface insulation and volume are weak.
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The resistivity measurement must be completely discharged before measuring the current because
the residual charge of the insulator can considerably affect the results. Figure 12 shows the resistivity
of each insulating material based on the volume and surface leakage current measured above. When
measuring the resistivity, the volume resistivity tends to decrease rapidly at 20 kV, and the surface
resistivity decreases at 15 kV because it is based on the leakage current. Because of the experiment,
Table 2 shows the volume resistivity (20 kV) and the surface resistivity (18 kV) of each insulating
material. For the volume resistivity, PE is the largest with 233.46 TΩ·m, and PVC is the smallest with
124.16 TΩ·m. Meanwhile, for the surface resistivity, PTFE is the largest with 1.66 TΩ·m, and PVC is
the smallest with 0.44 TΩ·m. The volume resistivity was measured in the order of PE > PP > PTFE >

PVC, and the surface resistivity was measured in the order of PTFE > PP > PE > PVC. Furthermore,
the volume resistivity of PVC increased from 2 to 10 kV and then tended to decrease. The resistivity then
increased and decreased because the leakage current did not flow as much as the voltage increased [26].

Table 2. Volume and surface resistivity of insulating materials.

Materials Volume Resistivity
ρv (20 kV)

ρv
Standard Devation

Surface Resistivity
ρs (18 kV)

ρs
Standard Devation

PE 233.46 TΩ·m 11.87 1.32 TΩ·m 0.094
PP 227.62 TΩ·m 9.42 1.40 TΩ·m 0.063

PTFE 210.11 TΩ·m 10.38 1.66 TΩ·m 0.076
PVC 124.16 TΩ·m 10.86 0.44 TΩ·m 0.088
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4. Conclusions

Due to the development of the HVDC system, research to apply it has been actively conducted,
and among the HVDC systems, the cable system is the most important element. The measurement
of the dielectric breaking strength, space charge, and volume resistance of materials used for cable
insulation is of great importance, and the existing method of measuring resistance is performed
through three terminal electrodes used in the International Standard Specification of ASTM D 257 and
IEC 60093. In the case of the existing three-terminal electrode, it is possible to experiment only on
a small area and thin thickness of the sample, and it is used only for measuring low voltages up to
1 kV. The measurement time is reduced by simultaneously measuring the volume and surface leakage
currents of each insulating material using a new type of protective ring terminal electrode system for
measuring the volume and surface resistance proposed in this article. Simplifying the system structure
enables efficient measurements. In addition, since the resistivity can be measured at both a low voltage
and high voltage, it is possible to measure the change in resistivity by the voltage magnitude.

Since the resistivity measurement is considerably influenced by various factors such as room
temperature and humidity, as well as the material of the electrode, future studies will further experiment
with these factors and compare them with existing measurement methods.
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