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Abstract: The temperature and field dependencies of electric conductivities of two types of silicone
rubber-based polymers intended for use in high voltage direct current applications are presented and
discussed. The conductivities obtained with the standard method by measuring a current through the
material sample placed between metallic electrodes in response to the applied voltage are compared
with those deduced from the measured potential decay on pre-charged material surface in an open
circuit configuration. The measurements were conducted in the range of the applied electric field
strength (0.5–5) kV/mm and temperatures ranging from 22 ◦C to 70 ◦C. It is shown that the values of
the conductivities obtained by the two methods are in agreement and their temperature dependences
obey Arrhenius law yielding similar activation energies.

Keywords: silicone rubber; electric conductivity; charging current; surface potential decay;
activation energy

1. Introduction

High voltage direct current (HVDC) electric energy transmission is the key technology for
transporting bulk power for long distances, linking remotely located renewable energy sources
(e.g., offshore wind parks) to mainland, interconnecting and balancing alternating current (AC) grids.
The implementation of HVDC technology demands reliable and smooth operation of insulation
systems of the components that is determined by the performance and properties of constituting
insulating materials. Nowadays, composites based on silicone rubbers become increasingly popular
in HVDC insulation due to their high electric withstand performance, lower weight compared to
traditionally used porcelain and glass, elasticity, etc. In addition, they provide hydrophobic properties
vital for impeding surface leakage currents and thus for enhancing the withstand ability against
surface flashovers [1]. To enhance their mechanical and electrical properties and to meet specific
requirements for outdoor insulation (e.g., arc endurance), various fillers, such as fumed silica, quartz
and alumina try-hydrate (ATH), are added to the base material [2,3]. Due to the presence of fillers,
the composites may exhibit non-linearities in their electrical characteristics, specifically in the electric
conductivity, when exposed to strong unipolar HVDC stresses, as well as elevated temperatures, which
are normal operating conditions, e.g., for converter transformer bushings, HVDC cables terminations,
etc. The non-linear conductivities reflect the effects of electric charges in the material bulk, which
may be injected from metallic elements and accumulated in the insulation; in particular, on internal
filler-base material interfaces. Since the electric conductivity plays a dominant role in controlling
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electric field distributions in HVDC insulation systems, its accurate determination is essential for the
proper selection of materials and designing insulation elements.

Measurements of electric conductivities of highly resistive materials are usually performed
utilizing a standardized approach [4,5], where a material sample is placed between energized
electrodes and a current through it is recorded during a certain time interval. The direct current
(DC) conductivity is obtained from the magnitude of the current at a steady state reaching, which
requires measuring time ranging from tens of hours to a few days (depending on material nature) to
mitigate slow dielectric polarization processes [6,7]. Moreover, despite the simplicity of the method,
its implementation for insulating materials is not straightforward, due to the necessity of registering
currents on sub-picoamperes levels, or even lower. In addition, structural features of test samples,
ambient conditions in the measurement cell, processes at metal-material interfaces, etc., may affect the
outcome of the experiments [8–10]. A summary of the effects of such factors is presented in [7].

The influence of the electrodes of the test cell on experimental results requires special consideration,
since it may become significant, especially at elevated temperatures, when specific processes in the
material and on metal-material interfaces are activated. These include, e.g., field assisted charge
injection at the interfaces and excessive mechanical stresses due to thermal expansions, especially
in cases of soft material samples. The former may lead to situations when the intrinsic conductivity
cannot be achieved due to the presence of external charges in the material, whereas the latter may
give rise to erroneous results due to the induced deformations of the samples. Such effects can
be avoided by using non-contact techniques, and attempts to develop such methods have been
undertaken recently. An example is the methodology for deducing volumetric conductivities from
surface potential decay (SPD) characteristics measured on pre-charged materials samples in an open
circuit configuration [11–13]. It has been shown in [13], where field-dependent bulk conductivities
of several types of silicone rubbers were studied at room temperature, that the SPD-based technique
provided materials conductivities rather close to those obtained by the standard method. Furthermore,
it has been noticed that, in addition to the reduced influence of charge injection due to avoiding at least
one of the two metal-material contacts, the SPD method offers a number of advantages such as a shorter
measuring time needed for the evaluation of field dependencies of the conductivities, a broader range
of test fields (controlled by charging conditions), no necessity of measuring extremely low currents, etc.

In the present study, the work reported in [13] on utilizing the SPD technique for determining field
dependent conductivities is extended to elevated temperatures, with the aim to further examine its
feasibility. Conductivities of two types of silicone rubber-based materials retrieved with the standard
and SPD-based approaches for the range of the electric field strength (0.5–5) kV/mm and temperatures
(22–70) ◦C are compared. Furthermore, values of the activation energies deduced from the temperature
dependences of the conductivities obtained with both methods are discussed.

2. The Experiment

2.1. Materials Samples

In the present study, flat samples, 100 × 100 mm2, of high-temperature vulcanized silicon rubber
(SIR) of type Elastosil R401/50 were used. The rubber was based on polydimethylsiloxane reinforced
with silica fillers. In one case, the original material (denoted as A in Table 1), manufactured by
curing with dicumylperoxide and degassed during 17 h at 70 ◦C, was used. In another case, it was
doped with 50% of ATH (referred to as B in Table 1). The filler was of type OL-104 ZO, a vinylsilane
treated finely precipitated aluminium hydroxide, which is commonly used to enhance arc resistance
of SIR-based composites. The dielectric constants εr and surface conductivities Ks of the materials
were determined using the Insulation Diagnostic System IDAX300 and Keithley 6517A electrometer,
respectively. For both types of measurements, the resistivity test fixture Keithley 8009 was used.
The results are shown in Table 1, together with the thicknesses of the materials samples evaluated, as
an average of four measurements taken at various distances from the edge of the sample.
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Table 1. Specification of the studied materials, measured surface conductivities Ks (at 1 kV), dielectric
constants εr (at 50 Hz) and thickness of the samples.

Material Commercial
Name

Curing
Agent

Additional
Filler Ks 10−17, S εr

Thickness,
mm

A Elastosil
R401/50 peroxide - 4.5 ± 0.9 2.4 ± 0.03 0.256 ± 0.024

B Elastosil
R401/50 peroxide 50% ATH 10 ± 1.1 3.5 ± 0.05 0.360 ± 0.034

2.2. Setup and Procedure for Measuring Volume Currents

The measurements of the volumetric electric conductivities were performed following the ASTM
standard D257. Like in the measurements of the surface conductivities mentioned above, a material
sample was placed between the electrodes in the resistivity test fixture, where a three-electrode
arrangement, consisting of a measuring, grounded and guard electrodes was implemented. The test
cell was connected to the electrometer, which was used to energize the sample by applying a test
voltage and for recording the resulted current through the material. The maximum test voltage was
1 kV DC and the device provided a measurement range for the current from 1 fA to 20 mA. Further
details about the set-up can be found elsewhere in [7].

The test procedure was based on applying the test voltage in a step-wise manner for obtaining
a dependence of the conductivity within a range of the electrical field strength. Thus, on the first step,
a DC voltage of 300 V was applied, and on the following steps it was increased to 600 V, 800 V, 900 V
and 1 kV. For each stress level, the resulting bulk current was recorded. It was observed that each rapid
increase of the voltage resulted in a spike of the capacitive current, which monotonously decayed
during rather long time (due to slow polarization processes in the material), and finally, the total
current reached its steady state. The magnitude of the steady current was recorded and was utilized
for deducing material conductivity.

For conducting the measurements at elevated temperatures, the test fixture with the sample was
placed inside an oven (Memmert Universal UN 55) that provided controlled isothermal conditions.
The same measurement procedure was followed as for the room temperature. Each measurement
was repeated at least three times under similar conditions to check the repeatability of the results.
The samples were kept short-circuited and grounded between the consecutive measurements.

2.3. Setup and Procedure for SPD Measurements

The experimental setup, including arrangements for charging material sample surface by corona
and for monitoring the induced surface potential, was built inside a sealed metallic chamber. The internal
volume was ~1 m3. As seen in the photograph of the assembled components of the setup in Figure 1,
it included a linear positioning system carrying a grounded metallic table. For measurements at room
temperature, the material sample was placed directly on the table, whereas at elevated temperatures,
it was placed on a hot plate with the dimensions 140 mm × 140 mm (PZ 35 ET, Harry Gestigkeit
GmbH) mounted on the table. The hot plate was energized from a control unit via a low voltage busing.
The temperature of the plate was first adjusted to the desired value and the material sample was left
on it for 30 min for achieving steady state thermal conditions. Thereafter, corona charging and SPD
measurements were performed as described below.

To deposit charges on the material surface, corona discharge from a needle (tip radius 125 µm)
was utilized. During corona charging, the needle was positioned against the center of the sample
normal to its surface and the tip was at 2 mm from it. The needle was energized from an external
DC high voltage supply connected to it via HV bushing (not shown in Figure 1). The duration of
the charging phase was 2 min and it was performed at ambient pressure. After completing the
charging, the corona was terminated and the pressure in the chamber was reduced to 300 ± 10 mbar,
to minimize the neutralization of the deposited charges by air ions. Afterwards, the table with the
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sample was moved beneath the probe fixed on the same wooden arm and the profile of the surface
potential vs. was recorded. The measurements were repeated with certain time interval. The potential
decay characteristics were obtained from the recorded distributions at the location on the surface
corresponding to the maximum vs. value. The potential was measured by means of a Kelvin-type
vibrating probe (Trek 3455ET) and electrostatic voltmeter (Trek 341B, ±20 kV). A detailed description
of the procedure can be found in [7].

1 
 

 

Figure 1. Top view of the set-up for surface potential decay (SPD) measurements. The movable
table with the material sample is intentionally shifted to the left from its normal position for visibility.
The table motion is in x-y plane (horizontally and vertically in the picture plane) and its motion and
position are programmed from the external control unit. The corona needle and the potential probe
are mounted on the wooden arm and are directed downwards to the sample (therefore, not visible
on the photograph). RTD indicates position of the temperature sensor during the analysis of thermal
conditions (was removed during SPD measurement).

It is worth mentioning that before the SPD measurements at elevated temperatures were taken,
the uniformity of thermal conditions in the sample was examined. Two resistive temperature
detectors (RTD) were installed in the middle of the sample surface and at its edge. They were
connected to a multimeter (Fluke 88464A) via bushing. The surface temperatures were recorded at
different temperatures of the hot plate and at reduced pressure inside the chamber. The results of
the measurements are provided in Table 2 and indicate that the temperature gradients through the
thickness of the samples were insignificant and, therefore, their possible impact could be neglected.

Table 2. Measured temperatures on material sample at different temperatures of the hot plate. The mean
values and standard deviations are obtained from five different measurements.

Surface
Temperature, ◦C

Hot Plate Temperature, ◦C

40 60 70 80

RTDmid 39.8 ± 0.06 59.6 ± 0.12 69.0 ± 0.21 78.3 ± 0.36
RTDedge 39.2 ± 0.08 58.8 ± 0.17 67.9 ± 0.27 76.8 ± 0.45

To conclude this section, it is important to emphasize that the extremely low surface conductivities
Ks of the studied materials (recall data in Table 1) and the procedure for conducting SPD measurements
at reduced gas pressure prevented contributions of the leakage of pre-deposited charges through the
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sample surface and their neutralization by air ions, respectively, that ensured that conduction through
material bulk was the main cause of the SPD in the present study.

3. Results and Discussion

3.1. Volume Currents

The recorded volume currents are shown in Figure 2. One may notice pronounced spikes of the
capacitive currents which appeared at each increase of the test voltage. The amplitudes of these current
spikes were higher at higher temperatures as the base level of the current increases. It can be observed
that the decaying polarization current is strongly influenced by the material composition, electrical
field strength and temperature. Thus, times needed to reach steady volume currents are different
for the studied materials. Quantitatively, the relaxation time after applying the first voltage step is
almost twice as short for the ATH doped silicone rubber B at room temperature as the relatively pure
material A. These can be attributed to the variations in materials compositions and their structural
features (a discussion in this regard can be found in [7]). The increase of temperature accelerated the
polarization processes in both materials and thus the time to (quasi-) steady state is much shorter at
70 ◦C than at room temperature. Nevertheless, a decay of the polarization current is noticeable for
silicone rubber A, even at the maximum studied temperature of 70 ◦C. For ATH doped material B,
the current decay is much faster under the same conditions. The magnitudes of the steady currents are
significantly higher at elevated temperatures.
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Figure 2. Recorded volume currents through samples of material A (a) and alumina try-hydrate (ATH)
doped material B (b) at different temperatures. Recall that the test voltage is applied in increasing steps
(from left to right on the time axis).

As mentioned in the previous section, combined electrical and thermal stresses may cause injection
and space charge accumulation in the material [14,15]. To examine the strength of these effects in
the present experiments, the approach outlined in [13] was used and the densities J of the measured
currents are plotted as functions of the applied electrical field E in log-log coordinates in Figure 3
(note that the line with the slope equal to unity in such a plot indicates pure Ohmic behavior [16]).
As seen, the J(E) characteristics for silicone rubber A, obtained by utilizing the quasi steady-state
currents from Figure 2, are close to the line with the unit slope and slight deviations are observed
at higher fields and temperatures. For material B, the deviations appear at lower field levels and
lower temperatures compared to material A. One should stress, however, that the deviations from
Ohmic behavior are fairly weak for both materials, indicating that the threshold fields, above which the
injected and accumulated space charges may become significant, were not reached, even at the elevated
temperatures. Therefore, the currents recorded in both materials are due to the intrinsic conduction
and the respective conductivities can be considered as being close to true material characteristics under
the conditions of the present study.
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Figure 3. Field strength—current density characteristics obtained for materials A (a) and B (b) at
different temperatures. The lines indicate the unit-slopes, the error bars show the standard deviations.

3.2. Surface Potential Decay

Normalized SPD characteristics obtained at different temperatures are demonstrated in Figure 4.
As seen, the temperature strongly accelerates surface potentials decay (note the significant shift of the
curves to the left). For silicone rubber A, the time needed for the potential to drop down to the half of its
initial value is approximately 5200 s at 22 ◦C and it is reduced to 1750 s, 700 s and 420 s at temperatures
40 ◦C, 60 ◦C and 70 ◦C, respectively. For material B, the respective times are shorter—approximately
1120 s, 450 s, 290 s and 230 s. Thus, the total reduction due to the temperature rise is about 12 and
5 times for materials A and B, respectively. Based on this observation, one can conclude that the
variations of the conductive properties induced by the temperature and the electric field in the bulk
(which decreases with time due to the decaying surface potentials) of rubber A are more pronounced
than for the material B. At the same time, the decay in material B is faster as compared to material A;
this may be due the to the presence of a large amount of ATH filler.
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3.3. Bulk Conductivities Deduced from SPD Characteristics

As mentioned in Section 2.3, the volume conduction is the dominating mechanism of surface
potential (and therefore surface charge) decay in the present study. Under this condition, the material
bulk conductivity can be deduced from the SPD rate as [17];

Kv = −ε0εr
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where ε0 stands for the permittivity of vacuum, and t is time. The derivation of (1), based on the
analysis of the decay of charges on gas-solid interfaces due to different mechanisms (bulk processes,
gas neutralization and surface conduction), can be found elsewhere in [7]. Note that, in contrast to
the standard method, the field dependence of the conductivity Kv (E) is derived from a single SPD
characteristic, since the field E in the bulk decays naturally as E (t) ~ vs. (t) and its magnitude is found
as the ration of the potential and the thickness of the sample.

The SPD rates obtained from the numerical differentiation of the measured SPD characteristics
and the values of the dielectric constants from Table 1 were used to calculate Kv according to (1).
The obtained field dependences Kv (E) for materials A and B at different temperatures are shown
in Figure 5, together with the results of the volume current-based measurements. Note that curves
indicating data points received from both methods at the same temperature are marked by the encircled
areas. As can be observed, the field dependencies of the conductivities of both materials are rather
weak in the studied range of the field strength, but the temperature variations are strong and non-linear.
In general, the values of Kv vary within two orders of magnitudes for the studied temperature range.
Both methods provided results demonstrating the same trends; however, the discrepancies between
the obtained conductivity values are different for the studied materials and may be rather high, as can
be seen in Table 3. Thus, the volume currents in general yielded a higher conductivity of material A
compared to that obtained with the SPD method, except at room temperature, where the opposite
behavior is observed and the results are close. At elevated temperatures, the discrepancies are rather
stable in the entire studied range of the applied field. For material B, the best agreement was achieved
at 40 ◦C, and the deviations between the results from the two methods are higher at room temperature
as well as at higher temperatures, despite the different trends (note different signs at the percentage
deviations). A possible cause of such behaviour may be attributed to a thermal expansion of the
materials samples at elevated temperatures. Placed between the electrodes in the resistivity test fixture
during the current measurement, the sample might experience a constant pressure and, since the
studied materials are soft, sample thickness could decrease slightly, due to a thermal expansion causing
stronger applied field strength and, respectively, larger volume currents. In contrast, when using the
SPD technique, deformations of the samples are avoided.
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Table 3. Deviations of Kv values for materials A and B (shown as the ration A/B), obtained from the
SPD characteristics at different temperatures, as compared to the standard measurements.

Temperature, ◦C
Deviations, %

300V 600V 800V 900V 1 kV

22 −31/−44 −33/−67 −30/−69 −21/−55 −13/−47
40 54/−15 55/−27 56/−17 54/−13 55/−12
60 53/54 54/40 57/47 58/47 59/46
70 40/72 45/70 46/72 45/72 45/72

The temperature dependences of the conductivities are further analyzed using Arrhenius law:

Kv(T) = Kv0 exp
(
−

Ea

kT

)
(2)

Here, Kv0 is a constant, k is Boltzmann’s constant, Ea stands for the activation energy, and T is
the absolute temperature. The results of the fitting of data from Figure 5 by using (2) are shown
in Figure 6. One may notice that the dependences Kv (T) obtained by both methods obey Arrhenius
law. The activation energies deduced from the standard measurements are slightly higher than those
from the SPD technique. Additionally, the difference in Ea for ATH filled material B is larger than for
material A. In general, however, the activation energies are close to the values reported earlier for
silicone rubbers [18,19].
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4. Conclusions

Temperature and field dependencies of the electric volume conductivities of two types of HTV
silicone rubber (original and doped with 50% ATH filler) have been determined by measurements
of volumetric currents and surface potential decay. It is shown that materials compositions have
strong impact on the measured volume currents and SPD characteristics at elevated temperatures.
The conductivities obtained by different methods are found to be in a reasonable agreement and reveal
the significant effect of temperature, whereas their field dependencies are rather weak. The temperature
dependencies of the conductivities of both materials are of Arrhenius type and the activation energies
deduced from the results obtained with the two methods are close to the levels reported in the literature.
Based on the analysis of the results, the SPD-based technique can be proposed as an alternative method
for the electrical characterization of insulating materials at elevated temperatures.
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