Optimal Sizing of a Hybrid Wind-Photovoltaic-Battery Plant to Mitigate Output Fluctuations in a Grid-Connected System
Abstract
:1. Introduction
2. Modeling of Power Sources
2.1. Wind Turbine Model
2.2. Photovoltaic Generation Model
2.3. Energy Storage Model
3. Energy Management Strategy
- Case :In this case, all the generated PV and wind powers are equal to the smoothed reference power. Thus, the curtailed and deficit power values are equal to zero:
- Case :The power generated is more than , the excess power transferred to charge the BESS, and this depends on the battery’s . If the BESS is fully charged, then the excess power will be curtailed. The deficit power, in this case, is equal to zero. The limits of BESS charge power are given in Equation (8):
- Case :This case uses the BESS to cover the needed supply due to the shortage in the generated power from PV and wind. The discharged power from the battery depends on , as illustrated in Equation (9):
4. Optimal Sizing Methodology
4.1. Wind Farm Sizing
4.2. Smoothing Model
4.3. Sizing of the Photovoltaic and Battery
5. Techno-Economic Modeling
5.1. Cost of Energy
5.2. Power System Reliability
6. Case Study
7. Results and Discussion
7.1. Wind Farm Size
7.2. PV and BESS Sizes
7.3. Sensitivity Analysis
7.3.1. Sizing without the Wake Effect
7.3.2. Effect of the Contribution Factor on the Sizes of PV and BESS
7.3.3. Effect of Wind Power on Sizing HWSPS
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclatures
free stream wind speed (m/s) | |
wind speed at position n (m/s) | |
wind direction angle (∘) | |
x-coordinate of turbine i (m) | |
x-coordinate of turbine n (m) | |
wind turbine hub height (m) | |
downstream rotor radius of turbine n (m) | |
upstream rotor radius of turbine i (m) | |
wake radius in turbine n due to turbine i (m) | |
y-coordinate of turbine i (m) | |
y-coordinate of turbine n (m) | |
horizontal distance between turbines i and n (m) | |
perpendicular distance between turbines i and n (m) | |
capital cost of the wind turbine (€) | |
capital cost of the PV module (€) | |
capital cost of the battery (€) | |
capital cost of inverter (€) | |
lifetime of the project (year) | |
lifetime of the unit (year) | |
number of batteries (Nos.) | |
number of inverters (Nos.) | |
wind generation (MW) | |
solar generation (MW) | |
smoothed reference power (MW) | |
C | battery C-rate |
battery charge energy (MWh) | |
battery discharge energy (MWh) | |
wind energy (MWh) | |
solar energy (MWh) | |
number of PV modules (Nos.) | |
number of wind turbines (Nos.) | |
battery charge power (MW) | |
battery discharge power (MW) | |
cumulative net energy (MWh) | |
battery capacity (MWh) |
Appendix A
Wind Turbine | PV | ||
Rated power | 3.83 MW | Model | Polycrystalline |
Hub Height | 80 m | Maximum power at | 275 W |
Rotor diameter | 130 m | Temperature coefficient of | −0.47 |
Capital cost | 1784 €/kW | Capital cost | 598.62 €/kW |
O&M cost | 3% capital cost/year | O&M cost | 1 % capital cost/year |
Lifetime | 20 years | Lifetime | 20 years |
BESS | Inverter | ||
Nominal Capacity | 1000 Ah | Rated Power | 115 kW |
Nominal Voltage | 2 V | efficiency () | 90% |
Capital cost | 213 €/kWh | Capital cost | 117.26 €/kW |
Replacement cost | 213 €/kWh | Replacement cost | 117.26 €/kW |
O&M cost | 9.8 €/year | O&M cost | 0.92 €/kW/year |
Lifetime | 5 years | Lifetime | 20 years |
References
- Khalid, M.; Ahmadi, A.; Savkin, A.V.; Agelidis, V.G. Minimizing the energy cost for microgrids integrated with renewable energy resources and conventional generation using controlled battery energy storage. Renew. Energy 2016, 97, 646–655. [Google Scholar] [CrossRef]
- Mahesh, A.; Sandhu, K.S. Hybrid wind/photovoltaic energy system developments: Critical review and findings. Renew. Sustain. Energy Rev. 2015, 52, 1135–1147. [Google Scholar] [CrossRef]
- Luna-Rubio, R.; Trejo-Perea, M.; Vargas-Vázquez, D.; Ríos-Moreno, G. Optimal sizing of renewable hybrids energy systems: A review of methodologies. Sol. Energy 2012, 86, 1077–1088. [Google Scholar] [CrossRef]
- Jakhrani, A.Q.; Othman, A.K.; Rigit, A.R.H.; Samo, S.R.; Kamboh, S.A. A novel analytical model for optimal sizing of standalone photovoltaic systems. Energy 2012, 46, 675–682. [Google Scholar] [CrossRef]
- Alsadi, S.; Khatib, T. Photovoltaic power systems optimization research status: A review of criteria, constrains, models, techniques, and software tools. Appl. Sci. 2018, 8, 1761. [Google Scholar] [CrossRef] [Green Version]
- Upadhyay, S.; Sharma, M. A review on configurations, control and sizing methodologies of hybrid energy systems. Renew. Sustain. Energy Rev. 2014, 38, 47–63. [Google Scholar] [CrossRef]
- Al Busaidi, A.S.; Kazem, H.A.; Al-Badi, A.H.; Khan, M.F. A review of optimum sizing of hybrid PV–Wind renewable energy systems in oman. Renew. Sustain. Energy Rev. 2016, 53, 185–193. [Google Scholar] [CrossRef]
- Rajkumar, R.; Ramachandaramurthy, V.K.; Yong, B.; Chia, D. Techno-economical optimization of hybrid pv/wind/battery system using Neuro-Fuzzy. Energy 2011, 36, 5148–5153. [Google Scholar] [CrossRef]
- Ghorbani, N.; Kasaeian, A.; Toopshekan, A.; Bahrami, L.; Maghami, A. Optimizing a hybrid wind-PV-battery system using GA-PSO and MOPSO for reducing cost and increasing reliability. Energy 2018, 154, 581–591. [Google Scholar] [CrossRef]
- Bilal, B.O.; Sambou, V.; Ndiaye, P.; Kébé, C.; Ndongo, M. Multi-objective design of PV-wind-batteries hybrid systems by minimizing the annualized cost system and the loss of power supply probability (LPSP). In Proceedings of the 2013 IEEE International Conference on Industrial Technology (ICIT), Cape Town, South Africa, 25–28 February 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 861–868. [Google Scholar]
- Li, C.; Ge, X.; Zheng, Y.; Xu, C.; Ren, Y.; Song, C.; Yang, C. Techno-economic feasibility study of autonomous hybrid wind/PV/battery power system for a household in Urumqi, China. Energy 2013, 55, 263–272. [Google Scholar] [CrossRef]
- Song, M.; Chen, K.; Zhang, X.; Wang, J. The lazy greedy algorithm for power optimization of wind turbine positioning on complex terrain. Energy 2015, 80, 567–574. [Google Scholar] [CrossRef]
- Malheiro, A.; Castro, P.M.; Lima, R.M.; Estanqueiro, A. Integrated sizing and scheduling of wind/PV/diesel/battery isolated systems. Renew. Energy 2015, 83, 646–657. [Google Scholar] [CrossRef] [Green Version]
- Kaabeche, A.; Belhamel, M.; Ibtiouen, R. Sizing optimization of grid-independent hybrid photovoltaic/wind power generation system. Energy 2011, 36, 1214–1222. [Google Scholar] [CrossRef]
- Abbes, D.; Martinez, A.; Champenois, G. Life cycle cost, embodied energy and loss of power supply probability for the optimal design of hybrid power systems. Math. Comput. Simul. 2014, 98, 46–62. [Google Scholar] [CrossRef]
- Akram, U.; Khalid, M.; Shafiq, S. Optimal sizing of a wind/solar/battery hybrid grid-connected microgrid system. IET Renew. Power Gener. 2017, 12, 72–80. [Google Scholar] [CrossRef]
- Howlader, A.M.; Urasaki, N.; Yona, A.; Senjyu, T.; Saber, A.Y. A review of output power smoothing methods for wind energy conversion systems. Renew. Sustain. Energy Rev. 2013, 26, 135–146. [Google Scholar] [CrossRef]
- Li, X.; Hui, D.; Lai, X. Battery energy storage station (BESS)-based smoothing control of photovoltaic (PV) and wind power generation fluctuations. IEEE Trans. Sustain. Energy 2013, 4, 464–473. [Google Scholar] [CrossRef]
- Hill, C.A.; Such, M.C.; Chen, D.; Gonzalez, J.; Grady, W.M. Battery energy storage for enabling integration of distributed solar power generation. IEEE Trans. Smart Grid 2012, 3, 850–857. [Google Scholar] [CrossRef]
- Akatsuka, M.; Hara, R.; Kita, H.; Ito, T.; Ueda, Y.; Saito, Y. Estimation of battery capacity for suppression of a PV power plant output fluctuation. In 2010 35th IEEE Photovoltaic Specialists Conference; IEEE: Piscataway, NJ, USA, 2010; pp. 000540–000543. [Google Scholar]
- Cheng, F.; Willard, S.; Hawkins, J.; Arellano, B.; Lavrova, O.; Mammoli, A. Applying battery energy storage to enhance the benefits of photovoltaics. In 2012 IEEE Energytech; IEEE: Piscataway, NJ, USA, 2012; pp. 1–5. [Google Scholar]
- Muyeen, S.; Shishido, S.; Ali, M.H.; Takahashi, R.; Murata, T.; Tamura, J. Application of energy capacitor system to wind power generation. Wind Energy Int. J. Prog. Appl. Wind Power Convers. Technol. 2008, 11, 335–350. [Google Scholar] [CrossRef]
- Kim, T.; Moon, H.j.; Kwon, D.h.; Moon, S.i. A smoothing method for wind power fluctuation using hybrid energy storage. In Proceedings of the 2015 IEEE Power and Energy Conference at Illinois (PECI), Champaign, IL, USA, 20–21 February 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–6. [Google Scholar]
- Balamurugan, E.; Venkatasubramanian, S. Analysis of double moving average power smoothing methods for photovoltaic systems. Int. Res. J. Eng. Technol. 2016, 3, 1260–1262. [Google Scholar]
- Sukumar, S.; Mokhlis, H.; Mekhilef, S.; Karimi, M.; Raza, S. Ramp-rate control approach based on dynamic smoothing parameter to mitigate solar PV output fluctuations. Int. J. Electr. Power Energy Syst. 2018, 96, 296–305. [Google Scholar] [CrossRef]
- Sandhu, K.S.; Mahesh, A. A new approach of sizing battery energy storage system for smoothing the power fluctuations of a PV/wind hybrid system. Int. J. Energy Res. 2016, 40, 1221–1234. [Google Scholar] [CrossRef]
- Ellis, A.; Schoenwald, D.; Hawkins, J.; Willard, S.; Arellano, B. PV output smoothing with energy storage. In Proceedings of the 2012 38th IEEE Photovoltaic Specialists Conference, Austin, TX, USA, 3–8 June 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 001523–001528. [Google Scholar]
- Chanhom, P.; Sirisukprasert, S.; Hatti, N. A new mitigation strategy for photovoltaic power fluctuation using the hierarchical simple moving average. In 2013 IEEE International Workshop on Inteligent Energy Systems (IWIES); IEEE: Piscataway, NJ, USA, 2013; pp. 28–33. [Google Scholar]
- Gao, X.; Yang, H.; Lu, L. Study on offshore wind power potential and wind farm optimization in Hong Kong. Appl. Energy 2014, 130, 519–531. [Google Scholar] [CrossRef]
- Appelbaum, J.; Maor, T. Dependence of PV Module Temperature on Incident Time-Dependent Solar Spectrum. Appl. Sci. 2020, 10, 914. [Google Scholar] [CrossRef] [Green Version]
- Dai, Q.; Liu, J.; Wei, Q. Optimal photovoltaic/battery energy storage/electric vehicle charging station design based on multi-agent particle swarm optimization algorithm. Sustainability 2019, 11, 1973. [Google Scholar] [CrossRef] [Green Version]
- Ma, T.; Javed, M.S. Integrated sizing of hybrid PV-wind-battery system for remote island considering the saturation of each renewable energy resource. Energy Convers. Manag. 2019, 182, 178–190. [Google Scholar] [CrossRef]
- Shajari, S.; Pour, R.K. Reduction of energy storage system for smoothing hybrid wind-PV power fluctuation. In 2012 11th International Conference on Environment and Electrical Engineering; IEEE: Piscataway, NJ, USA, 2012; pp. 115–117. [Google Scholar]
- Tao, S.; Xu, Q.; Feijóo, A.; Kuenzel, S.; Bokde, N. Integrated Wind Farm Power Curve and Power Curve Distribution Function Considering the Wake Effect and Terrain Gradient. Energies 2019, 12, 2482. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Yang, H.; Lin, L.; Koo, P. Wind turbine layout optimization using multi-population genetic algorithm and a case study in Hong Kong offshore. J. Wind Eng. Ind. Aerodyn. 2015, 139, 89–99. [Google Scholar] [CrossRef]
- Mosetti, G.; Poloni, C.; Diviacco, B. Optimization of wind turbine positioning in large windfarms by means of a genetic algorithm. J. Wind Eng. Ind. Aerodyn. 1994, 51, 105–116. [Google Scholar] [CrossRef]
- Lee, D.; Kim, J.; Baldick, R. Ramp Rates Control of Wind Power Output Using a Storage System and Gaussian Processes; University of Texas at Austin, Electrical and Computer Engineering: Austin, TX, USA, 2012. [Google Scholar]
- Feng, L.; Zhang, J.; Li, G.; Zhang, B. Cost reduction of a hybrid energy storage system considering correlation between wind and PV power. Prot. Control Mod. Power Syst. 2016, 1, 11. [Google Scholar] [CrossRef] [Green Version]
- Lam, R.K.; Yeh, H.G. PV ramp limiting controls with adaptive smoothing filter through a battery energy storage system. In Proceedings of the 2014 IEEE Green Energy and Systems Conference (IGESC), Long Beach, CA, USA, 24 November 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 55–60. [Google Scholar]
- Lee, H.J.; Choi, J.Y.; Park, G.S.; Oh, K.S.; Won, D.J. Renewable integration algorithm to compensate PV power using battery energy storage system. In Proceedings of the 2017 6th International Youth Conference on Energy (IYCE), Budapest, Hungary, 21–24 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6. [Google Scholar]
- Hatata, A.; Osman, G.; Aladl, M. An optimization method for sizing a solar/wind/battery hybrid power system based on the artificial immune system. Sustain. Energy Technol. Assess. 2018, 27, 83–93. [Google Scholar] [CrossRef]
- Fathima, A.; Palanisamy, K.; Padmanaban, S.; Subramaniam, U. Intelligence-based battery management and economic analysis of an optimized dual-Vanadium Redox Battery (VRB) for a Wind-PV HYBRID SYSTEM. Energies 2018, 11, 2785. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Ruan, X.; Mao, C.; Zhang, B.; Luo, Y. An improved optimal sizing method for wind-solar-battery hybrid power system. IEEE Trans. Sustain. Energy 2013, 4, 774–785. [Google Scholar]
- Tao, S.; Kuenzel, S.; Xu, Q.; Chen, Z. Optimal Micro-Siting of Wind Turbines in an Offshore Wind Farm Using Frandsen–Gaussian Wake Model. IEEE Trans. Power Syst. 2019, 34, 4944–4954. [Google Scholar] [CrossRef]
Wind Farm (MW) | (MWh) | PV (MW) | COE (€/kWh) | LPSP (%) | S | |
---|---|---|---|---|---|---|
38.3 | 1.2213 | 14.501 | 0.0233 | 3.75 | 0.04 | 5.44 |
−5% | −10% | −15% | −20% | 5% | 10% | 15% | 20% | |
---|---|---|---|---|---|---|---|---|
PV (MW) | 13.776 | 13.051 | 12.326 | 11.600 | 15.226 | 15.951 | 16.676 | 17.401 |
(MWh) | 1.1603 | 1.0992 | 1.0351 | 0.9771 | 1.2824 | 1.3435 | 1.4045 | 1.4656 |
COE (€/kWh) | 0.0235 | 0.0237 | 0.0240 | 0.0243 | 0.0231 | 0.0229 | 0.0228 | 0.0226 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Shereiqi, A.; Al-Hinai, A.; Albadi, M.; Al-Abri, R. Optimal Sizing of a Hybrid Wind-Photovoltaic-Battery Plant to Mitigate Output Fluctuations in a Grid-Connected System. Energies 2020, 13, 3015. https://doi.org/10.3390/en13113015
Al Shereiqi A, Al-Hinai A, Albadi M, Al-Abri R. Optimal Sizing of a Hybrid Wind-Photovoltaic-Battery Plant to Mitigate Output Fluctuations in a Grid-Connected System. Energies. 2020; 13(11):3015. https://doi.org/10.3390/en13113015
Chicago/Turabian StyleAl Shereiqi, Abdullah, Amer Al-Hinai, Mohammed Albadi, and Rashid Al-Abri. 2020. "Optimal Sizing of a Hybrid Wind-Photovoltaic-Battery Plant to Mitigate Output Fluctuations in a Grid-Connected System" Energies 13, no. 11: 3015. https://doi.org/10.3390/en13113015
APA StyleAl Shereiqi, A., Al-Hinai, A., Albadi, M., & Al-Abri, R. (2020). Optimal Sizing of a Hybrid Wind-Photovoltaic-Battery Plant to Mitigate Output Fluctuations in a Grid-Connected System. Energies, 13(11), 3015. https://doi.org/10.3390/en13113015