Mechanical and Thermal Performance Characterisation of Compressed Earth Blocks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Characterisation
2.2. Compressed Earth Blocks Characterisation
2.2.1. Electrical Resistivity
2.2.2. Ultrasonic Pulse Velocity
2.2.3. Compressive Strength
2.2.4. Total Water Absorption
2.2.5. Water Absorption by Capillarity
- Cb is the water absorption by capillarity coefficient (g/cm2·min0.5);
- M1 is the weight of the block after immersion in water (g);
- M0 is the weight of the block before immersion in water (g);
- S is the immersed area (cm2);
- t is the immersion time (min).
2.2.6. Accelerated Erosion
2.2.7. Thermal Transmittance
- n is the total number of data points;
- φ is the heat flux in (W/m2);
- ΔT is the temperature (°C) difference between the two sides of the specimen.
3. Results
3.1. Electrical Resistivity
3.2. Ultrasonic Pulse Velocity
3.3. Compressive Strength
3.4. Total Water Absorption
3.5. Water Absorption by Capillarity
3.6. Accelerated Erosion
3.7. Thermal Transmittance
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Minke, G. Building with Earth: Design and Technology of a Sustainable Architecture; Birkhäuser: Basel, Switzerland, 2012; ISBN 9783034608725. [Google Scholar]
- Fernandes, J.; Peixoto, M.; Mateus, R.; Gervásio, H. Life cycle analysis of environmental impacts of earthen materials in the Portuguese context: Rammed earth and compressed earth blocks. J. Clean. Prod. 2019, 241, 118286. [Google Scholar] [CrossRef] [Green Version]
- Pacheco-Torgal, F.; Jalali, S. Earth construction: Lessons from the past for future eco-efficient construction. Constr. Build. Mater. 2012, 29, 512–519. [Google Scholar] [CrossRef] [Green Version]
- Taallah, B.; Guettala, A.; Guettala, S.; Kriker, A. Mechanical properties and hygroscopicity behavior of compressed earth block filled by date palm fibers. Constr. Build. Mater. 2014, 59, 161–168. [Google Scholar] [CrossRef]
- Leitão, D.; Barbosa, J.; Soares, E.; Miranda, T.; Cristelo, N.; Briga-Sá, A. Thermal performance assessment of masonry made of ICEB’s stabilised with alkali-activated fly ash. Energy Build. 2017, 139, 44–52. [Google Scholar] [CrossRef]
- Ruiz, G.; Zhang, X.; Edris, W.F.; Cañas, I.; Garijo, L. A comprehensive study of mechanical properties of compressed earth blocks. Constr. Build. Mater. 2018, 176, 566–572. [Google Scholar] [CrossRef]
- Mansour, M.B.; Jelidi, A.; Cherif, A.S.; Jabrallah, S.B. Optimizing thermal and mechanical performance of compressed earth blocks (CEB). Constr. Build. Mater. 2016, 104, 44–51. [Google Scholar] [CrossRef]
- Saidi, M.; Cherif, A.S.; Zeghmati, B.; Sediki, E. Stabilization effects on the thermal conductivity and sorption behavior of earth bricks. Constr. Build. Mater. 2018, 167, 566–577. [Google Scholar] [CrossRef]
- Chaibeddra, S.; Kharchi, F. Performance of Compressed Stabilized Earth Blocks in sulphated medium. J. Build. Eng. 2019, 25, 100814. [Google Scholar] [CrossRef]
- Mahdad, M.; Benidir, A. Hydro-mechanical properties and durability of earth blocks: Influence of different stabilisers and compaction levels. Int. J. Sustain. Build. Technol. Urban. Dev. 2018, 9, 44–60. [Google Scholar]
- Zhang, L.; Gustavsen, A.; Jelle, B.P.; Yang, L.; Gao, T.; Wang, Y. Thermal conductivity of cement stabilized earth blocks. Constr. Build. Mater. 2017, 151, 504–511. [Google Scholar] [CrossRef]
- Lavie Arsène, M.I.; Frédéric, C.; Nathalie, F. Improvement of lifetime of compressed earth blocks by adding limestone, sandstone and porphyry aggregates. J. Build. Eng. 2020, 29, 101155. [Google Scholar] [CrossRef]
- Islam, M.S.; Elahi, T.E.; Shahriar, A.R.; Mumtaz, N. Effectiveness of fly ash and cement for compressed stabilized earth block construction. Constr. Build. Mater. 2020, 255, 119392. [Google Scholar] [CrossRef]
- Narayanaswamy, A.H.; Walker, P.; Venkatarama Reddy, B.V.; Heath, A.; Maskell, D. Mechanical and thermal properties, and comparative life-cycle impacts, of stabilised earth building products. Constr. Build. Mater. 2020, 243, 118096. [Google Scholar] [CrossRef]
- Bahar, R.; Benazzoug, M.; Kenai, S. Performance of compacted cement-stabilised soil. Cem. Concr. Compos. 2004, 26, 811–820. [Google Scholar] [CrossRef]
- Al-Amoudi, O.S.B.; Khan, K.; Al-Kahtani, N.S. Stabilization of a Saudi calcareous marl soil. Constr. Build. Mater. 2010, 24, 1848–1854. [Google Scholar] [CrossRef]
- Guettala, A.; Abibsi, A.; Houari, H. Durability study of stabilized earth concrete under both laboratory and climatic conditions exposure. Constr. Build. Mater. 2006, 20, 119–127. [Google Scholar] [CrossRef]
- Kariyawasam, K.K.G.K.D.; Jayasinghe, C. Cement stabilized rammed earth as a sustainable construction material. Constr. Build. Mater. 2016, 105, 519–527. [Google Scholar] [CrossRef]
- Toure, P.M.; Sambou, V.; Faye, M.; Thiam, A. Mechanical and thermal characterization of stabilized earth bricks. Energy Procedia 2017, 139, 676–681. [Google Scholar] [CrossRef]
- Gouny, F.; Fouchal, F.; Pop, O.; Maillard, P.; Rossignol, S. Mechanical behavior of an assembly of wood-geopolymer-earth bricks. Constr. Build. Mater. 2013, 38, 110–118. [Google Scholar] [CrossRef]
- Taallah, B.; Guettala, A. The mechanical and physical properties of compressed earth block stabilized with lime and filled with untreated and alkali-treated date palm fibers. Constr. Build. Mater. 2016, 104, 52–62. [Google Scholar] [CrossRef]
- Guettala, A.; Houari, H.; Mezghiche, B.; Chebili, R. Durability of lime stabilized earth blocks. Courr. Savoir 2002, 2, 61–66. [Google Scholar]
- Fernandes, J.; Mateus, R.; Gervásio, H.; Silva, S.M.; Bragança, L. Passive strategies used in Southern Portugal vernacular rammed earth buildings and their influence in thermal performance. Renew. Energy 2019, 142, 345–363. [Google Scholar] [CrossRef] [Green Version]
- Adam, E.A.; Jones, P.J. Thermophysical properties of stabilised soil building blocks. Build. Environ. 1995, 30, 245–253. [Google Scholar] [CrossRef]
- Pina dos Santos, C.A. ITE50—Coeficientes de Transmissão Térmica de Elementos da Envolvente dos Edifícios; National Laboratory of Civil Engineering: Lisboa, Portugal, 2006. [Google Scholar]
- Berge, B. The Ecology of Building Materials, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2009; ISBN 9781856175371. [Google Scholar]
- LNEC. 196: Solos - Análise Granulométrica; Especificação do Laboratório Nacional de Engenharia Civil: Lisboa, Portugal, 1966; Volume 10. [Google Scholar]
- IPQ. EN, NP. 933-8, Norma Portuguesa (Setembro de 2002). In Ensaios das Propriedades Geométricas dos Agregados: Determinação do Teor de Finos - Ensaio do Equivalente de Areia; IPQ: Lisboa, Portugal, 2002. [Google Scholar]
- IPQ. EN, NP. 933-9. In Ensaios das Propriedades Geométricas dos Agregados Parte 9: Determinação de Finos - Ensaio do Azul de Metileno; IPQ: Lisboa, Portugal, 2002. [Google Scholar]
- IPQ. NP, NP. 143: 1969. In Determinação dos Limites de Consistência; IPQ: Lisboa, Portugal, 1969. [Google Scholar]
- LNEC. 197: Solo-Cimento. Ensaio de Compactação; Especificação do Laboratório Nacional de Engenharia Civil: Lisboa, Portugal, 1966; Volume xiii. [Google Scholar]
- Standard A.S.T.M. D3282 (2009) Standard Practice for Classification of Soils and Soil-Aggregate Mixtures for Highway Construction Purposes; ASTM International: West Conshohocken, PA, USA, 2004. [Google Scholar] [CrossRef]
- Doat, P.; Hays, A.; Houben, H.; Matuk, S.; Vitoux, F.; CraTerre, F. Building with Earth, 1st ed.; The Mud Village Society: New Delhi, India, 1991. [Google Scholar]
- Arab, P.B.; Araújo, T.P.; Pejon, O.J. Identification of clay minerals in mixtures subjected to differential thermal and thermogravimetry analyses and methylene blue adsorption tests. Appl. Clay Sci. 2015, 114, 133–140. [Google Scholar] [CrossRef]
- Yukselen, Y.; Kaya, A. Suitability of the methylene blue test for surface area, cation exchange capacity and swell potential determination of clayey soils. Eng. Geol. 2008, 102, 38–45. [Google Scholar] [CrossRef]
- Duarte Gomes, N. Caracterização de Blocos de Terra para Construção de Alvenarias Ecoeficientes. Master’s Thesis, University Nova, Lisbon, Portugal, 2015. [Google Scholar]
- Canivell, J.; Martin-del-Rio, J.J.; Alejandre, F.J.; García-Heras, J.; Jimenez-Aguilar, A. Considerations on the physical and mechanical properties of lime-stabilized rammed earth walls and their evaluation by ultrasonic pulse velocity testing. Constr. Build. Mater. 2018, 191, 826–836. [Google Scholar] [CrossRef]
- Martín-del-Rio, J.J.; Canivell, J.; Falcón, R.M. The use of non-destructive testing to evaluate the compressive strength of a lime-stabilised rammed-earth wall: Rebound index and ultrasonic pulse velocity. Constr. Build. Mater. 2020, 242, 118060. [Google Scholar] [CrossRef]
- IPQ. EN, NP. 12504-4. 2007, Ensaios de Betão nas estruturas—Parte 4: Determinação da velocidade de propagação dos ultra-sons; IPQ: Lisboa, Portugal, 2009. [Google Scholar]
- IPQ. EN, NP. 772-1. 2002, Methods of Test for Masonry Units—Part 1: Determination of Compressive Strength; IPQ: Lisboa, Portugal, 2002. [Google Scholar]
- Kerali, A.G. Durability of Compressed and Cement-Stabilised Buildings Blocks. Ph.D. Thesis, University of Warwick, Coventry, UK, 2001. [Google Scholar]
- LNEC. 394, Betões, Determinação da Absorção de Água por Imersão, Ensaio à Pressão Atmosférica; Laboratório Engenharia Civil: Lisboa, Portugal, 1993. [Google Scholar]
- LNEC. 393, Concrete—Determination of the Absorption of Water through Capillarity; Test at environment pressure (in Portuguese). Laboratório Nacional de Engenharia Civil: Lisboa, Portugal, 1993. [Google Scholar]
- UNE 41410. Bloques de tierra comprimida para muros y tabiques Definiciones, especificaciones y métodos de ensayo. Asoc. Española Norm. Y Certif. —Aenor 2008, 26.
- Standard A.S.T.M. C1363-11, Standard Test Method for Thermal Performance of Building Materials and Envelope Assemblies by Means of a Hot Box Apparatus; ASTM International: West Conshohocken, PA, USA, 2011. [Google Scholar]
- BSI. BS ISO 9869-1: 2014: Thermal Insulation–Building Elements–in situ Measurement of Thermal Resistance and Thermal Transmittance—Part 1: Heat Flow Meter Method; BSI: London, UK, 2014. [Google Scholar]
- Motahari Karein, S.M.; Ramezanianpour, A.A.; Ebadi, T.; Isapour, S.; Karakouzian, M. A new approach for application of silica fume in concrete: Wet granulation. Constr. Build. Mater. 2017, 157, 573–581. [Google Scholar] [CrossRef]
- Rigassi, V.; CRATerre-EAG. Compressed Earth Blocks: Manual of Production; Deutsches Zentrum für Entwicklungstechnologien—GATE: Eschborn, Germany, 1985; Volume I, ISBN 3528020792. [Google Scholar]
- Adam, E.A.; Agib, A.R.A. Compressed Stabilised Earth Block Manufacture in Sudan; Graphoprint for UNESCO: Paris, France, 2001. [Google Scholar]
Property | Parameter | Value |
---|---|---|
Particle size distribution | Gravel (>4.75 mm) | 15.90 |
Sand (2.00–0.06 mm) | 47.20 | |
Clay and silt (<0.06 mm) | 36.95 | |
Atterberg limits | Liquid limit Ll (%) | 29.00 |
Plasticity limit Lp (%) | 18.00 | |
Plasticity index Ip (%) | 11.00 | |
Sand equivalent | - (%) | 23.49 |
Fine content by methylene blue test | Methylene blue value (g/100 g soil) | 2.28 |
Modified Proctor test—Light | Optimum water content (%) | 12.00 |
Maximum dry density (g/cm3) | 1.95 | |
Modified Proctor test—Heavy | Optimum water content (%) | 11.80 |
Maximum dry density (g/cm3) | 1.99 |
Property | Average | Standard Deviation | Coefficient of Variance (%) | |
---|---|---|---|---|
Electrical resistivity (kΩm·cm) | Length | 1.07 | 0.07 | 6.63 |
Width | 2.54 | 0.30 | 11.81 | |
Ultrasonic pulse velocity (m/s) | Direct | 908.34 | 51.97 | 5.72 |
Indirect | 1647.21 | 12.32 | 0.75 | |
Compressive strength (MPa) | 9.01 | 1.25 | 13.90 | |
Total water absorption (%) | 9.98 | 1.29 | 12.96 | |
Water absorption by capillarity (g/cm2·min0.5) | 34.62 | 5.13 | 14.82 | |
Heat Transfer Coefficient (W/m2·K) | 2.65 | 0.15 | 5.59 | |
Thermal resistance (m2·K/W) | 0.21 | - | - | |
Thermal conductivity(W/m·K) | 0.60 | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teixeira, E.R.; Machado, G.; P. Junior, A.d.; Guarnier, C.; Fernandes, J.; Silva, S.M.; Mateus, R. Mechanical and Thermal Performance Characterisation of Compressed Earth Blocks. Energies 2020, 13, 2978. https://doi.org/10.3390/en13112978
Teixeira ER, Machado G, P. Junior Ad, Guarnier C, Fernandes J, Silva SM, Mateus R. Mechanical and Thermal Performance Characterisation of Compressed Earth Blocks. Energies. 2020; 13(11):2978. https://doi.org/10.3390/en13112978
Chicago/Turabian StyleTeixeira, Elisabete R., Gilberto Machado, Adilson de P. Junior, Christiane Guarnier, Jorge Fernandes, Sandra M. Silva, and Ricardo Mateus. 2020. "Mechanical and Thermal Performance Characterisation of Compressed Earth Blocks" Energies 13, no. 11: 2978. https://doi.org/10.3390/en13112978
APA StyleTeixeira, E. R., Machado, G., P. Junior, A. d., Guarnier, C., Fernandes, J., Silva, S. M., & Mateus, R. (2020). Mechanical and Thermal Performance Characterisation of Compressed Earth Blocks. Energies, 13(11), 2978. https://doi.org/10.3390/en13112978