
energies

Article

Digging Trajectory Optimization for Cable Shovel
Robotic Excavation Based on a Multi-Objective
Genetic Algorithm

Qiushi Bi 1 , Guoqiang Wang 1, Yongpeng Wang 2,3, Zongwei Yao 1,4,* and Robert Hall 5,*
1 School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China;

bqs@jlu.edu.cn (Q.B.); wgq@jlu.edu.cn (G.W.)
2 Taiyuan Heavy Industry Co., LTD., Taiyuan 030024, China; wyp1989318@163.com
3 State Key Laboratory of Mining Equipment and Intelligent Manufacturing, Taiyuan 030024, China
4 Key Laboratory of CNC Equipment Reliability, Ministry of Education, Changchun 130025, China
5 School of Mining and Petroleum Engineering, University of Alberta, Edmonton, AB T6G 2H5, Canada
* Correspondence: yzw@jlu.edu.cn (Z.Y.); rhall1@ualberta.ca (R.H.)

Received:12 May 2020; Accepted: 11 June 2020; Published: 16 June 2020
����������
�������

Abstract: As one of the most essential earth-moving equipment, cable shovels significantly influence
the efficiency and economy in the open-pit mining industry. The optimal digging trajectory planning
for each cycle is the base for achieving effective and energy-saving operation, especially for robotic
excavation, in which case, the digging trajectory can be precisely tracked. In this paper, to serve the
vision of cable shovel automation, a two-phase multi-objective genetic algorithm was established
for optimal digging trajectory planning. To be more specific, the optimization took digging time
and energy consumption per payload as objects with the constraints of the limitations of the driving
system and geometrical conditions. The WK-55-type cable shovel was applied for the validation of
the effectiveness of the multi-objective optimization method for digging trajectories. The digging
performance of the WK-55 cable shovel was tested in the Anjialing mining site to establish the
constraints. Besides, the digging parameters of the material were selected based on the tested data to
make the optimization in line with the condition of the real digging operations. The optimization
results for different digging conditions indicate that the digging time decreased from an average of
20 s to 10 s after the first phase optimization, and the energy consumption per payload reduced by
13.28% after the second phase optimization, which validated the effectiveness and adaptivity of the
optimization algorithm established in this paper.

Keywords: digging trajectory; cable shovel; robotic excavation; multi-objective genetic algorithm

1. Introduction

A cable shovel is one of the key equipment in the open-pit mining industry traditionally operated
by trained operators [1]. Abundant research results indicate that human factors have become a main
factor inducing maintenance cost and reliability risk [2,3]. Current shovels with larger bucket capacity
bring the benefit of lower digging cost, but higher operational difficulty, which makes the concept of
robotic excavation a practical option for effective and steady digging processes.

Rational planning of digging trajectory is the base for robotic excavation. Awuah-Offei K. et al.
optimized the hoist and crowd speed of a P&H 2100b cable shovel based on the Balovnev model with
the objective of minimizing the unit payload energy consumption [4]. Dunbabin M. et al. designed
an operation assistant system for cable shovels, which can help the driver plan the digging trajectory
and predict the bucket fullness [5]. Wei B. et al. came up with a three degree of freedom (DOF)
working mechanism of a cable shovel with an optimal design of the handle structure with the goal of
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minimizing the unit payload energy consumption [6]. Wang X. et al. established a digging resistant
force model, based on which the digging trajectory of a cable shovel was optimized with a result
described by the curves of hoist and crowd velocities [7]. The unit payload energy consumption is
commonly taken as the object in digging trajectory optimization. However, the digging efficiency
is also a critical factor influencing cable shovel operations, especially for shovels with large bucket
capacity. Hence, a multi-objective optimization algorithm should be applied for optimal digging
trajectory planning.

Different multi-objective optimization algorithms have been widely used in the design of
earth-moving machinery. Xu G. et al. applied the improved multi-objective evolutionary algorithm
(MOEA) for TriPower shovel attachment working performance optimization [8]. Jang G. et al. applied
the genetic algorithm (GA) on trajectory optimization of the hydraulic excavator for the optimization
of energy consumption and the total length of the dig trajectory [9]. Yu X. et al. optimized the design
of the bucket of a hydraulic excavator by solving a multi-objective problem, achieving a light-weight
and high-strength product [10]. Feng H. et al. focused on the task of precise control of the hydraulic
excavator using multi-objective genetic algorithm optimization [11]. Li X. et al. improved the digging
efficiency of the hydraulic excavator by optimization of the working mechanism based on the algorithm
of parallel PSO [12]. Kim J.-W. et al. optimized the working performance of the hydraulic excavator
for multiple objects through the hybrid Taguchi random coordinate search algorithm [13]. Barakat N.
and Sharma D. provided an optimal design method for the bulldozer blade based on the evolutionary
multi-objective optimization algorithm [14]. Masih-Tehrani M. and Ebrahimi-Nejad S. combined
the genetic algorithm and integer linear programming technique for multi-objective optimization of
the powertrain of the bulldozer [15]. Zhang Z. and He B. developed a multi-objective optimization
platform for wheel loader working mechanism design [16]. Cao B-w. et al. applied a genetic algorithm
for multi-objective optimization of the stroke difference for wheel loaders [17].

Compared with other earth-moving equipment, the digging performance of the cable shovel
is more difficult to predict because of the huge bucket capacity and the complex digging condition.
Hence, optimal planning of the digging trajectory appears to be more necessary for each operation
cycle of the cable shovel. In this paper, taking digging time and energy consumption per payload as
objects, a two-phase multi-objective optimization based on genetic algorithms is applied for planning
a practical digging trajectory with an equal value of the soil cutting angle. The research background
is introduced in the first part of this paper. The second part explains how the digging trajectory
is generated. In the third part, the model of working performance is established, based on which
the optimization procedure is accomplished in the fourth part. A cable shovel with a nominal dipper
capacity of about 55 m3 (Type WK-55) is used for validation of the optimization method in the fifth
part. Finally, conclusions are summarized in the last part.

2. Digging Trajectory of the Cable Shovel

According to the classic theory for cable shovel performance evaluation, the soil cutting condition
should be kept the same during the whole digging process [18]. Therefore, the digging trajectory is
traditionally designed as a logarithmic spiral curve, as shown in Figure 1.

The value of the digging angle δ remains the same when the tip of the shovel bucket tracks the
logarithmic spiral curve. Based on the geometrical relationship explained in Figure 1a, the value of
polar diameter ρ can be expressed as a function of polar angle ϕ through integral operation:

dρ

ρ · dϕ
= cot δ, ρ = ρ0 · eϕ cot δ (1)
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(b) Trajectory with constant soil cutting angle

Figure 1. Theoretical digging trajectory for cable shovels.

The symbol ρ0 indicates the initial value of the polar diameter when the digging process has
started. As can be seen from Figure 1a, the digging angle δ cannot fully reflect the impact of the
lip front. Therefore, as shown in Figure 1b, based on the logarithmic spiral curve, the curve with a
constant value of cutting angle δd is developed:

dρ

ρ · dϕ
= cot

[(π

2
− ψ ’

)
−
(

β f − δd

)]
, ρ =

h
c
·
(

pρ · ec·φp − 1
)

(2)

where: 

pρ = 1 + c ·
(

ρ0

h
− h

2 · ρ0

)
φp = ϕ− arcsin

(
h
ρ

)
c = tan

(
β f − δd

) (3)

For the convenience of programming, the value of the angle ψi in iterative step i can be calculated
using the value of the polar diameter in iterative step i− 1:

ψi =
h

ρi−1
(4)

Combining Equations (2)–(4), the theoretical digging trajectory with a constant digging angle can
be established by setting the value of the initial polar diameter ρ0 and cutting angle δd.

Even though the curve with constant soil cutting angle δd can theoretically maintain the same
digging condition, it is difficult to track this kind of digging trajectory practically. The working device
of the cable shovel is a two DOF mechanism as shown in Figure 2. Corresponding to such a theoretical
digging trajectory, either the hoist speed or the crowd speed changes from a non-zero value and ends
up with another non-zero value. Taking the digging trajectory generated through the parameters
shown in Table 1 as an example, the hoist speed curve and crowd speed curve are shown in Figure 3.

Table 1. Digging trajectory parameter: an example.

ρ0 (m) δd (degree) ϕ (degree) β f (degree) Dig Time tD (s)

9.5 49.3 0–90 51.6 10.281
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Figure 2. Cable shovel working mechanism.
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Figure 3. Hoist speed and crowd speed.

It can be clearly seen from Figure 3 that both the speed curves start and end with a non-zero
value. However, the working mechanism is commonly locked in a fixed position at the beginning
and the ending moment of the digging process, which means the values of the instantaneous speed
and acceleration should be zero. Therefore, the contradiction between the digging theory and real
operational situation makes it hard to implement the theoretical speed curves. Besides, considering the
cable shovel being operated by trained operators, it is difficult for them to control the motors precisely
to follow the theoretical speed curves.

Although the advanced control technique applied in a robotic excavation system can accomplish
the task precisely tracking the speed curves, it still cannot overcome the contradiction between the
theoretically designed speed and the speed that can be operated at the beginning and finishing period
of the digging process. Therefore, under the premise of the shovel power capabilities, the main task
for digging trajectory optimization for cable shovel robotic excavation can be summarized as two
aspects: firstly, taking advantage of the theoretical trajectory with a constant soil cutting angle to
acquire optimal working performance; secondly, modifying the corresponding speed curves to to
make the digging trajectory practical.

3. Working Performance Modeling

For a certain type of cable shovel, the different speed combinations determine different digging
trajectories, reflecting different digging performance such as digging force, digging efficiency, digging
power consumption and bucket fullness. The basis for the numerical evaluation of cable shovel
working performance is the kinematic analysis of the working mechanism.
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3.1. Kinematic Modeling

Establish the Cartesian coordinate system as shown in Figure 2. The polar diameter ρ(t)
corresponds to lO1O2(t), and the polar angle ϕ(t) transforms into θ1(t).

As shown in Figure 2, vcrowd = ˙lO1O2 , the radius of the saddle block can be symbolized as r1.
Based on the principle shown in Figure 4, the initial distance of lCqC can be symbolized as lCqC0 , and

the angle of ηC can be calculated as ηC = arctan
lCqC0+

˙lO1O2×t
r1+HC

−
(

π
2 − θ1

)
. Hence, the hoist speed can

be calculated through the equations:

vhoist = lO0C × θ̇1 × cos βC − ˙lO1O2 × cos εC (5)

where: 

lO0C =

√
(r1 + HC)

2 +
(

lCqC0 +
˙lO1O2 × t

)2

βC = arcsin
(

ROT

lOTC

)
−
[

π

2
− arccos

lO0C
2 + lOTC

2 − lO0OT
2

2× lO0C × lOTC

]

lOTC =
√

lO0C
2 + lO0OT

2 − 2× lO0C × lO0OT × cos (ηC + δ)

εC = arctan

(
lCqC0 +

˙lO1O2 × t
r1 + HC

)
+ βC

(6)

It is necessary to analyze the speed of the bucket tip for the purpose of confirming the direction of
the digging force. Figure 5 shows the principle of the calculation:

vEa =
√

vEe2 + ˙lO1O2

2 − 2× vEe × ˙lO1O2 × cos ϕE

vEa =

√
(r1 + HE)

2 +
(

lEqE0 +
˙lO1O2 × t

)2
× θ̇1

γE = arccos

(
vEa

2 + ˙lO1O2

2 − vEe
2

2× vEa × ˙lO1O2

) (7)

where:

ϕE = arctan

(
lEqE0 +

˙lO1O2 × t
r1 + HE

)
(8)

The mass of the bucket-handle assembly for a large cable shovel cannot be ignored as it will cause
non-negligible inertia force. The principle for the speed analysis is shown in Figure 5:{

vgax = ˙lO1O2 × cos θ1 + lO0G × θ̇1 × cos ηG

vgay = ˙lO1O2 × sin θ1 + lO0G × θ̇1 × sin ηG
(9)

where:

lO0G =

√
(r1 + HG)

2 +
(

lGqG0 +
˙lO1O2 × t

)2
(10)

Figure 6 explains the composition principle of acceleration:

agax = −agen · cos ηG + aget · sin ηG + agr · cos
(π

2
− ϕG + ηG

)
± agc · cos (ϕG + ηG) (11)

agay = agen · sin ηG + aget · cos ηG − agr · sin
(π

2
− ϕG + ηG

)
± agc · sin (ϕG + ηG) (12)

where:
agen = lO0G ·

(
θ̇1
)2, aget = lO0G · θ̈1, agr = ¨lO1O2 , agc = 2 · θ̇1 · ˙lO1O2 (13)
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As can be seen in Equations (11) and (12), the Coriolis acceleration agc determines whether to take
the positive sign or the negative sign for calculation.
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3.2. Power Consumption and Bucket Fullness

The forces applied to the bucket-handle assembly during the digging process are shown in
Figure 7. The power consumption corresponding to the digging trajectory can be calculated based on
the driven speed and applied forces. Figure 8 shows the principle of digging volume evaluation, which
can be described as an integration process of the product between digging thickness and bucket width.

The digging forces acting on the tip of the bucket can be simplified as a tangential force and a
normal force [18]. Generally, those two forces can be calculated as:{

FEt (t) = K · b · c (t)
FEn (t) = λ · FEt (t)

(14)

Different kinds of material correspond to different digging performance even for the same digging
trajectory. Theoretically, the digging resistant force can be simplified as one tangential force and one
normal force acting on the bucket tip of the mining shovel when digging the material of sand, loam,
gravel or clay. It should be noted that large number of boulders or oversized rocks would lead to
significant fluctuation of digging force during the excavation, which makes it difficult to describe
the digging process numerically. In Equation (14), the parameter K stands for the unit resistance to
excavation whose value depends on the soil type [18], b for the width of the bucket, and c (t) for the
current cutting thickness of the soil. The multiplication of b · c (t) represents the area of the current
digging cross-section. The parameter of λ in Equation (14) is the ratio between the tangential force and
the normal force, whose value depends on the soil type and the service time of the bucket [18].
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Figure 7. Digging forces’ analysis.
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Taking advantage of D’Alembert’s principle, the crowding force (Fcrowd = FA) and hoisting force
(Fhoist = FC) can be calculated based on the equilibrium condition shown in Figure 7. Accordingly,
the following integral operations can be used for the calculation of energy consumption:

Ehoist =
∫ tT

t0

Fhoist × vhoist dt (15)

Ecrowd =
∫ tT

t0

Fcrowd × vcrowd dt (16)

As shown in Figure 8, the excavated mass and the bucket fullness can be calculated as:

Mdig = ρsoil × b×
∫ tT

t0

c (t) dt (17)

Fullnessbucket =
b×

∫ tT
t0

c (t) dt

Vbucket
(18)

where the parameter ρsoil stands for the bulk density of the excavated material.
Finally, the unit energy consumption per payload and unit digging time per payload can be

calculated through the following equations:

EM =
Ehoist + Ecrowd

Mdig
(19)

TM =
tT − t0

Mdig
(20)

4. Multi-Objective Optimization Procedure

For optimal digging trajectory planning for robotic excavation in each digging cycle, a kind of
two-phase multi-objective optimization is applied for the maximum digging efficiency and minimum
unit energy consumption. The first phase of optimization can be described as searching the optimal
theoretical digging trajectory with a constant soil cutting angle. The second phase, however, is a
process making the trajectory practical by optimizing the speed curves of driving systems.

More specifically, for each unique digging condition, the parameters describing the theoretical
digging trajectory such as initial polar diameter ρ0, cutting angle δd, and digging time td are
taken as variables in the first phase of optimization. Accordingly, the working performance and
geometrical limitations are taken as constraints. The genetic algorithm is applied for the first phase of
multi-objective optimization. Based on the optimized theoretical digging trajectory, four speed control
moments are set up: t1, t2, t3, t4. The time period 0− t1 is an acceleration period, and the speed of
both the hoisting and crowding system increase from zero with the value of acceleration rising from
zero simultaneously. The time period t1 − t2 is also an acceleration period with the speed continuously
increasing while the value of acceleration diminishes. Either the value of speed or acceleration matches
the theoretical trajectory at the moment of t2. During the time period t2 − t3, both the speed and
acceleration match with that of the theoretical trajectory. The time period t3 − t4 is a deceleration
period, and both the hoist and crowd speed start decreasing with the value of deceleration rising from
zero. The last time period t4 − td is also a deceleration period, and either the speed or the deceleration
diminishes to zero at the moment td. Therefore, the second phase of optimization takes the four speed
control moments as variables to make the theoretical digging trajectory practical and further decrease
the unit energy consumption. The procedure of the two-phase digging trajectory optimization can be
summarized as the flowchart shown in Figure 9.
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Figure 9. The two-phase multi-objective optimization of the digging trajectory based on the
genetic algorithm.

4.1. First Phase Optimization

4.1.1. Variables and the Boundary Constraints

The variables in the first phase optimization are initial polar diameter ρ0, cutting angle δd,
and digging time td. Generally, the boundary values of the variables are determined by structural and
operational limits:

X1 = [ρ0, δd, td] (21)
LowerX1 =

[
ρmin, δdmin, tdigmin

]
LowerX1 =

[
ρmax, δdmax, tdigmax

] (22)

4.1.2. Fitness Function for Multi-Objective Optimization

In order to make the working performance of unit energy consumption and unit digging time
fitness functions applied in the multi-objective genetic algorithm, the parameters of rated hoisting
power Ph, rated crowding power Pc, standard digging time tST , and rated digging mass MSAE are
applied for the normalization process:

Fitness1 (X1) = max
[
(Ph + Pc)× tST/MSAE

EM (X1)

]
Fitness2 (X1) = max

[
tST/MSAE

TM (X1)

] (23)

4.1.3. Constraints

The constraints applied in the first phase of optimization can be summarized as two main kinds:
geometrical and performance constraints.
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The geometrical constraints can be listed as:

• The position of the bucket should be above the material pile when the digging process finishes:{
g1 (X1) = yslopetip (X1)− ybuckettip (X1) < 0

g2 (X1) = yslopebot
(X1)− ybucketbot

(X1) < 0
(24)

In Equation (24), the parameter yslopetip
stands for the height of the material piled-up slope

corresponding to the bucket tip, while the parameter of yslopebot
indicates the slope height

corresponding to the bucket bottom. Similarly, the parameter of ybuckettip
means the height

of the bucket tip itself, while the parameter of ybucketbot
stands for the height of the bucket bottom.

• The length of the polar diameter should be within the limitation when the digging process finishes:

g3 (X1) = ρstop (X1)− ρlim < 0 (25)

In Equation (25), the parameter ρstop stands for the length of the polar diameter when the digging
process finishes, while the parameter ρlim means the maximum length of the polar diameter.

The performance constraints can be listed as:

• The highest hoist speed during the digging process vhoistmax should be smaller than the rated
value vhiostlim

. Similarly, the highest crowd speed vcrowdmax should not exceed the boundary value
of vcrowdlim

as well. {
g4 (X1) = vhoistmax (X1)− vhiostlim

< 0

g5 (X1) = vcrowdmax (X1)− vcrowdlim
< 0

(26)

• The highest hoist force during the digging process Fhoistmax should be smaller than the rated value
Fhiostlim

. Similarly, the highest crowd force Fcrowdmax should not exceed the boundary value of
Fcrowdlim

as well. {
g6 (X1) = Fhoistmax (X1)− Fhiostlim

< 0

g7 (X1) = Fcrowdmax (X1)− Fcrowdlim
< 0

(27)

• The highest hoist power during the digging process Phoistmax should be smaller than the rated
value Phiostlim

. Similarly, the highest crowd power Pcrowdmax should not exceed the boundary value
of Pcrowdlim

as well. {
g8 (X1) = Phoistmax (X1)− Phiostlim

< 0

g9 (X1) = Pcrowdmax (X1)− Pcrowdlim
< 0

(28)

• An extreme large value of bucket fullness would result in the overload of the power system.
In other words, the maximum value of the bucket fullness has already been limited by the
constraints of digging power. Hence, the bucket fullness should meet the minimum requirement
when the digging process finishes:

g10 (X1) = Fullnessbucketlim
− Fullnessbucket (X1) < 0 (29)

4.2. Second Phase Optimization

4.2.1. Variables and the Boundary Constraints

In the second phase of optimization, the variables change into the four speed control moments:

X2 = [t1, t2, t3, t4] (30)
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The boundary values of the variables can be described as:{
LowerX2 = [t1min, t2min, t3min, t4min]

LowerX2 = [t1max, t2max, t3min, t4max]
(31)

4.2.2. Fitness Function for Multi-Objective Optimization

The fitness functions for the second phase of optimization are similar to the first phase. However,
it should be noted that the digging trajectory in the second phase of optimization is calculated through
the hoist and crowd speed while directly through the variables in the first phase:

Fitness1 (X2) = max
[
(Ph + Pc)× tST/MSAE

EM (X2)

]
Fitness2 (X2) = max

[
tST/MSAE

TM (X2)

] (32)

4.2.3. Constraints

The constraints applied in the second phase of optimization can be divided into two groups: the
same constraints used in the first phase, which can be described as g1 (X2) ∼ g10 (X2), and the unique
constraints for the second phase. For geometrical constraints, the limitation for the initial digging
point is added to avoid deep insertion into the material at the beginning of the digging process.

g1a (X2) = y0slope (X2)− y0bucket (X2) < 0 (33)

In Equation (33), the parameter y0slope stands for the height of the material slope corresponding to
the bucket tip, while the parameter y0bucket indicates the height of the bucket tip itself.

For the performance constraints, the unique requirements for the speed curve and acceleration
curve are taken into consideration.

• At the moment of td, both the speed and acceleration for the driving system equal zero:

g2a (X2) = vhoisttd
(X2) = 0

g3a (X2) = vcrowdtd
(X2) = 0

g4a (X2) = ahoisttd
(X2) = 0

g5a (X2) = acrowdtd
(X2) = 0

(34)

• At the moment of t1 and t4, the speed and acceleration for the driving system are continuous:

g6a (X2) = vhoistti−B (X2)− vhoistti−A (X2) = 0

g7a (X2) = vcrowdti−B (X2)− vcrowdti−A (X2) = 0

g8a (X2) = ahoistti−B (X2)− ahoistti−A (X2) = 0

g9a (X2) = acrowdti−B (X2)− acrowdti−A (X2) = 0

i = 1, 4

(35)

In Equation (35), the subscript ′ − B′ represents the parameter value calculated from the time
period ti−1 to ti, while the subscript ′ − A′ for the time period ti to ti+1.
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• At the moment of t2 and t3, the speed and acceleration for the driving system are continuous,
and the parameters of movements match the theoretical digging trajectory.

g10a (X2) = vhoisttj
(X2)− vhoisttj−theory (X2) = 0

g11a (X2) = vcrowdtj
(X2)− vcrowdtj−theory (X2) = 0

g12a (X2) = ahoisttj
(X2)− ahoisttj−theory (X2) = 0

g13a (X2) = acrowdtj
(X2)− acrowdtj−theory (X2) = 0

g14a (X2) = ρtj (X2)− ρtj−theory (X2) = 0

j = 2, 3

(36)

• The maximum acceleration should be limited in a certain range according to the driving system.{
g15a (X2) = ahoistmax (X2)− ahiostlim

< 0

g16a (X2) = acrowdmax (X2)− acrowdlim
< 0

(37)

4.3. Optimization Method

The multi-objective genetic algorithm (MOGA) was applied in either of the two periods of
optimization. The MOGA toolbox provided with the MATLAB (R2019a, MathWorks, Natick, MA,
USA) software was used for the calculation. After getting the Pareto solution set, the digging time was
taken as an indicator for choosing the optimal result. Based on the optimization results, the digging
trajectory was generated with the digging performance numerically evaluated. The optimization
method should be taken in various situations to validate the efficiency.

5. Case Study

In order to validate the efficiency of the two-phase optimization method, the cable shovel with the
nominal dipper capacity of about 55 m3 (Type WK-55) was used in this research for optimal digging
trajectory planning. It was important to determine the constraint’s boundaries before the optimization.
Therefore, field tests were performed to get the limitations of the working performance.

5.1. Digging Performance Field Test

Considering the digging efficiency, the experienced operators of cable shovels could make
the digging operation faster with a higher value of the bucket fullness, which makes the shovel
power fully loaded or overloaded during the digging process. Field tests were performed at the
Anjialing open-pit coal mining site (Shanxi Province, China), as shown in Figure 10a. The digging
performance corresponding to the digging trajectory was recorded through the DAQ system (data
acquisition system).
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(a) WK-55 field operation in the Anjialing mining site (b) Recorded bucket trajectories

Figure 10. WK-55-type cable shovel field tests.

As can be seen from Figure 10b, the digging trajectories were discrete when the equipment was
operated by the operators. The corresponding performance boundaries are listed in Table 2.

Table 2. The tested digging performance boundaries.

No. Tested Parameters Unit Hoist System Crowd System

1 Maximum torque of a single driven motor N·m 33,695 9356
2 Maximum force of a single driven motor kN 1987 1002
3 Maximum speed of a single driven motor rpm 930 772
4 Maximum power of a single driven motor kW 1735 754
5 Average time of a digging cycle s 20 20
6 Minimum time of a digging cycle s 15 15
7 Maximum mechanism acceleration m/s2 0.8 0.5
8 Maximum mechanism velocity m/s 1.76 0.76

The performance constraints applied for optimization could be established based on the data
shown in Table 2 with the value of the overload ratio taken into consideration. Similarly, it was
necessary to numerically describe the digging condition to set up the geometrical constraints for
the optimization.

5.2. Digging Conditions

The digging pattern for cable shovels could be described as two main steps: Firstly, the equipment
stayed at a fixed place for several digging cycles until digging conditions could not meet the operation
requirements. Secondly, the cable shovel moved to the next fixed place and repeated the digging
process as described in the first step. Hence, the parameters describing the digging condition should
be defined in the same coordinate attached to the cable shovel. As shown in Figure 11a, under the
circumstances that the profile of the piled-up material was simplified as a straight line, different
digging conditions could be described as different combinations of slope angle δm and digging distance
dm. Generally, the value of the slope angle ranges from 37◦ to 42◦ for blasted rock. However, for the
digging distance, the minimum value should keep the tip of the bucket from not contacting the material
slope. The structural parameters of the WK-55-type cable shovel are explained in Figure 11b and listed
in Table 3.
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Figure 11. Digging conditions.

Table 3. Structural parameters of the WK-55 cable shovel working device.

Hh (m) Ho (m) Ro (m) RT (m) h (m) β f (degree) δ (degree) δh (degree) δtip (degree)

1.37 10.14 0.368 1.11 2.35 51.7 44.4 60.9 6.8

Additionally, the material parameters should be chosen carefully to evaluate the digging force
and other digging performance rationally. On the basis of the tested data gained from the Anjialing
mining site, the parameters indicating digging force are determined with the combination of the
measured trajectories to make the optimization process stay in line with the real digging condition.
The parameters of the excavated material in the Anjialing mining site, as well as the parameters of the
WK-55 shovel bucket are listed in Table 4.

Table 4. Material property and WK-55 bucket parameters.

ρsoil (kg/m3) K (kpa) λ b (m) Vbucket (m3) Mhandle (kg) Mbucket (kg)

1700 225 0.45 4.86 58 42,514 84,421

5.3. First Phase Optimization

In the first phase optimization, the digging conditions were divided into two main categories
according to the different profiles of the piled-up material: the flat surface, which could be described
using a slope angle, and the curved surface defined by groups of coordinate values.

5.3.1. Material Piled up with a Flat Surface

As listed in Table 5, five different digging conditions were set up for the first phase digging
trajectory optimization.

Table 5. Parameters describing digging conditions.

Digging Condition Number δm (degree) dm (m)

Condition I 40 2.5
Condition II 40 3.5
Condition III 40 4.5
Condition IV 37 2.5
Condition V 43 2.5

Optimizations were accomplished though using MATLAB. Taking the digging condition I (digging
distance set to 2.5 m and the slope angle set to 40◦) as an example, the Pareto results are shown in
Figure 12a, and the corresponding distribution of the variables is shown in Figure 12b.
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Figure 12. First phase optimization results for Condition I.

As shown in Figure 12b, the design variables of the initial polar diameter and soil cutting angle
converged to a concentrated interval with the individual values slightly fluctuating around the average
value. However, the design variable of digging time was distributed around the average value
discretely. Hence, the digging time was taken as the indicator for deciding the optimal combination of
the design variables based on the Pareto results. Similarly, the first phase optimizations were applied
to the other four digging conditions with the optimal results listed in Table 6.

Table 6. First phase optimization results for all five digging conditions.

Digging
Condition

ρ0
(m)

δd
(degree)

tdig
(s)

Fhoistmax

(kN)
Fcrowdmax

(kN)
Phoistmax

(kW)
Pcrowdmax

(kW) Fullness E/M
(J/kg)

I 9.78 51.5 10.02 3487.42 860.08 3218.10 265.08 0.9598 271.2458
II 9.96 48.5 10.04 3497.75 882.96 3524.60 351.20 0.9603 284.1154
III 10.02 45.1 10.11 3489.99 915.91 3683.09 452.16 0.9481 296.8358
IV 9.95 49.8 10.07 3492.24 913.31 3311.64 327.52 1.0126 268.8554
V 9.52 51.1 10.04 3498.95 749.14 3180.14 237.15 0.8995 274.8638

Comparing the data listed in Tables 2 and 6, the digging parameters applied in the first phase
optimization were set the same as the real tested area in the Anjialing mining site, and after the first
phase optimization, the digging time of all five digging conditions decreased dramatically from the
minimum of 15 s to an average of about 10 s. Besides, different digging conditions slightly affected
the optimization result of bucket fullness, which stably stayed above 0.9. The data listed in Table 6
indicated that the different digging conditions had a different influence on the optimization results.
With the same digging distance, when the value of the slope angle increased, the optimal initial polar
diameter became shorter, while the soil cutting angle almost remained the same. However, the optimal
cutting angle kept decreasing while the initial polar diameter barely changed when the digging
distance increased with a constant value of the slope angle. Additionally, the unit energy consumption
per payload increased with the digging distance, as well as the slope angle. Hence, in general, under
the condition that the materials had similar properties and a regular particle size distribution, the
digging distance influenced the digging operation more significantly than the slope angle.

5.3.2. Material Piled up with a Curved Surface

Even in the ideal digging conditions, it was difficult to guarantee that every piled-up material profile
could be simplified as a flat surface using a value of the slope angle for the description. In order to keep in
line with the same diggability of the material in the Anjialing mining site, the same values of the digging
parameters were applied. Hence, based on a slope angle of 40◦, four curved profiles were established
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representing four typical concave-convex conditions. For each curved profile, three digging distance were
applied for digging trajectory optimization, as shown in Figure 13.
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(e) dm = 3.5 m, Curve 2
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(f) dm = 4.5 m, Curve 2
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(h) dm = 3.5 m, Curve 3
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Figure 13. Digging trajectories for Curves 1–4: first phase optimization.
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It can be seen from Figure 13 that the profile of piled-up material dramatically influenced the
optimization results. In other words, the optimization method established in this research could adapt
to various digging conditions. The digging performance comparisons between the optimal digging
trajectories for different piled-up material profiles are listed in Table 7.

Table 7. Digging performance comparison between digging trajectories: first phase optimization.

Digging Distance dm = 2.5 m

Material
Pile

ρ0
(m)

δd
(degree)

tdig
(s)

Phoistmax

(kW)
Pcrowdmax

(kW) Fullness E/M
(J/kg)

Curve 1 9.64 51.5 10.00 3146.10 235.08 0.8427 277.0546
Curve 2 9.91 47.5 10.01 3434.60 338.74 0.9442 293.3497
Curve 3 – – – – – – –
Curve 4 9.50 51.5 10.00 2426.30 367.74 0.8047 266.2236

Straight Line 9.78 51.5 10.02 3218.10 265.08 0.9598 271.2458

Digging Distance dm = 3.5 m

Material
Pile

ρ0
(m)

δd
(degree)

tdig
(s)

Phoistmax

(kW)
Pcrowdmax

(kW) Fullness E/M
(J/kg)

Curve 1 10.02 49.8 10.02 3419.90 287.18 0.8461 292.0918
Curve 2 9.98 44.6 10.00 3922.00 390.78 0.8598 312.9045
Curve 3 9.58 50.2 10.00 3480.90 340.32 0.8514 286.4528
Curve 4 9.53 46.8 10.01 2813.40 528.62 0.8630 278.2105

Straight Line 9.96 48.5 10.04 3524.60 351.20 0.9603 284.1154

Digging Distance dm = 4.5 m

Material
Pile

ρ0
(m)

δd
(degree)

tdig
(s)

Phoistmax

(kW)
Pcrowdmax

(kW) Fullness E/M
(J/kg)

Curve 1 10.00 45.9 10.03 3695.70 398.55 0.8298 308.2182
Curve 2 10.04 42.0 10.00 3674.60 426.56 0.7150 348.2000
Curve 3 9.87 48.1 10.10 3756.90 426.98 0.8459 302.7920
Curve 4 9.50 42.9 10.04 3007.60 673.70 0.8524 291.8544

Straight Line 10.02 45.1 10.11 3683.09 452.16 0.9481 296.8358

Combining the data listed in Table 7 and the information shown in Figure 13, the relationship
between the piled-up material profile and the optimal digging trajectory could be summarized into the
following aspects: For Curve 2 and Curve 3, the curved profile entirely stayed above or beneath the
40◦ slope line, and the corresponding digging trajectories moved forward and backward accordingly.
It should be noted that, for Curve 3, there did not exist an optimal digging trajectory for the case with
the digging distance of 2.5 m, which indicated that there was no optimal result fitting the constraints if
the cable shovel stayed too close to the material pile. Similarly, the digging trajectories corresponding to
Curve 1 appeared close to those optimized for the 40◦ slope line because the curve itself just fluctuated
slightly around the line. For Curve 4, however, the optimization made the digging trajectory fill the
bucket during the early period of excavation, which matched with the character of this curve and
reduced the energy consumption per payload.

The results indicated that the first phase optimization could adapt to different digging conditions.
Although the digging conditions set in this research for digging trajectory optimization could not cover
all kinds of operational demands, the optimal results could prove the validity of the optimization to
some extent.

5.4. Second Phase Optimization

Based on the results of the first phase optimization, the second phase optimization was carried
out to enhance the executability of the excavation process while improving the digging performance.
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Taking the digging for Condition I as an example, the comparison between the results of the first and
second phase optimization are shown in Figure 14.
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Figure 14. Digging performance comparison between two phases of optimization: an example.

As can be seen from Figure 14a, the total length of the digging trajectory reduced significantly
after the second phase optimization, while the shape of the trajectory mostly retained the result of the
first phase optimization with a slight difference that appeared at both ends of the trajectory. It is also
clearly shown in Figure 14a that after the second phase of optimization, the digging process stopped
right after the shovel bucket totally moved above the material slope. As the cable shovels are usually
switched to swing cycle after the digging cycle, it might help prevent the shovel bucket from hitting
the bench face for the operators to hoist the bucket much higher than the material pile, but that is not
necessary for robotic excavations. Hence, the trajectory from the second phase optimization was more
reasonable than the result of the first phase optimization. Besides, the constraints applied in the second
phase of optimization ensured the smooth change of kinematic and performance parameters, which
made the digging process more practical by reducing the impact force during the digging process.
As shown in Figure 14b–f, either the speed or the power consumption of the driving system started
and ended with the value of zero. The results of all digging conditions are listed in Table 8.

Table 8. The results of the second phase optimization.

Digging
Condition

t1
(s)

t2
(s)

t3
(s)

t4
(s)

Fhoistmax

(kN)
Fcrowdmax

(kN)
Phoistmax

(kW)
Pcrowdmax

(kW) Fullness E/M
(J/kg)

I 0.4 1.2 6.5 9.6 3486.20 863.51 3217.63 266.09 0.9579 237.0699
II 1.0 2.4 6.9 9.6 3499.11 885.83 3527.50 352.32 0.9603 244.5252
III 2.1 3.7 8.1 9.5 3492.75 919.28 3642.87 453.80 0.9481 252.7828
IV 0.4 1.2 5.7 9.6 3489.84 918.27 3315.66 329.30 1.0126 226.4975
V 0.4 2.3 8.1 9.5 3499.98 751.05 3182.23 237.74 0.8995 250.0330
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Combining the data listed in Tables 6 and 8, the comparison between the digging performance of
the first and second phase optimization results is shown in Figure 15.

I II III IV V
Digging Condition

3000

3250

3500

3750

4000

M
ax

. H
oi

st
 P

ow
er

 (
k
W

)
1st Phase

2nd Phase

(a) Comparison of maximum hoist power

I II III IV V
Digging Condition

200

275

350

425

500

M
ax

. C
ro

w
d

 P
ow

er
 (

k
W

)

1st Phase

2nd Phase

(b) Comparison of maximum crowd power

I II III IV V
Digging Condition

0.7

0.8

0.9

1.0

1.1

F
u

ll
n

es
s

1st Phase

2nd Phase

(c) Comparison of bucket fullness

I II III IV V
Digging Condition

160

200

240

280

320
E

/M
 (

J
/k

g)

1st Phase

2nd Phase

(d) Comparison of unit energy consumption

Figure 15. Digging performance comparison between two phases of optimization.

As shown in Figure 15, the unit energy consumption per payload was the only parameter of
digging performance that significantly changed after the second phase of optimization. To be more
specific, the reduction of all five digging conditions was on average 13.28%. In other words, the second
phase optimization mainly retained the advantage of the results of the first phase optimization with
the energy consumption further decreased while making the digging trajectory more practical.

6. Conclusions

A kind of multi-objective two-phase optimization method was established for robotic excavation
of cable shovels in this research. The cable shovel with a nominal dipper capacity of about 55 m3

(WK-55) was applied for the validation of the optimization method under various digging conditions
with different forms of pile-up material and digging distance. Field tests were applied in the Anjialing
mining site for the measurement of the digging performance of the cable shovel and the rational
selection of the digging parameters. It could be concluded from the optimization process that
different digging conditions corresponded to different optimal digging trajectories. However, if the
shovel stayed too close to the material slope, there might not exist an optimal result for the digging
trajectory. Therefore, the shovels should stay at a reasonable distance toward the material slope for
an optimal digging process. The two-phase optimization took theoretical advantage of the digging
trajectory with a constant value of soil cutting angle and overcame its weakness in executability.
Under the same material condition of the Anjialing mining site, the optimization results indicated
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that the average digging time decreased from 20 s driven by operators to 10 s after the first phase
optimization. The unit energy consumption reduced by 13.28% after the second phase optimization.
The optimization experiments under different digging conditions and the corresponding results proved
that the two-phase optimization method established in this research was an adaptive and effective
method for optimal digging trajectory planning.
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