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Abstract: For high-voltage and extra-high-voltage consumers, the electricity cost depends not only
on the power consumed but also on the contract capacity. For the same amount of power consumed,
the smaller the difference between the contract capacity and the power consumed, the smaller the
electricity cost. Thus, predicting the future power demand for setting the contract capacity is of
great economic interest. In the literature, most works predict the future power demand based on a
symmetric loss function, such as mean squared error. However, the electricity pricing structure is
asymmetric to the under- and overestimation of the actual power demand. In this work, we proposed
several loss functions derived from the asymmetric electricity pricing structure. We experimented
with the Long Short-Term Memory neural network with these loss functions using a real dataset
from a large manufacturing company in the electronics industry in Taiwan. The results show that the
proposed asymmetric loss functions outperform the commonly used symmetric loss function, with a
saving on the electricity cost ranging from 0.88% to 2.42%.
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1. Introduction

Predicting power demand is vital for power companies to plan the production of electricity.
The overproduction of electricity not only increases the production cost and the electricity attrition
rate but also accelerates the damage to the power equipment and the pollution to the environment.
In contrast, the underproduction of electricity could result in energy rationing or even interruption
of the power supply. Thus, the prediction of power demand has received much attention from both
academics and practitioners in the electric power industry [1–6].

Various technologies have been proposed in the literature for forecasting power demand and
optimizing energy consumption. For example, Building Energy Simulation, hybrid approaches
and statistical-based tools were applied to building energy simulation models [7,8]. Furthermore,
a smart grid co-simulation software platform between the energy management systems and a building
energy model was proposed to decouple the control algorithms and the building [9]. In [10], a linear
programming model and an energy system cost-optimization model were used to forecast the long-term
power demand and CO2 emissions. In [11], time-series forecasting models were adopted to forecast
the long-term power demand in a scenario of energy transition from fossil fuels to carbon-free sources.
In [12], an energy consumption scheduling device was used on the customer site to achieve autonomous
demand response with the goal of controlling customer’s flexible demand and optimizing the cost.
For a recent review of state-of-the-art load forecasting techniques, please refer to [13].
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The design of contract capacity in the electric power market is an effective means to control the
power demand of high-voltage and extra-high-voltage consumers through demand-side management.
A high-voltage or extra-high-voltage customer signs a contract with a power company to purchase a
certain amount of electricity (referred to as “contract capacity”) for the next month. If the customer uses
more electricity than the contract capacity during the next month, he/she needs to purchase the excess
amount of electricity at a higher rate. However, if the customer uses less electricity than the contract
capacity during the next month, he/she still has to pay for the remaining unused part of the contract
capacity. Thus, it is advantageous for the customer to set the contract capacity near his/her actual
power demand to avoid paying electricity at a higher rate. Additionally, because these high-voltage
and extra-high-voltage consumers account for a large proportion of total electricity consumption, the
power company can use their contract capacities to improve the prediction of the total power demand.

High-voltage and extra-high-voltage consumers need to predict their future power demand
to decide their contract capacity. Previous work on predicting the future power demand is
usually based on a symmetric loss function, such as mean squared error (MSE), to build the
prediction models [5,6]. However, for high-voltage and extra-high-voltage consumers, their
electricity pricing structure is asymmetric to the contract capacity. Specifically, underestimation
(i.e., contract capacity < actual power demand) usually results in a higher per unit electricity cost than
overestimation (i.e., contract capacity > actual power demand) does, for the same amount of difference
between the actual power demand and the contract capacity. The motivation of this study is to adopt
an asymmetric loss function to reflect the asymmetric pricing structure in the prediction model to
minimize the electricity cost.

In this paper, we study the problem of determining the contract capacity to minimize the electricity
cost for high-voltage and extra-high-voltage consumers. Since electricity cost usually accounts for
a significant expense to high-voltage and extra-high-voltage consumers, even a small percentage of
reduction in electricity expense could significantly reduce their overall operation cost, making them
competitive in today’s market. In the literature, Long Short-Term Memory (LSTM) has shown to avoid
the vanish gradient problem in the recurrent neural networks and yield excellent performance for time
series prediction [6,14,15]. Thus, we use an LSTM neural network with an asymmetric loss function
to build the prediction model for contract capacity, where the model is trained using the monthly
electricity consumption data. The asymmetric loss function is derived from the pricing structure for
high-voltage and extra-high-voltage consumers of Taiwan Power Company. Our performance study
using a real dataset shows that the model based on the asymmetric loss function outperforms the
model based on the commonly-used symmetric loss function, MSE.

The rest of this paper is organized as follows. Section 2 reviews previous work on electricity
load forecasting and optimization of contract capacity. Section 3 formally defines the problem of
determining the contract capacity to minimize the electricity cost. Section 4 proposes six asymmetric
loss functions derived from the electricity pricing structure. Section 5 presents our performance study,
and Section 6 concludes this paper and give directions for future research.

2. Related Work

The problem of determining the contract capacity to minimize the electricity cost is closely tied
to the problem of predicting the future power demand. If we can predict the future power demand
accurately, we can set the contract capacity accordingly to avoid paying electricity at a higher rate.
Based on the scale of the forecast horizon, predicting the future power demand can be divided into
four categories: very short-term, short-term, medium-term, and long-term. Very short-term and
short-term load forecasting focuses on the prediction of hourly or daily load for one hour to four weeks
ahead [2,4,14,16]. Medium-term forecasting aims to predict monthly load for 1 to 12 months ahead,
and long-term load forecasting aims to predict yearly load for 1 to 20 years ahead [16]. Since contract
capacity can be set on a month-to-month basis, medium-term load forecasting fits the requirement of
determining the contract capacity.
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In the literature, many forecasting methods have been proposed for electricity load forecasting [4,5].
For example, Seasonal Autoregressive Integrated Moving Average model (SARIMA) and feed-forward
back-propagation neural networks were used to predict the power demand in the Turkish electricity
market [17]. Among these forecasting methods, artificial neural networks, especially recurrent neural
networks (RNNs), are the most widely used. RNN considers the ordering among data, making it
very suitable for time series prediction. In [18], empirical mode decomposition on a sliding window
was used to select features (including power demand features and weather-related features). Then,
an Elman network (a variant of RNNs) was trained to predict the future power demand, where the
weightings in the network were optimized by a population-based heuristic search algorithm.

However, vanilla RNN suffers from the vanishing gradient and the exploding gradient problems,
making it unable to retain the useful memory about the data exhibited earlier. To mitigate this problem,
LSTM adds more gates and links to an RNN node such that useful (or useless) memory about past data
can be remembered (or forgotten). LSTM has been applied to many problems where time ordering of
data is crucial, e.g., sequence translation [19], human activity recognition [20], hyperspectral image
classification [21], and electricity load forecasting [6,14]. In [14], a prediction model for the electricity
load of a day is constructed using the data from similar days in the past. First, the data from similar days
are decomposed into several intrinsic mode functions (IMFs) using empirical mode decomposition.
Then, an LSTM prediction model is built for each IMF, and finally, the load prediction is formed by
combining the predictions from all these LSTM models. In [6], LSTM and the genetic algorithm are
integrated for short-term load forecasting.

Because the electricity cost is minimized when the actual power demand is equal to the contract
capacity, we can first predict the power demand for next month and then use the predicted value as
the contract capacity for next month. However, most of the previous works on load forecasting aim to
minimize the error between the predicted and the actual power demands without considering the
pricing structure of electricity. Thus, the costs of underestimation and overestimation are symmetric.
Consequently, they use a symmetric loss function, such as MSE, both to adjust the prediction model
and to evaluate the performance of the predictions. However, as described in Section 1, the electricity
pricing structure for high-voltage and extra-high-voltage consumers is asymmetric to the contract
capacity. For the goal of minimizing the electricity cost, using an asymmetric loss function is more
appropriate than using MSE.

There are two scenarios where an asymmetric loss function is often adopted. The first scenario
is when the available dataset is imbalanced, e.g., in medical imaging applications [22]. The second
scenario is when the loss of the underlying problem is asymmetric. One example is remaining useful
life (RUL) estimation in Prognostics and Health Management (PHM), where underestimating the RUL
of a component only results in the waste of replacing the component too earlier, while overestimating
the RUL may cause detrimental effects to the machinery [23]. Other examples include the asymmetric
loss on wind speed and power predictions [24,25] and oil price prediction [26]. In this paper, we focus
on the problem of setting the contract capacity to minimize the cost. Most of the existing methods for
load forecasting did not consider the electricity pricing structure, which is asymmetric to under- and
overestimation. As a result, an unbiased function such as MSE was often adopted to train the model
and to evaluate the prediction performance. Consequently, the same amount of underestimation and
overestimation results in the same cost using MSE, which contradicts to the electricity pricing structure.

The problem of contract capacity optimization was studied in [27–30]. Given the monthly power
demand for the past twelve months and the electricity pricing structure, the problem is to determine
the contract capacity for each of these past twelve months such that the total electricity cost for these
twelve months is minimized. This problem considers more facets in the electricity pricing structure
than just the per unit electricity cost. For example, the electricity pricing structure also includes the
expanding construction fee for those months of increasing the contract capacity. As a result, simply
setting the contract capacity to the actual power demand does not necessarily minimize the total
cost. This problem can be formulated as an optimization problem, and linear programming [27] and
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metaheuristic algorithms [28,29] have been used to derive or search the optimal contract capacity for
each month. Notably, this problem assumes that the real power demand is known, making it different
from the problem studied in the current paper, where the real power demand is unknown, and the
goal is to determine the contract capacity to minimize the electricity cost for future months.

3. Problem Formulation

This paper considers the problem of determining the next month’s contract capacity for a
high-voltage or extra-high-voltage consumer such that his/her electricity cost can be minimized.
We adopt the electricity pricing structure of Taiwan Power Company and focus on the determination of
peak contract capacity [27]. Let R be the basic per unit electricity cost, and x̂i and xi denote the contract
capacity and the actual power demand for month i of a consumer, respectively.

If the actual demand xi is less than the contract capacity x̂i, then the customer has to pay a fixed
capacity charge Rx̂i. If the actual demand is greater than the contract capacity, then the excess demand
within 10% of the contract capacity is charged at twice the basic rate R, and the excess demand over
10% of the contract capacity is charged at three times the basic rate. Thus, the customer’s electricity
cost for month i (denoted by Ci) can be calculated as follows.

Ci =


Rx̂i if xi ≤ x̂i

R(x̂i + 2(xi − x̂i)) if x̂i < xi ≤ 1.1x̂i

R(x̂i + 0.2x̂i + 3(xi − 1.1x̂i)) if 1.1x̂i < xi

(1)

Ideally, if x̂i = xi, then the consumer’s electricity cost for month i equals Rxi, which is the optimal
electricity cost for the power demand xi. If the contract capacity x̂i is an over- or underestimation of the
actual demand xi, then a penalty is imposed on the electricity cost. The penalty can be calculated as the
electricity cost Ci minus the optimal electricity cost Rxi. Let PC

i denote the penalty on the customer’s
electricity cost for month i due to under- or overestimation of the actual demand. Because the basic per
unit electricity cost R is a constant, we further divide Ci −Rxi by R to make the value of PC

i independent
of the value of R, as shown below.

PC
i =

Ci −Rxi
R

=


x̂i − xi if xi ≤ x̂i

xi − x̂i if x̂i < xi ≤ 1.1x̂i

2xi − 2.1x̂i if 1.1x̂i < xi

(2)

Based on Equation (2), we define the problem under study as follows.
Problem Definition. Given the monthly power demand up to month i − 1, exclusively, predict

the contract capacity x̂i for month i such that the penalty PC
i for month i is minimized.

Notably, when we need to decide the contract capacity for month i, the actual power demands
for both months i and i − 1 are still unknown. Thus, xi and xi−1 cannot be used to predict x̂i. In other
words, this problem has a forecast horizon of 2.

To show the asymmetric pricing structure of electricity, we divide the electricity cost Ci by the
actual demand xi to yield the consumer’s per unit electricity cost for month i (denoted as Ri), as follows.

Ri =
Ci
xi

=


R( x̂i

xi
) if xi ≤ x̂i

R(2− x̂i
xi
) if x̂i < xi ≤ 1.1x̂i

R(3− 2.1x̂i
xi

) if 1.1x̂i < xi

(3)

Then, the penalty (denoted as PR
i ) on the customer’s per unit electricity cost for month i can

be calculated as the per unit electricity cost Ri minus the basic per unit electricity cost R. Similar
to Equation (2), we further divide Ri − R by R to make the value of PR

i independent of the value of
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R (see Equation (4)). Notably, the if-conditions of Equation (4) are the same as the if-conditions of
Equations (1)–(3), but are rephrased using x̂i

xi
for ease of exposition.

PR
i =

Ri −R
R

=


x̂i
xi
− 1 if 1 ≤ x̂i

xi

1− x̂i
xi

if 1
1.1 ≤

x̂i
xi
< 1

2− 2.1x̂i
xi

if x̂i
xi
< 1

1.1

(4)

The solid blue line in Figure 1 shows the values of x̂i
xi

versus the values of PR
i . At x̂i

xi
= 1, both PC

i

and PR
i are zero, indicating a perfect prediction. This blue line is asymmetric about the line x̂i

xi
= 1.

For 1 ≤ x̂i
xi

and 1
1.1 ≤

x̂i
xi
< 1, the slopes of Equation (4) are 1 and −1, respectively. As the value of

x̂i
xi

moves away from 1, the value of penalty PR
i increases at the same speed for both overestimation

(i.e., 1 ≤ x̂i
xi

) and underestimation (only in the range of 1
1.1 ≤

x̂i
xi
< 1) of the actual demand. However, as

the degree of underestimation aggravates (i.e., x̂i
xi
< 1

1.1 ), the slope of Equation (4) changes to −2.1 from
−1, i.e., the speed of increasing penalty PR

i is more than double of the original speed.
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4. Proposed Loss Functions for Contract Capacity Prediction

In machine learning, a loss function can be used to adjust a prediction model to fit the training
data. For example, an artificial neural network uses a loss function to calculate the difference between
the predicted and actual values of the training data. It then back-propagates the difference to fine-tune
the weightings of the links in the network. The most commonly used loss function is MSE, which is
symmetric to under- and overestimation. In this study, we use the monthly contract capacity as the
predicted values for the actual power demand, so MSE can be calculated as follows, where n denotes
the number of instances in the training data.

MSE =
n∑

i=1

(x̂i − xi)
2

n
(5)
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In the rest of this section, we proposed several asymmetric loss functions that are derived from
the electricity pricing structures described in Section 3. Later, in Section 5, we experiment with these
loss functions and compare their performance against that of MSE.

As discussed in Section 3, the electricity pricing structure is asymmetric to under- and
overestimation of the actual power demand. Thus, a loss function that takes into account this
asymmetric pricing structure is more appropriate for the machine learning algorithm to optimize the
electricity cost. In Section 3, we derived the penalty of electricity cost PC

i in Equation (2) and the penalty
of per unit electricity cost PR

i in Equation (4). In Equations (6) and (7), we define two loss functions, LC

and LR, by calculating the average of PC
i and PR

i over the training data, respectively.

LC =
n∑

i=1

PC
i

n
(6)

LR =
n∑

i=1

PR
i

n
(7)

Both LC and LR are zero when the predicted values equal the actual values. Furthermore,
underestimation incurs more penalty to both LC and LR than overestimation does.

The MSE loss function has the effect of slowly increasing its value as the deviation between the
predicted value and the actual value is small, but quickly increasing its value as the deviation gets
large. We can modify Equations (6) and (7) as follows to achieve a similar effect.

LC2 =
n∑

i=1

(PC
i )

2

n
(8)

LR2 =
n∑

i=1

(PR
i )

2

n
(9)

As shown in Figure 1, the electricity pricing structure is symmetric to the line x̂i
xi

= 1 when

(1− 0.1
1.1 ) ≤

x̂i
xi
≤ (1 + 0.1

1.1 ). We can modify the penalty of electricity cost PC
i in Equation (2) and the

penalty of per unit electricity cost PR
i in Equation (4) to remove this symmetric portion to aggravate the

penalty of underestimation, as follows.

Modified penalty of electricity cos t for month i, MC
i =

(x̂i − xi) if 1 ≤ x̂i
xi

2(xi − x̂i) if x̂i
xi
< 1

(10)

Modified penalty of per unit electricity cos t for month i, MR
i =

 x̂i
xi
− 1 if 1 ≤ x̂i

xi

2(1− x̂i
xi
) if x̂i

xi
< 1

(11)

Notably, MR
i = PR

i when 1 ≤ x̂i
xi

. If x̂i
xi
< 1 (i.e., x̂i is an underestimation of xi), then MR

i > PR
i ,

indicating a larger penalty using MR
i than using PR

i , as shown in the red dash line in Figure 1. Based on
MC

i and MR
i , another two loss functions are defined as follows.

LMC =
n∑

i=1

MC
i

n
(12)

LMR =
n∑

i=1

MR
i

n
(13)
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Equations (10) and (11) consistently incur more penalties to underestimation than to overestimation.
In contrast, Equations (6) and (7) put more penalties to underestimation than to overestimation only
when the prediction is far from the actual demand, i.e., for underestimation in the range of (1− 0.1

1.1 ) >
x̂i
xi

and overestimation in the range of x̂i
xi
> (1 + 0.1

1.1 ), to be exact.

5. Performance Study

5.1. Experiment Design

To evaluate the effectiveness of the proposed loss functions, we conducted a performance study
using a real dataset from a large manufacturing company in the electronics industry in Taiwan.
The dataset contains six time series, corresponding to the company’s six power lines. Each time
series in the dataset contains the monthly power demands of a power line for 50 consecutive months.
Two preprocessing steps were adopted to protect data privacy. First, the monthly power demands in
each time series were normalized to between 1 and 2. Second, the 50 consecutive months are numbered
from 1 to 50, instead of indicating the exact months and years. The dataset after preprocessing is shown
in Figure 2.
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Figure 2. Monthly power demand data (normalized) of six power lines.

Each of the six power lines has its contract capacity. Thus, each time series was handled separately
to build its prediction model.

A time-series cross-validation approach was adopted in the experiment for performance
evaluation [31]. For each time series (x1, x2, . . . , x50), a moving window of size 38 was used to
yield 13 segments, where the i-th segment contains (xi, xi+1, . . . , xi+37). As illustrated in Figure 3, the
window first covers the segment (x1, x2, . . . , x38), then the segment (x2, x3, . . . , x39), and so on, and
finally the segment (x13, x14, . . . , x50). Then, for each segment (xi, xi+1, . . . , xi+37), i = 1 to 13, the first
36 elements (xi, xi+1, . . . , xi+35) were used as the training data (shown as blue circles in Figure 3) to
build a prediction model, and the last element xi+37 was used as the test data (shown as red circles
in Figure 3) for performance evaluation. Because the problem under study (see Section 3) requires a
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forecast horizon of 2, a model using xi+37 as the test data should be not trained with a dataset containing
xi+36. Thus, xi+36 in the segment (xi, xi+1, . . . , xi+37) was used for neither training nor testing (shown
as green circles in Figure 3). Notably, the seasonality of the electronics industry motivates us to use a
multiple of 12 months of data for more than two years to train a model. Because each of the time series
only contains 50 months of data, we chose to use 36 months of data for training so that we can still
retain sufficient data (i.e., 50-36-1=13 months) for testing. Thus, the size of the moving window is set
to 38 (i.e., 36 months for training, one month for gap, and one month for testing).Energies 2019, 12 FOR PEER REVIEW  8 
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As shown in Figure 3, a time series in our dataset has 13 segments, and the last element of each
segment is used as the test data, so the test data include the last 13 items (i.e., x38, x39, . . . , x50) of the time
series. Assume that a machine learning scheme predicts the values of x38, x39, . . . , x50 as x̂38, x̂39, . . . , x̂50.
Then, by using the predicted values (i.e., x̂38, x̂39, . . . , x̂50) as the contract capacities for their respective
months, we can calculate the electricity costs for months 38 to 50 using Equation (1). Then, we evaluate
the performance of the machine learning scheme using two performance measures, Fmacro and Fmicro,
where both are derived from the difference between the electricity cost and the optimal electricity cost,
as follows.

Fmacro =
(
∑50

i=38 Ci) − (
∑50

i=38 Rxi)∑50
i=38 Rxi

(14)

Fmicro =

∑50
i=38

Ci−Rxi
Rxi

50− 38 + 1
(15)

Notably, Rxi is the optimal electricity cost for month i, which occurs when xi = x̂i. Measure

Fmacro provides a macro view of the performance by using the total electricity cost (i.e.,
50∑

i=38
Ci) and the

optimal electricity cost (i.e.,
50∑

i=38
Rxi) over the entire period of the test data. In contrast, measure Fmicro

provides a micro view of the performance by first calculating the penalty (i.e., Ci−Rxi
Rxi

) for each month
in the period of the test data, and then taking their average. The smaller the values of Fmacro and Fmicro,
the better the performance. Without loss of generality, we set the basic per unit electricity cost R to 1.

In this experiment, we compared the performance of using LSTM with seven different loss
functions: MSE, LC from Equation (6), LR from Equation (7), LC2 from Equation (8), LR2 from
Equation (9), LMC from Equation (12), and LMR from Equation (13). For each loss function, Fmacro

and Fmicro were calculated and compared for each time series in the dataset. Then, paired t-test were
conducted to check whether using asymmetric functions LC, LR, LC2, LR2, LMC and LMR is significant
better than using the symmetric loss function MSE.

The learning algorithm was implemented using Keras (https://keras.io/) in Python. An LSTM
neural network model was built with one hidden LSTM layer and one Dense output layer, where
the loss function was set to one of the seven loss functions described earlier. A grid search process

https://keras.io/
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was used to determine the hyper-parameters of the model, where three settings (“adam”, “rmsprop”
and “nadam”) for the optimizer, three settings (100, 200 and 300) for the learning epochs, and four
settings (1, 2, 5 and 10) for the batch learning size were explored. The final month of the learning data
was kept aside as the validation data, and the rest of the training data were used to train the model.
The validation data were used to evaluate which combination of the hyper-parameters yields the best
training performance. Once the best combination of the hyper-parameters was determined, it was
adopted to build the LSTM model with all training data. Then the resulting model was used to predict
the test data.

5.2. Experimental Results

Tables 1 and 2 shows the values of Fmacro and Fmicro for using LSTM with different loss functions,
respectively. In most cases, using an asymmetric loss functions (i.e., LC, LR, LC2, LR2, LMC or LMR) yields
better results (i.e., smaller Fmacro and Fmicro) than using the symmetric loss function MSE. There are
only six cases where MSE performs better than an asymmetric loss function in terms of Fmacro (shown
in italic in Table 1). Similarly, there are only six cases where MSE performs better than an asymmetric
loss function in terms of Fmicro, as shown in italic in Table 2. Both Fmacro and Fmicro show consistent
results. Using MSE also yields the worst mean and the second worst standard deviation for both Fmacro

and Fmicro among the seven loss functions tested. Overall, using an asymmetric loss function results in
about 1~2% reduction on Fmacro and Fmicro in comparison to using MSE.

Table 1. The values of Fmacro for using Long Short-Term Memory (LSTM) with different loss functions.

Data MSE LC LR LMC LMR LC2 LR2

series 1 23.358% 21.334% 18.504% 21.131% 21.754% 20.815% 20.149%
series 2 28.500% 21.536% 23.041% 21.117% 26.610% 27.598% 28.379%
series 3 8.493% 7.234% 9.446% 7.711% 7.929% 7.839% 4.613%
series 4 11.100% 8.683% 11.121% 11.221% 10.255% 9.318% 10.373%
series 5 10.054% 9.080% 8.476% 7.732% 9.645% 10.825% 8.941%
series 6 7.618% 6.693% 5.748% 6.792% 7.631% 6.813% 7.749%

Mean 14.854% 12.426% 12.723% 12.617% 13.971% 13.868% 13.367%
stdev. 8.815% 7.034% 6.631% 6.761% 8.118% 8.400% 9.035%

Table 2. The values of Fmicro for using LSTM with different loss functions.

Data MSE LC LR LMC LMR LC2 LR2

series 1 22.650% 20.736% 18.191% 20.741% 21.237% 20.946% 19.517%
series 2 26.041% 20.188% 21.200% 19.583% 24.192% 26.031% 27.767%
series 3 8.044% 6.752% 8.730% 7.347% 7.540% 7.354% 4.763%
series 4 11.316% 9.039% 11.932% 11.791% 10.951% 10.157% 11.121%
series 5 10.350% 8.777% 8.194% 8.203% 9.814% 10.478% 8.719%
series 6 7.727% 6.923% 5.930% 7.067% 7.900% 7.053% 8.063%

mean 14.354% 12.069% 12.363% 12.455% 13.606% 13.670% 13.325%
stdev. 7.930% 6.570% 6.070% 6.215% 7.226% 7.898% 8.649%

The results of each asymmetric loss function were compared against the results of MSE using
one-tailed paired t-test at significant level 0.05 to check whether the mean of Fmacro (or Fmicro) is
significantly smaller using an asymmetric loss function than using MSE. The results are shown in
Table 3, and only the Fmicro using LMC or LR2 is not significantly smaller than that using MSE.
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Table 3. One-tailed Paired t-test (significant level α= 0.05) against mean squared error (MSE).

LC LR LMC LMR LC2 LR2

Fmacro

p-value 0.02461 0.04894 0.048607 0.0157 0.04201 0.04033
statistic t −2.5835 −2.03179 −2.0372 −2.9634 −2.152121 −2.1844

reject H0 reject H0 reject H0 reject H0 reject H0 reject H0

Fmicro

p-value 0.0137869 0.047644 0.0567112 0.0281908 0.0296349 0.131509
statistic t −3.07667 −2.052919 −1.916598 −2.472145 −2.431517 −1.26078
reject H0 reject H0 reject H0 accept H0 reject H0 reject H0 accept H0

To examine the prediction performance for each month i in the test set, Figure 4 shows the penalty
PC

i on the customer’s electricity cost for month i due to under- or overestimation of the actual demand
(see Equation (2) for details). The results of using LMC or LR2 are excluded from Figure 4 for clarity
and because their performance is not significantly different from that of MSE according to the t-test in
Table 3. Notably, no loss function performs the best for every month in any series.
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Figure 4. The x-axis is the month no. of the 13 months in the test data, and the y-axis is the penalty
PC

i , which is calculated as the difference between the electricity cost and the optimal cost of month i
divided by the optimal cost of month i.

6. Conclusions

In this study, we built the LSTM models with several asymmetric loss functions derived from
the electricity pricing structure. The results show that, in most cases, using the proposed asymmetric
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loss functions yields better performance than using the symmetric loss function MSE. Specifically, as
shown in Table 3, both Fmacro and Fmicro are significantly improved with LC, LR, LC2 or LMR than with
MSE. However, using LR2 or LMC only significantly improves Fmacro but not Fmicro, and thus LR2 and
LMC are not good choices for the problem under studied.

Using LC performs better than using MSE for all six time series, and achieves lower mean Fmacro

value and Fmicro value than using the other loss functions does (see Tables 1 and 2). Recalled that LC is
based on the electricity cost, while LR is based on per unit electricity cost. Their simplified versions
(i.e., LMC and LMR) and the squared version (i.e., LC2 and LR2) do not show much improvement over
the original version (i.e., LC and LR). Thus, using a loss function that directly reflects the electricity cost
is a good choice to start with.

The main contribution of this study is two-fold. First, we showed that using the LSTM model
with a loss function consistent with the electricity pricing structure can reduce the electricity cost.
Second, although we only experimented with the LSTM model in this study, the same idea can be
easily adapted to other machine learning algorithms that use a loss function to adjust the prediction
model during the learning process.

The electricity pricing structure may be different in different countries and regions. It remains
unknown whether our results can be applied directly to the other electricity pricing structures. However,
most pricing structures are asymmetric with respect to under- and overestimation of the power demand.
Although some pricing structures may add more (or less) penalty to underestimating power demands,
adapting the loss function to the electricity pricing structure is a direction with great potential for
reducing the electricity cost.

Several directions are worth pursuing in future research. First, we only experimented with the
LSTM to build the prediction models. Future research can explore other machine learning techniques
to improve prediction performance further. Second, developing a more sophisticated loss function that
takes into account both the problem goal (i.e., lower electricity cost) and the convergence performance
of the machine learning techniques can be further explored.
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Nomenclature

R Basic per unit electricity cost
x̂i, xi Contract capacity and actual power demand for month i, respectively
Ci, Ri Electricity cost and per unit electricity cost for month i, respectively
PC

i Penalty on the electricity cost for month i
PR

i Penalty on the per unit electricity cost for month i
MC

i Modified penalty of electricity cost for month i
MR

i Modified penalty of per unit electricity cost for month i
LC, LR, LC2,
LR2, LMC, LMR Loss functions based on PC

i , PR
i , (PC

i )
2
, (PR

i )
2, MC

i and MR
i , respectively.

Fmacro Percentage of deviation from the optimal total electricity cost
Fmicro Average of the percentage of deviation from the optimal monthly electricity cost
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