Determination of High Temperature Corrosion Rates of Steam Boiler Evaporators Using Continuous Measurements of Flue Gas Composition and Neural Networks
Abstract
:1. Introduction
2. OP230 Boiler as an Object of Research
3. Application of Neural Networks to Estimate the Rate of Corrosion at OP-230 Boiler
4. Results and Discussions
4.1. Determination of Corrosion Rate in the Tested Boilers
4.2. Monitoring the Corrosion Hazard of the Evaporator Wall
4.2.1. Periodic Measurements of the Flue Gas Composition near the Wall of the Combustion Chamber
4.2.2. Continuous Measurements of O2 and CO Concentration near the Combustion Chamber Wall
4.2.3. Determination of Corrosion Rate Based on Measurements of O2 and CO Concentrations in the Boundary Layer of the Combustion Chamber
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bryers, R.W. Fireside slagging, fouling, and high-temperature corrosion of heat-transfer surface due to impurities in steam-raising fuels. Prog. Energy Combust. Sci. 1996, 22, 29–120. [Google Scholar] [CrossRef]
- Harb, J.; Smith, E. Fireside corrosion in pc-fired boilers. Prog. Energy Combust. Sci. 1990, 16, 169–190. [Google Scholar] [CrossRef]
- Pronobis, M. Modernization of Power Boilers; WNT: Warszawa, Poland, 2001. (In Polish) [Google Scholar]
- Karlsson, S.; Amand, L.-E.; Liske, J. Reducing high-temperature corrosion on high-alloyed stainless steel superheaters by co-combustion of municipal sewage sludge in a fluidised bed boiler. Fuel 2015, 139, 482–493. [Google Scholar] [CrossRef] [Green Version]
- Kordylewski, W.; Mościcki, K.J.; Witkowski, K.J. Lab-Scale Investigations During Combustion of Agricultural Residues and Selected Polish Coals. Chem. Process. Eng. 2014, 35, 249–262. [Google Scholar] [CrossRef]
- Chandrappa, K.G.; Venkatesha, T.V. Electrochemical bulk synthesis of Fe3O4and α-Fe2O3nanoparticles and its ZnCoαFe2O3composite thin films for corrosion protection. Mater. Corros. 2012, 65, 509–521. [Google Scholar] [CrossRef]
- Adamiec, J. High temperature corrosion of power boiler components cladded with nickel alloys. Mater. Charact. 2009, 60, 1093–1099. [Google Scholar] [CrossRef]
- Modliński, N.J. Computational Modelling of a Tangentially Fired Boiler With Deposit Formation Phenomena. Chem. Process. Eng. 2014, 35, 361–368. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Iman, F.; Lu, P.; Sears, R.; Kong, L.; Rokanuzzaman, A.; McCollor, D.P.; Benson, S.A. A comprehensive slagging and fouling prediction tool for coal-fired boilers and its validation/application. Fuel Process. Technol. 2007, 88, 1035–1043. [Google Scholar] [CrossRef]
- Hernik, B. Numerical Research of the Modification of the Combustion System in the OP 650 Boiler. Energies 2020, 13, 725. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; You, R.; Wang, Z.; Zhang, H.; Zhou, Z.; Zhou, J.; Guan, J.; Qiu, L. Effects of Near-Wall Air Application in a Pulverized-Coal 300 MWe Utility Boiler on Combustion and Corrosive Gases. Energy Fuels 2017, 31, 10075–10081. [Google Scholar] [CrossRef]
- Mabbutt, S.; Simms, N.; Oakey, J. High temperature corrosion monitoring by electrochemical noise techniques. Corros. Eng. Sci. Technol. 2009, 44, 186–195. [Google Scholar] [CrossRef]
- Schettler, D.; Hubner, K.; Gorner, K. On-line monitoring of high-temperature corrosion from superheater materials. VGB PowerTech 2003, 6, 94–98. [Google Scholar]
- Kuang, F.; Jinna, J.; Zou, C.; Shi, T.; Wang, Y.; Zhang, S.; Xu, H.; Zhang, J. Electrochemical Methods for Corrosion Monitoring: A Survey of Recent Patents~!2009-10-01~!2009-11-25~!2010-02-18~! Recent Pat. Corros. Sci. 2010, 2, 34–39. [Google Scholar] [CrossRef] [Green Version]
- Leino, T.J.; Aho, M.J.; Gynther, S.J.; Ruuskanen, T.A.; Häkkinen, M.H. Experiences from a Novel Sensor for Fireside Corrosion Monitoring during Grate Combustion of Corn Stover/Wood Chip Blends. Energy Fuels 2013, 27, 5653–5662. [Google Scholar] [CrossRef]
- Retschitzegger, S.; Gruber, T.; Brunner, T.; Obernberger, I. Short term online corrosion measurements in biomass fired boilers. Part 1: Application of a newly developed mass loss probe. Fuel Process. Technol. 2015, 137, 148–156. [Google Scholar] [CrossRef]
- Shim, H.-S.; Valentine, J.R.; Davis, K.; Seo, S.-I.; Kim, T.-H. Development of fireside waterwall corrosion correlations using pilot-scale test furnace. Fuel 2008, 87, 3353–3361. [Google Scholar] [CrossRef]
- Pronobis, M.; Hernik, B.; Wejkowski, R. Kinetics of low NOx corrosion of waterwalls in utility boilers. Rynek Energii 2010, 6, 121–128. [Google Scholar]
- Bukowski, P.; Hardy, T.; Kordylewski, W. Evaluation of corrosion hazard in PF boilers applying the oxygen content in flue gases. Arch. Combust. 2009, 29, 11–18. [Google Scholar]
- Zheng, S.; Yang, Y.; Li, X.; Liu, H.; Yan, W.; Sui, R.; Lu, Q. Temperature and emissivity measurements from combustion of pine wood, rice husk and fir wood using flame emission spectrum. Fuel Process. Technol. 2020, 204, 106423. [Google Scholar] [CrossRef]
- Ebert, V.; Teichert, H.; Strauch, P.; Kolb, T.; Seifert, H.; Wolfrum, J. Sensitive in situ detection of CO and O2 in a rotary kiln-based hazardous waste incinerator using 760 nm and new 2.3 μm diode lasers. Proc. Combust. Inst. 2005, 30, 1611–1618. [Google Scholar] [CrossRef]
- Rodríguez, F.; Tova, E.; Cortés, V.; Cañadas, L. OPTICOM: Advanced automatic monitoring system of local combustion conditions for improving boiler performance in PC power plants. Fuel 2002, 81, 637–645. [Google Scholar] [CrossRef]
- Ostrowski, P.; Kalisz, S.; Wejkowski, R. Investigations of low NOx corrosion hazards in boiler OP650 of the Rybnik power plant using a mobile monitoring system. Rynek Energii 2011, 3, 161–165. [Google Scholar]
- Kalogirou, S. Artificial intelligence for the modeling and control of combustion processes: A review. Prog. Energy Combust. Sci. 2003, 29, 515–566. [Google Scholar] [CrossRef]
- Abbas, T.; Awais, M.; Lockwood, F. An artificial intelligence treatment of devolatilization for pulverized coal and biomass in co-fired flames. Combust. Flame 2003, 132, 305–318. [Google Scholar] [CrossRef]
- Zhu, Q.; Jones, J.M.; Williams, A.; Thomas, K.M. The predictions of coal/char combustion rate using ANN approach. Fuel 1999, 78, 1755–1762. [Google Scholar] [CrossRef]
- Yin, C.; Luo, Z.; Zhou, J.; Cen, K. A Novel Non-Linear Programming-Based Coal Blending Technology for Power Plants. Chem. Eng. Res. Des. 2000, 78, 118–124. [Google Scholar] [CrossRef]
- Bunsan, S.; Chen, W.-Y.; Chen, H.W.; Chuang, Y.-H.; Grisdanurak, N. Modeling the dioxin emission of a municipal solid waste incinerator using neural networks. Chemosphere 2013, 92, 258–264. [Google Scholar] [CrossRef]
- Tan, C.-K.; Wilcox, S.J.; Ward, J.; LeWitt, M. Monitoring near burner slag deposition with a hybrid neural network system. Meas. Sci. Technol. 2003, 14, 1137–1145. [Google Scholar] [CrossRef]
- Pena, B.; Teruel, E.; Diez, L. Soft-computing models for soot-blowing optimization in coal-fired utility boilers. Appl. Soft Comput. 2011, 11, 1657–1668. [Google Scholar] [CrossRef]
- Kamrunnahar, M.; Urquidi-Macdonald, M. Prediction of corrosion behaviour of Alloy 22 using neural network as a data mining tool. Corros. Sci. 2011, 53, 961–967. [Google Scholar] [CrossRef]
- Haque, M.E.; Sudhakar, K.V. Prediction of corrosion–fatigue behavior of DP steel through artificial neural network. Int. J. Fatigue 2001, 23, 1–4. [Google Scholar] [CrossRef]
- Cai, J.; Cottis, R.; Lyon, S. Phenomenological modelling of atmospheric corrosion using an artificial neural network. Corros. Sci. 1999, 41, 2001–2030. [Google Scholar] [CrossRef]
- Xiaomin, M. Recognition of Toxic Gases Emission in Power Plant Based on Artificial Neural Network. Energy Procedia 2012, 17, 1578–1584. [Google Scholar] [CrossRef] [Green Version]
- Ozmen, A.; Tekce, F.; Ebeoğlu, M.; Taşaltın, C.; Öztürk, Z.; Tasaltin, C. Finding the composition of gas mixtures by a phthalocyanine-coated QCM sensor array and an artificial neural network. Sens. Actuators B Chem. 2006, 115, 450–454. [Google Scholar] [CrossRef]
- Kakietek, S.; Hardy, T.; Golec, T.; Kordylewski, W. the Neural networks and genetic algorithms as a tool for monitoring of low emission corrosion and optimization of utility boiler performance. In Proceedings of the Tenth International Conference on Energy for a Clean Environment, Clean Air 2009, Lisbon, Portugal, 7–9 July 2009. [Google Scholar]
- Wejkowski, R.; Kalisz, S.; Hardy, T.; Sarapata, B.; Kubiczek, H.; Janda, T. The Control of High Temperature Corrosion Phenomenon in Boundary Layer Using Different Measurement Methods; Taller, J., Ed.; Modern Energy Technologies, Systems and Units: Kraków, Poland, 2013. [Google Scholar]
- Hardy, T.; Kakietek, S.; Janda, T. A tool for on-line control of high-temperature corrosion hazard on steam boilers. Arch. Combust. 2017, 37, 107–118. [Google Scholar]
- Kakietek, S.; Andryjowicz Cz Sokolik, K.; Maciejewski, J.; Hardy, T.; Golec, T. The on-line system for monitoring of low emission corrosion of water walls in the case of boiler no 5 in Belchatow Power Plant. In Proceedings of the 12th International Conference on Boiler Technology ICTB’2014, Szczyrk, Poland, 21–24 October 2014. [Google Scholar]
- Davis, C.J.; James, P.J.; Pinder, L.W. Fireside Corrosion in Pulverized-Coal-Fired Boilers: Effect of Coal Chlorine and Combustion Parameters; EPRI: Palo Alto, CA, USA, 2001. [Google Scholar]
- Bakker, W. Waterwall Wastage in Low NOx Boilers: Root Causes and Remedies; EPRI: Palo Alto, CA, USA, 1998. [Google Scholar]
- Nava, J.C.; Henry, J. Materials degradation mechanisms in coal-fired boilers. Mater. High Temp. 2003, 20, 55–60. [Google Scholar] [CrossRef]
- Bakker, W.T. The effect of deposits on waterwall corrosion in fossil fueled boilers. Mater. High Temp. 2003, 20, 161–168. [Google Scholar] [CrossRef]
- Gruber, T.; Schulze, K.; Scharler, R.; Obernberger, I. Investigation of the corrosion behaviour of 13CrMo4–5 for biomass fired boilers with coupled online corrosion and deposit probe measurements. Fuel 2015, 144, 15–24. [Google Scholar] [CrossRef]
- Stein-Brzozowska, G.; Norling, R.; Viklund, P.; Maier, J.; Scheffknecht, G. Fireside Corrosion during Oxyfuel Combustion Considering Various SO2 Contents. Energy Procedia 2014, 51, 135–147. [Google Scholar] [CrossRef] [Green Version]
- Paz, M.; Zhao, D.; Karlsson, S.; Liske, J.; Jonsson, T. Investigating corrosion memory: The influence of previous boiler operation on current corrosion rate. Fuel Process. Technol. 2017, 156, 348–356. [Google Scholar] [CrossRef]
- Modlinski, N.; Hardy, T. Development of high-temperature corrosion risk monitoring system in pulverized coal boilers based on reducing conditions identification and CFD simulations. Appl. Energy 2017, 204, 1124–1137. [Google Scholar] [CrossRef]
- Kakietek, S.; Andryjowicz Cz Sokolik, K.; Jagiełło, K.; Baran, A. Optimization of the BB-1150 t/h boiler operation with the use of the system to control the risk of low oxygen corrosion of the boiler evaporator (in Polish). In Proceedings of the 13th International Conference Thermal Power Plants, Słok, Poland, 31 May–2 June 2017. [Google Scholar]
Parameter | Value and Unit |
---|---|
Drum pressure | 15.0 MPa |
Live steam mass flow rate | 230 t/h |
Live steam pressure | 13.6 MPa |
Live steam temperature | 540 °C |
Feed water pressure | 16.4 MPa |
Feed water temperature | 205 °C |
Hot air temperature | 255 °C |
None | Very Low | Low | Medium | High | Very High |
---|---|---|---|---|---|
O2 ≥ 5 | 4 ≤ O2 <5 and 0.2 ≤ CO <3 | 3 ≤ O2 < 4 and 0.2 ≤ CO < 3 | 3 ≤ O2 <5 and CO ≥ 3 | 1≤ O2 < 2 and 0.5 ≤ CO < 1 | O2 < 1 and CO ≥ 0.5 |
3 ≤ O2 < 5 and CO < 0.2 | 2≤ O2 <3 and CO < 0.2 | 1 ≤ O2 <2 and CO < 0.2 | 1 ≤ O2 < 2 and 0.2 ≤ CO < 0.5 | O2 < 1 and 0.2 ≤ CO < 0.5 | 1 ≤ O2 < 2 and CO ≥ 1 |
O2 < 1 and CO < 0.2 | 2 ≤ O2 < 3 and CO ≥ 3 | ||||
2 ≤ O2 < 3 and 0.2 ≤ CO <3 |
Measurement Cases | Power MW | Efficiency t/h | Working Mills | Total Air kNm3/h | ROFA Air kNm3/h | NOx mg/m3 |
---|---|---|---|---|---|---|
Variant 1 | 52.9 | 227 | 1, 2, 3 | 225 | 12,890 | 307 |
Variant 2 | 52.9 | 227 | 2, 3 | 224 | 12,910 | 295 |
Variant 3 | 37.7 | 149 | 1, 2 | 162 | 29,900 | 183 |
Variant 4 | 49.8 | 208 | 1, 2, 3 | 220 | no data | 230 |
Variant 5 | 51.7 | 221 | 1, 2, 3 | 193 | 29,200 | 278 |
Variant 6 | 29.0 | 129 | 1, 2 | 135 | 26,940 | 398 |
Variant 7 | 33.5 | 147 | 2, 3 | 137 | 29,200 | 243 |
Variant 8 | 50.3 | 224 | 1, 2, 3 | 210 | 43,300 | 337 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hardy, T.; Kakietek, S.; Halawa, K.; Mościcki, K.; Janda, T. Determination of High Temperature Corrosion Rates of Steam Boiler Evaporators Using Continuous Measurements of Flue Gas Composition and Neural Networks. Energies 2020, 13, 3134. https://doi.org/10.3390/en13123134
Hardy T, Kakietek S, Halawa K, Mościcki K, Janda T. Determination of High Temperature Corrosion Rates of Steam Boiler Evaporators Using Continuous Measurements of Flue Gas Composition and Neural Networks. Energies. 2020; 13(12):3134. https://doi.org/10.3390/en13123134
Chicago/Turabian StyleHardy, Tomasz, Sławomir Kakietek, Krzysztof Halawa, Krzysztof Mościcki, and Tomasz Janda. 2020. "Determination of High Temperature Corrosion Rates of Steam Boiler Evaporators Using Continuous Measurements of Flue Gas Composition and Neural Networks" Energies 13, no. 12: 3134. https://doi.org/10.3390/en13123134
APA StyleHardy, T., Kakietek, S., Halawa, K., Mościcki, K., & Janda, T. (2020). Determination of High Temperature Corrosion Rates of Steam Boiler Evaporators Using Continuous Measurements of Flue Gas Composition and Neural Networks. Energies, 13(12), 3134. https://doi.org/10.3390/en13123134