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Abstract: While smart meters can provide households with more autonomy regarding their energy
consumption, they can also be a significant intrusion into the household’s privacy. There is
abundant research implementing protection methods for different aspects (e.g., noise-adding and data
aggregation, data down-sampling); while the private data are protected as sensitive information is
hidden, some of the compulsory functions such as Time-of-use (TOU) billing or value-added services
are sacrificed. Moreover, some methods, such as rechargeable batteries and homomorphic encryption,
require an expensive energy storage system or central processor with high computation ability,
which is unrealistic for mass roll-out. In this paper, we propose a privacy-preserving smart metering
system which is a combination of existing data aggregation and data down-sampling mechanisms.
The system takes an angle based on the ethical concerns about privacy and it implements a hybrid
privacy-utility trade-off strategy, without sacrificing functionality. In the proposed system, the smart
meter plays the role of assistant processor rather than information sender/receiver, and it enables
three communication channels to transmit different temporal resolution data to protect privacy
and allow freedom of choice: high frequency feed-level/substation-level data are adopted for grid
operation and management purposes, low frequency household-level data are used for billing, and a
privacy-preserving valued-add service channel to provide third party (TP) services. In the end of the
paper, the privacy performance is evaluated to examine whether the proposed system satisfies the
privacy and functionality requirements.

Keywords: smart grids; smart energy system; smart meter; GDPR; data privacy; ethics

1. Introduction

The smart grid is a worldwide modernization of electrical power systems in the 21st century.
Two-way communication networks enable smart grids to collect real-time data from both the electricity
supply (i.e., power stations) and demand (i.e., households) sides, and further boost the power system’s
reliability, availability, and efficiency.

As an essential enabler and prerequisite of the smart grid, smart meters are being installed country-
and world-wide at single houses to collect real-time data on energy consumption. Smart meters offer
an opportunity to consumers to play an active role in household energy consumption management.
Based on these advantages, the UK government is working to ensure 80% of households install smart
meters by 2020, paving the way for future smart grid construction [1].

However, with the EU’s mandate to install smart meters, worries about privacy intrusions caused
by smart meters are rising. Researchers point out that private household information can be revealed
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by smart meters [2–4]. Through continuously monitoring the real-time smart meter data, third parties
(TP) could have an inside view of household activities and behaviours (e.g., how many residents live
in the house, when people leave the home, what the residents are doing at particular times, such as
sleeping, bathing, watching TV, washing clothes, etc.). Although data collection may be justified on
ethical grounds of utilitarianism (i.e., ensuring the greater, collective good of energy efficiencies in
smart grids), the intrusion into privacy could also have negative ethical social consequences, including
the conditional shaping of freedom and behaviour of individuals and households [5,6].

It is urgently expected that a more reliable smart metering system should be proposed to improve
privacy and security. To do this, there could be three operational methods to protect households’ privacy:
(a) user demand shaping, (b) data manipulation, and (c) encryption techniques. User demand shaping
approaches modify electricity data using methods such as energy storage systems or rechargeable
batteries in households [7]. This requires the installation of extra devices, which is expensive.
Data manipulation approaches modify energy data before sending it to TP (i.e., utility companies) by
employing strategies like data obfuscation, data aggregation [8], data down-sampling, encryption
protocols [3], or data anonymization. However, these methods sacrifice functionalities to protect
privacy. Encryption techniques include homomorphic encryption (HE) and multi-party computation
(MPC); these techniques encrypt the input data and can still implement essential operations with
encrypted data, but techniques such as HE also cause computing overhead, increasing the budget.

At a legal level, the General Data Protection Regulation (GDPR) has been in force since 25 May 2018 [9].
Covering all European countries, the purpose of GDPR is to protect all EU citizens from privacy and
data violation, providing more power to individuals to control their personal information. With these
operational and legal operational possibilities, it is also important to consider ‘soft’ ethical strategies that
use them to contribute to protect household privacy, potentially enabling households to be more in control
of their digital data [10]. One such strategies is that of considering different stakeholders involved or
affected by digital data gathering [11].

In this paper, we extend the approach from [8,12,13] to the combined use of existing data
aggregation and data down-sampling techniques to design a privacy-preserving smart metering
system. The system follows an operational and ethically (consequentialist) driven trade-off strategy
and model which could contribute to increase functionalities of current smart metering devices in smart
grids whilst ensuring that digital privacy intrusion is minimised and protected if not appropriately
governed. In addition, the system provides three different communication channels for data collection
to enable diverse data granularity transmission to TP, with each channel also providing required
functionalities (time-of-use billing, grid operation and management, and TP services). We present our
system and discuss the results of testing it with implications for the future design or management of
smart meters by TP and households.

The paper is organized as follows: A presentation of smart grids and smart metering systems
with ethical concerns about privacy intrusion is offered in Section 2. A review of current operational
strategies to deal with privacy intrusion is presented in Section 3. In Section 4 our main contribution
is proposed: a trade -off strategy is discussed with a proposed new smart metering system model to
support it. A simulation work to quantify the privacy boundary is given in Section 5. The conclusion,
implications, and future work are drawn in the last sections of the paper.

2. Background

2.1. Smart Grids

Smart grids are physical networks that use cutting-edge technologies and equipment, enabling
the interconnection of different components through two-way networks that could achieve real-time
optimizations to deliver electricity more reliably and efficiently. Smart grids contain not only electricity
interfaces, but also communication interfaces. With these, other stakeholders (utility companies) or
domains (electricity markets) can be included for analysis and management. Future smart grids
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can enable better operation and control, better network planning and maintenance, advanced smart
metering infrastructure (AMI), and overall energy efficiency for countries [14].

2.2. Advanced Smart (Metering) Infrastructures

Within smart grids, AMI systems are integrations of smart meters, communication networks, and data
management systems [14,15]. With the adaptation of narrowband(NB) powerline communication (PLC)
technologies (e.g., Powerline Intelligent Metering Evolution (PRIME) and G3-PLC standards adopted in
Europe), AMI enable real-time bidirectional communication between the TP (suppliers) and electricity
consumers [16–18]. Smart meters are the most vital components within AMI. As smart energy sensors are
installed in consumers’ residences (households), smart meters can gather and transmit data including
power consumption and electricity/gas bills on a real-time basis.

As illustrated in Figure 1, stakeholders of the smart metering system can include the consumers,
energy suppliers, network operators, and data and communications companies (DCC) and TP.
With smart meters, consumers can obtain near real-time and more accurate power usage data and bills,
which helps them manage their energy usage. Energy suppliers (ES) are the utility companies that buy
electricity from the wholesale market, then sell it to consumers. For instance, large British ES include
British Gas, E-On, and SSE. Network operators (NO) (i.e., transmission system operators or TSOs,
distribution system operators, etc.) construct, maintain, and operate the energy network, ensuring
normal operation. These latter stakeholders can also benefit from smart meters: firstly, with the near
real-time communication networks, utility companies can save money initially used for manual billing;
secondly, network operators can implement demand-based management responses, in particular under
peak load times; and finally, operators and companies can detect fraud or electricity theft and thus
improve their efficiencies.
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Figure 1. The structure of the current smart metering system.

The DCC collect energy consumers’ data through the wide area network (WAN). Processed data are
then sent to energy suppliers and network operators. DCC are responsible for ensuring compliance with
the GDPR directive [19]. However, there is a lack of clarity about other stakeholders’ responsibilities,
making smart meters potentially fragile to a few privacy risks and concerns. These need to be identified
and further explored if improvements in smart metering systems are to be made by or affecting several
or all the stakeholders presented in the above figure. Before doing so, basic functions of smart meters
are presented as following subsections.
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2.3. Functions of the Smart Metering System

The European Commission identifies the 13 main functions of a smart meter and classifies them
into five categories [20]. The most significant functions are listed in [21], which are billing correctness,
grid operation and management, and additional consumer services. In addition, an emerging function
is that of time-of-use (TOU) tariff.

2.3.1. Billing

The most vital function of the smart meter is providing accurate billing for consumers. Any data
protection method which influences the accuracy of billing is useless. The current sample interval of
the smart meter is 15 min up to a few seconds; however, consumers do not need such high-frequency
billings, weekly or monthly basis billing is enough [21].

2.3.2. Grid Operation and Management

The smart meter contributes to the smart grid by improving the efficiency and stability of the
whole power system. The real-time two-way communication networks provided by the smart metering
system can measure, analyse, and control the energy consumption data, and further support the smart
grid to implement demand side response services and power system estimation. For grid operators,
the measurement of every individual household smart meter is not compulsory. Instead, they have
more interest in high aggregated level data, such as measurement at feeder level or substation level [22].

2.3.3. Value-Added Services

The consumers can order additional services provided by the utility or TP. The additional consumer
services could be awareness, (e.g., sending a warning for exceeding power), or scheduling and control
(scheduling for controllable appliances, peak shaving) [23]. Demand-side response and non-intrusive
load monitoring (NILM) have received the most attention. Demand-side response [21,24,25] optimizes
the strength of the grid and enhances the power quality by utilizing power plants, distributed
generators, and loads and energy storages. In demand-side response, consumers can also participate
in the response process by accepting the bids provided by grid operators. By turning off appliances
such as air conditioners and heaters, the load would be shed during peak time. NILM is a technique to
disaggregate consumers’ power consumption curve into individual appliance usage. The consumer
can have an insight into how electricity is consumed and can better manage their home appliances
to save energy and reduce carbon dioxide emissions [26]. Normally, value-added services require
consumers to submit their energy data to a server; the server would use a pre-trained model to evaluate
the data and send the results back to consumers. The difficulty exists in how to share personal data
with TP while guaranteeing privacy at the same time.

In [21], two privacy-preserving value-added schemes are proposed. The naive scheme down-samples
the original data into multiple interval resolution data, referring to the requirement of different services.
Then the different resolution data are sent to different TPs with a key [13]. The second solution is to enable
services at consumers’ own devices (personal computer, mobile phone) via a home area network (HAN),
however, TPs have the risk of revealing their models/algorithms [21].

2.3.4. Time-of-Use Tariff

The TOU tariff determines the electricity price during different periods. Consumers benefit
from the TOU tariff by shifting their electricity usage habits to enjoy a cheaper bill, while the energy
suppliers can also reduce the power plant capacity as a result [14], so TOU is becoming the mainstream
method for billing in the UK. With the installation of the smart meter, the TOU moves closer to the
real-time pricing tariff, allowing it to better represent the true conditions [27]. Although TOU tariff
needs high-frequency data, the price volatility is determined by the aggregated power usage of the
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whole area rather than individuals. So, consumers do not have to send high-frequency data to realize
the TOU tariff.

2.4. Privacy Intrusion Issues

Currently, smart metering systems could easily suffer from internal [28] and external attacks [29]
and be subject to privacy intrusion [2]. All privacy intrusion issues related to the smart meters fall into
two categories:

Category (i) Data sensitivity. Personal energy data that cannot be measured by a conventional
electricity meter. While the traditional electricity meter measures the power consumption with a
low resolution (e.g., one month) and can only provide the energy consumption information in kWh,
the smart meter measures the power consumption with a high frequency (ranging from every second to
every half hour, and normally every 15 min [21]), and more parameters are recorded, such as real-time
active/reactive power, voltage, current, TOU tariff, etc. The high granularity data provide adversaries
enough information to intrude on personal information.

Category (ii) Algorithm sensitivity. Advanced algorithms/mechanisms to intrude on privacy-sensitive
features that could not be extracted from raw data using traditional data processing mechanisms. With the
implementation of smart meters in smart grids to meet the above functions, and the increasing development
of new services and applications by TP based on big data and artificial intelligence (AI) (e.g., Machine
Learning (ML), Deep Neural Network (DNN), cloud computing), more and more sophisticated data could
become available [30]. New services to better understand and monitor household behaviour include
NILM [26], short-term load forecasting (STLF), distributed data mining, and others [14,30]. These advanced
techniques are a double-edged sword to the consumers. The benefits espoused to consumers described
above (e.g., managing their own energy consumption) and the adoption of a utilitarian ethic (i.e., ensuring
the greater, collective good of energy efficiencies in smart grids) need to be weighed against potential
privacy intrusion risks. Privacy intrusion would mean that not only individual but also collective freedom
is compromised, given that household behaviour would be shaped and constrained by the perceived
presence of digital surveillance [10,11,31].

Moreover, referring to the US National Institute of Standards and Technology (NIST) guideline
NIST IR 7628v2 [32], the above two categories can be divided into four aspects as follows:

2.4.1. Behaviour Patterns Identification

Behaviour patterns identification belongs to category i; it aims to identify the appliances used.
The smart meter and AMI communication network enables the utility and TP to access individual
energy data continuously [15]. The high granularity data can reveal information about specific
appliances at certain times and locations inside the home. Based on this information, operators can
further infer the activities inside the house [32]. Potential usage of the appliance information may
include that the retailers would adjust the warranty policy or use the information for advertising and
marketing purposes.

2.4.2. Real-Time Surveillance

Real-time surveillance means that by regularly accessing energy data via smart meters, power
system operators/TPs can have an overall picture of the activities inside a house, and even the entire
life cycles of all residents (waking/sleeping pattern, number of residents, when people leave their
home). This privacy concern belongs to category ii; the surveillance relies on advanced techniques
such as data mining, machine learning/deep learning algorithms [26,30,32]. This information could be
abused by hackers and stolen for criminal purpose [33].

2.4.3. Fraud

Fraud represents the potential risks of personal energy data being modified without authority,
either to increase/decrease energy consumption or attribute the energy consumption to another
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house [32]. This risk belongs to category ii; the AMI enables more opportunities for adversaries to
implement fraud than conventional meters since the vulnerabilities of the real-time communication
network would be abused.

2.4.4. Non-Grid Commercial Uses of Data

This privacy risk falls into category ii. The smart meter data may be used by TP to make a profit
from the data; activities include advertising and insurance that are not welcomed by consumers [32].
Companies would sell their products to residents according to the personal preference information
revealed by the energy data. Even sensitive information, such as employment information [30],
can be inferred from energy data with machine learning algorithms. This information can be used by
adversaries to estimate the income of the target family.

3. Related Work for Privacy Intrusion Protection

The state-of-the-art methods dealing with the above smart meter privacy issues can be divided
into two categories: user demand shaping and data manipulation. Both these techniques try to reduce
the privacy loss by decreasing the probability to infer individual appliance signatures from the overall
power data [34].

3.1. Demand Shaping

User demand shaping uses external energy storage devices (such as a large rechargeable battery
(RB) [7,35–42], renewable energy system (RES) [43–46]), or load shifting [47–49] to distort the real power
consumption curves. The RB and RES method can be treated as a noise-adding approach at the physical
layer, as the original power demand is distorted, the utility cannot infer sensitive information from the
smart meter data. An RB system contains a smart meter, a battery, and an energy management unit
(EMU), the EMU controls battery to implement optimal energy management policy (EMP), with the
injection of power from the RB Bt, the mismatching between the power supplied by the grid Yt and
consumers’ power demand Xt provide privacy guarantee to consumers. The works conclude that
the larger the battery capacity size, the better privacy can be guaranteed. However, the RB is a finite
capacity energy storage device with capacity ranges from 2 kWh to 20 kWh [50], therefore there
exists a lower and upper bound (P̂c and P̂d) to limit the performance of the mechanism. The optimal
EMP, such as best-effort (BE) algorithm [7], water -filling algorithm [51], Q -Learning algorithm [1],
non-intrusive load-leveling (NILL) algorithm [52] are introduced to optimize the charging/discharging
process, these algorithms control the battery either hide, smooth, or obfuscate the load signature [7].
NILL algorithms are designed to blind the NILM [52], instead of only one target load, the NILL
has two states, a steady-state and recovery state if the battery capacity cannot enable the load to
maintain steady-state, the load is switched to the recovery state. A privacy-versus-cost trade-off

strategy considering the TOU tariff is proposed by Giaconi et.al in 2017 [53]. Instead of a constant load
target, a piecewise load target referring to the current TOU price is generated, the cost of the electricity
is minimized, and the consumers can also sell extra energy to the grid to reduce the cost further.

RES utilizes rooftop PV, small wind turbine, and even Electric Vehicle (EV) [54] to replace
the conventional battery. To overcome the difficulty to roll -out expensive RES and RB facilities,
Reference [55] proposed a multiuser shared RSE strategy that enables serval users to share one RES
and one EMU. The EMU control the RES to allocate the energy from the RES to each user. In this case,
the target of the system is to minimize the overall privacy loss of all users rather than an individual
user. EV is another scheme to reduce the reliance of the RB [54] since the charging period is almost
overlapping with the peak load, it can mask other appliance signatures. However, the EV can only be
used when the consumers are at home, the consumers are still under real-time surveillance since the
adversary would obtain information when the residents leave their home.

To summarize, in RB/RES methods, researchers view the identification information of the load
curve as the variation of the load measurements of two neighboring measure points Yt −Yt−1. The ideal
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situation for the grid curve is a constant value Ct which will not reveal any sensitive features of the
demand, the modified load curve Yt is then compared to Ct, the more similarities between these two
curves, better privacy can be guaranteed. To quantify the privacy loss, Mean Squared-Error (MSE) [53],
Mutual Information (MI), Fisher Information (FI) [35], KL divergence [7], Empirical MI [37] are adopted
in related works. However, user demand shaping also has drawbacks: Firstly, extra energy storage
systems and renewable energy sources are required to implement the demand shaping strategy; these
devices are prohibitively expensive and can be difficult to roll-out, the batteries need to be renewed
frequently. Secondly, the energy storage system blinds demand response, which is one of the most
important functions of the smart grid.

As the drawbacks of RB/RES methods are obvious, another demand shaping method named
load shifting is proposed to replace the RB/RES techniques. This method hides sensitive information
by shifting the controllable loads [47–49]. The loads can be divided into uncontrollable loads (e.g.,
lighting, microvan, kettle) and controllable loads (e.g., heating, ventilation, and air conditioning
(HVAC) systems, EV, dishwasher, washing machine). The operation time and model of the controllable
loads can be scheduled by consumers to prevent occupancy detection. In [49], combined heat and
privacy (CHPr) are proposed, thermal energy storage such as electric water heater is adopted to
mask occupancy. Compared with the RB approach, CHPr neither requires expensive devices nor
increase electricity cost. There are several limitations of the load shifting technique, firstly, some of
the controllable loads have limited operation modes and cannot be interrupted; secondly, there are
restrictions for the thermal loads to store energy.

3.2. Data Manipulation

Different from the demand shaping approach, data manipulation aims to modify the smart
meter data before sending it to the utility. Data aggregation, data obfuscation, data down-sampling,
and anonymization all belong to this category.

Data obfuscation, which is also called data distortion, tries to add noise to the original smart meter
data to cover the real power consumption [56–60]. Like demand shaping technique, data obfuscation
also reduces the privacy loss by distorting the smart meter data, but on the network layer. Noises such
as Gaussian noise [56,60], Laplace noise [56], gamma noise [57] are added into the original smart meter
data to distort the load curve. These noise-adding mechanisms follow normal distributions with
mean µ equals to zero, hence the noise would cancel out if enough readings are added up together,
P. Barbosa, et al. [59] conclude that these probability distributions would not influence the relationship
between the utility and privacy, so all distributions can achieve similar performance in protecting
privacy. Moreover, to guarantee the billing correctness, serval schemes are proposed: Reference [56]
proposes a power consumption distribution reconstruction methods by adding another Gaussian
distribution into the data, but the method does not quantify how much noise should be added to
recover the original curve; Reference [59] sends a filtered profile to the utility rather than masked profile,
then result shows that the error of the overall power consumption is reduced in this way. However,
they also find that the error during different periods (peak period, off-peak period) is significantly
different, which provides new challenge. In summary, although the data distortion scheme shows
efficient performance in reducing privacy loss, there are serval problems which should be discussed in
future studies: (1) The TOU tariff is unavailable. Although the noise would be zero-mean, but the
multiplier for TOU pricing is not. Hence the sum of TOU bills would be influenced. (2) Although from
the signal processing and information-theoretic viewpoint that a zero-mean noise would not influence
the result, we should notice that the power system is operating on a real-time basis. The power system
operator manages the grid with the real-time data sent from the smart meter, even a minor error
between the ground truth with the distorted data could result in serious faults, even the collapse of the
whole system.

Data aggregation reduces the privacy loss by constructing aggregators to collecting the data
from a few smart meters together, so the utility is unable to detect the electricity events in a single
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house [8,22,60–62]. The data aggregation technique is divided into aggregation with trusted third
parties (TTP) [60] and aggregation without TTP [8,22]. J.-M Bohli, et al. [60] propose data aggregation
with TTP, the data aggregator (DA) operated by the TTP is responsible for gathering the data from
neighbouring smart meters and then sending the aggregated data to ES. At the end of every month,
the DA also generates energy consumption of individual consumer for billing purpose. However, there
are several concerns about involving TTP. Above all, a TTP could try to infer the personal information,
so the TTP itself may bring extra privacy risks to the system. Secondly, with the increasing numbers of
smart meters being installed, it is unrealistic for the TTP to build enough DA to satisfy the demand,
and the maintenance and development budget would be unaffordable to EP and NO.

References [8,22,61–63] introduces data aggregation mechanisms without TTP. Instead, encryption
techniques such as HE, MPC [8,22,62,63] are employed. Both HE and MPC encrypt personal smart meter
data before sending it to the utility/TP. However, differently from conventional encryption techniques,
HE and MPC enable TPs to manipulate the data without knowing the detail of it. F. Li, et al. [8] and
R. Lu, et al. [22] independently proposed an aggregation method with HE separately. By encrypting
smart meter data, the DA can implement aggregation without knowing the data details. In this way,
there are no concerns that the TTP may infer sensitive information without permission. However,
the drawbacks of data aggregation technology are twofold. Firstly, after aggregating, it is impossible
for the utility to obtain the power usage information of an individual consumer. Secondly, complex
encryption would cause high computational overhead. MPC requires low computing ability but
involves several servers to deal with the data [63]. In MPC, each server holds a part of the input data
and they cannot infer the whole information. MPC has been successfully adopted in smart metering
services such as TOU billing. However, complex value-added services, such as load forecasting and
online energy disaggregation, require an advanced cloud server to implement these algorithms. So,
the availability of MPC in these services should be discussed. The privacy boundary of aggregation size
is also investigated in T.N. Buescher, et al. work [61]. They investigated the aggregation size referring
to a privacy metric named ‘privacy game’. Referring to the data-driven evaluation, a conclusion is
made that even a DA with over 100 houses can still reveal private information. But the privacy measure
they adopt is abstract and just simply measures the difference between the individual load curve
and the aggregated curve, a more detailed privacy measure should be proposed to reflect whether
advanced algorithms (such as NILM) can infer personal information from the aggregated data.

References [56–58] combines data aggregation with noise-adding technique together, to enable
differential privacy to the aggregated data. Differential privacy is employed as privacy guarantee,
the concept of differential privacy is through adding noise to a largescale dataset, any two neighboring
datasets (only one data in these two datasets is different) should be indistinguishable [64]. In other
aggregation mechanisms, N smart meters are aggregated at first, then a distributed Laplacian
Perturbation Algorithm (DLPA) is applied to the aggregated data. By adjusting the parameters ε and
δ, then we can say (ε, δ)-differential privacy is achieved (ε is the parameter to show the strength of
privacy guarantee, and the δ is the failure probability, the closer ε and δ to 0, the better privacy can
guarantee). The security and privacy performance are analysed in [56], two denoising filter attacks,
the linear mean (LM) filter, and the non-local mean (NLM) filter are employed to evaluate the original.
The results convince that attackers cannot infer the original load curve from the distorted one.

Data Anonymization mechanism [12,65,66] reduces privacy loss by replacing the real smart meter
identification with pseudonyms. C. Efthymiou and G. Kalogridis proposed a data anonymization
method with a TTP escrow in 2010 [12]. They suggested that two IDs are attached to each smart meter,
LFID for sending attributable low frequency and HFID for sending anonymous high-frequency data,
while the HFIDs are kept by a TTP, making it unknown to the utility. The low-frequency data are
used for billing purposes while the high-frequency information is for network management. However,
the workload of the TTP is high, and the development costs increase since all anonymous IDs are
processed here. Moreover, with the introduction of the TTP escrow, the privacy risks are not eliminated
but just shift from the utility to TTP.
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The down-sampling method is a naive approach that aims to reduce sensitive information by
reducing the interval resolution of the metered data [13,33,66]. However, like other methods, functions
such as demand response and TOU billing would be sacrificed. Moreover, value-add services that
require high-resolution data are unavailable as well. To quantify the privacy loss with different interval
data, G. Eibl and D. Engel adopt NILM as adversary to the extract of personal information. They apply
an edge detection NILM to smart meter data and examine the performance of 15 appliances via F-score
values and the proportion of appliances. They conclude that 15-min interval data already protect
most appliances. We would like to have an in-depth research based on the research by implanting
more powerful NILM algorithm (such as deep learning based NILM) since deep learning has shown
distinctive ability to extract features than conventional approaches.

To sum up, solutions either require the installation of expensive devices (rechargeable battery
or RES) or employ complex and high computing algorithms (data distortion and data aggregation).
Moreover, some schemes introduce TTP into the smart metering system, which just moves the
privacy risk from one party (ES) to another one (TTP). Most importantly, unlike other communication
networks, the physical connections of the electricity grid already aggregate load consumptions at
feeder level or substation level without privacy concerns, the construction of the data aggregator is
superfluous. And no existing solution emphasizes the availability of value-added services, which is
the vital functionality the smart meter brings to consumers. Comparing the two solutions listed above,
the proposed scheme is simpler and more efficient: The proposed scheme is based on existing physical
facilities (the smart meter, private platform, distribution substation) and does not require any extra RES
or high computation encryption. In the proposed scheme, the smart meter only communicates with the
private platform (PC or smartphone) inside the house via Home Area Network (HAN). A multi-channel
smart metering system enables the private platform to communicate with other stakeholders (e.g., ES,
TP) with different data granularity, which takes the advantages of both data aggregation mechanism to
enable grid operation and management and data down sampling mechanism to provide accurate TOU
bills. Furthermore, a privacy preserving NILM algorithm is designed to enable value-added services.

4. A Proposed Privacy-Functionality Trade-off Strategy and Model

Given the scale of smart meter roll-out processes in countries and worldwide, the above
risks and operational strategies could be dismissed or subordinated to utilitarian market logic,
with the responsibility for their implementation and subsequent privacy protection of consumers (i.e.,
households) delegated to third parties, many of whom might not have privacy protection as a priority
in their agendas. Moreover, and as stated before, there is a lack of clarity about such responsibilities.
Furthermore, whilst smart grids could be conceived as necessary technologies to regulate the conduct
of individuals in our societies [67], what could be more concerning is that privacy intrusion could also
generate negative social consequences [31]. Consumers can be left powerless or socially isolated to
devise their own strategies to counteract intrusion to their privacy, becoming mere means rather than
ends [5].

It might be possible, however, for stakeholders to exert their creativity even in the face of privacy
intrusion and existing regulations (i.e., GDPR directive) [5,10,68]. This would help households comply
with the functionalities that digital technologies establish for them [68] whilst socially protecting or
enhancing their sense of authentic household ‘hood’ [6].

To meet this, we thus propose a trade-off strategy that attends to both the operational and ethical
concerns for smart meters and smart grids raised in this paper. The strategy adopts these principles:

I. Ensuring the compulsory functions of smart meters as previously described and complemented.
II. Data minimization.
III. Protection from inner or outer attacks (to be explained in Section 5).
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The operation of the strategy is shown in the proposed model, Figure 2, as follows. The model
components are consumers, DCC, energy supplier (ES), a network operator (NO), third parties (TP),
and the distribution-level substations (Sub) which supply electricity to households.Energies 2020, 13, x FOR PEER REVIEW 10 of 30 
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4.1. Compulsory Functions

The interval resolution and categories of data of compulsory functions are listed in Table 1 below.
For billing purposes, the frequent transmission of the power consumption data would put consumers
under the monitoring of the utility. For grid operation and management, although the utility requires
high interval resolution data (seconds to 100 Hz), it is unnecessary to access every individual’s power
consumption; aggregated data of a defined area is more desirable. Most additional services provided
by TP only require a specific part of the power consumption data (a certain period, a specific appliance
power consumption, etc.), so, all TPs are to obey the data minimization principle (explained below),
and only collect the minimum data required to complete the service.

Table 1. Summary of data granularity of different functionalities.

Functionalities Sample Frequency Required Data Required

Billing Low (weekly or monthly) Usage of every single
household smart meter

Grid Operation and Management Very High (sometimes more
than 50 Hz)

Active/Reactive power,
voltage of selected area

Value-added Services Depending on specific services Depending on specific services

TOU tariff High (15 min–1 h) The TOU price from the
electricity market

In the proposed strategy and model, it is not considered appropriate to authorize TTP (described
earlier) to be responsible for data aggregation, since as a potential inner adversary TTP can still
acquire valuable information during the aggregating process. Rather, substations could be a better
choice for data aggregation. In countries such as the US and China, there is already an installation
of substation-level supervisory control and data acquisition (SCADA) systems [69]. This provides
evidence that substation-level smart metering or intelligent substation data would be a trend of the
future smart grid system.

Moreover, in contrast to conventional smart metering systems that can only transmit a single
temporal resolution trace, this novel scheme contains three communication channels to support
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multi-temporal resolutions data. These three channels are a high-frequency aggregated data channel,
to transmit 100 Hz aggregated data measured at the distribution level substation; a TOU billing channel,
to send dynamic TOU price information to smart meters and send bills to the ES monthly; and an
additional service channel, to transmit selected data to support additional services. The smart meter in
the scheme plays the role of the assistant processor rather than the information sender and receiver;
it has basic computation ability to calculate billing inside the house rather than sending individual
power consumption near real-time.

4.2. Data Minimisation and Protection

As one of the most vital principles of data protection, data minimization is mentioned in five
separate sections in GDPR (Article 5 (Chapter II), Article 25 (Chapter IV), Article 47 (Chapter V),
Article 89 (Chapter IX)) [9]. It highlights that limitations should be set on the measurement of personal
data implemented by organizations; only the minimized information necessary to complete specific
required purposes can be collected. More specifically, the data minimization principle for the smart
grid is recommended in the US National Institute of Standards and Technology (NIST) Guidelines [32].
To deal with privacy risks caused by smart meters, strict limitations need to be set; only the data which
are essential for smart grid operation should be collected (e.g., billing, demand-side management, grid
planning). Data minimization is strongly related to protection from inner and outer attacks, as will be
presented in the following section of the paper.

4.3. Mathematical Model

4.3.1. The Smart Meter

The smart meter in the proposed system does not communicate with the energy supplier directly,
the measurements of the smart meter will be uploaded to a private platform (PC or smartphone) via
HAN. The private platform has basic storage and computation ability to save power consumption and
calculate the bills. Assume the area involves a smart meter group SM = {sm1, . . . smi, . . . smN}(i ∈ [1, N]).
The smart meter can measure power consumption with interval T (normally 15 min), marked as PT,i.
The smart meter data are encrypted to prevent consumers from modifying the power consumption data.
There is no backdoor when the smart meter is manufactured, so manufacturers or energy suppliers
cannot illegally access the smart meter data, and all data transmission between consumers and the
utility is monitored by the DCC. In the proposed system, the smart meter reports the monthly energy
consumption Emonth and monthly bills Bmonth.

4.3.2. Protection from Inner and Outer Attacks—Adversary Element

Using a consequentialist perspective to ensure that stakeholders are held to identification and
account [11], in our model all stakeholders could adopt an “honest-but-curious” ethic [21]. They follow
functional protocols properly and provide expected services to consumers (“honest”), but at the same
time, they keep inferring sensitive information from the consumers (“curious”). In the proposed
system, household adversaries could access aggregated power consumption PAGG (kW) and monthly
energy consumption of smart meter i Emonth (kW·h). Their purpose would be to obtain data. They could
have a high computational ability to disaggregate the obtained data into individual appliance power
consumption data by applying methods like the NILM algorithm, leading them to potentially use data
for unethical or illegal purposes.

4.4. High-Frequency Aggregated Data Channel

The high-frequency aggregated data channel transmits the aggregated power consumption
data to the DCC. We install a substation-level smart meter inside the distribution-level substation.
The substation contains all consumers’ power consumption in the local area without requiring every
individual smart meter to send data to it, so it plays the role of an “aggregator,” but without collecting
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the power consumption data from every single house. The measurement frequency of substations in
our research is selected as fh f = 100 Hz, which is twice the British power system frequency. The high
interval resolution data is used for grid operation and management since near real-time data is vital
for demand-side management to deal with unexpected incidents such as a blackout.

The reason that the distribution-level substation can play the role of “aggregator” is twofold.
Firstly, substations already exist. No extra facilities like data aggregators need to be constructed, so the
development investment can be saved. Secondly, no TTP or homomorphic encryption is involved in
this scheme, so the concerns of inner attacks from TTP and computation overhead raised by complex
encryption are eliminated. Table 2 shows three typical feeder models summarized by GridLAB-D’s
feeder taxonomy [70], these three models represents feeders at light rural area, heavy suburban,
and moderate urban respectively. The house units under each feeder can be estimated by adding up
household-level data to match the feeder model [71]. From the table, the light rural area consists around
408 houses. In Section 5, an evaluation is implemented whether feeder/substation level measurement
at light rural area satisfies the privacy requirement.

Table 2. House units under different feeder models [70,71].

Feeder Model Active Power/kW Description Units under the Feeder

R4-25.00-1 948 Light rural 408
R1-12.47-4 5334 Heavy suburban 2299
R2-25.00-1 17,021 Moderate urban 7336

4.5. Time-of-Use Billing Channel

The TOU channel enables the dynamic TOU tariff, see Figure 3. In the conventional smart metering
system, the smart meter should report the energy consumption at each charging point to obtain TOU
bills. The more charging points the utility sets, the more detailed information about an individual is
obtained by the utility, and the more it is possible that privacy is breached.

In our TOU billing channel, the direction of information transmission is the opposite. The algorithm
of calculating the TOU billing is shown in Algorithm 1.
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Algorithm 1 Dynamic TOU billing program.

Input: Half-Hourly Energy Consumption Ed,t, Half-Hourly TOU tariff πd,t;
For d = 1; d ≤ 30 (d is the day of month) do

for t = 1; t ≤ 48 (t is the time of the day) do
Record and storage Ed,t and πt during t.

End
End
While d ≥ 30 do:

Calculate Emonth =
∑30

d=1
∑48

t=1 Ed,t.
Calculate Bmonth =

∑30
d=1

∑48
t=1 πd,tEd,t.

End
Return Emonth, Bmonth.

Output: Monthly Energy Consumption Emonth, Monthly Bills Bmonth.

• Step 1: Data storage. The ES sends the TOU price π to the smart meter every 30 min. The smart
meter stores the energy consumption of the past half-hour with the current TOU price in pairs

• Step 2: Bills calculation. The total TOU bills in £ are calculated at the end of each month, then
sends the bill data to the ES, the ES then assigns a bill to the consumers.

• Step 3. Billing correctness verification. A zero-knowledge proof [72] is utilized to verify the billing
correctness. A detailed description is shown in Appendix A.

4.6. Additional Service Channel

The additional service channel is designed for TP to provide additional services to the consumers.
The “third party” refers to non-licensed energy service companies. They bring profits and innovation to
the smart grid industry. The consumers have the freedom of choice to select wanted services. Currently,
services include a warning for exceeding power thresholds, monitoring for seniors/children, monitoring
the operating condition of selected appliances. From the consultation documents of Department of
Energy & Climate Change (DECC) [19], there are strict limitations on TPs’ access to data, an agreement
is required among TP, DCC, and consumers, and the TP can only access the consumers’ smart meter
data when they have consumer consent.

Referring to the privacy-functionality trade-off strategy mentioned in Section 4, the value-added
service channel follows a data minimization principle, preventing personal data “leaving” consumer’s
house. Rather than sending personal data to the server of TPs, TPs send algorithms and models
to consumers’ private platforms, including their personal computers and mobile phone, then the
consumer can use the model to obtain the result on these platforms. However, there are two concerns
related to this method referring to [21]:

• By sending algorithms/model parameters to consumers, the model’s parameters and training
dataset would be stolen by users, while these models and datasets are confidential.

• It is difficult to implement a privacy-preserving algorithm to complex models such as machine
learning/deep learning-based services.

To settle the above two concerns, particularly relevant to our work [73], a value-added service
channel utilizing a privacy-preserving deep learning algorithm is proposed. The algorithm adds
noise into gradient descents of deep neural network parameters to reduce the sensitivity of single
training data, and further preserve the privacy of both neural network model and training dataset [74].
The privacy-preserving deep learning combines two advanced techniques, differential privacy, and deep
learning together.

As shown in Figure 4, the process of the value-added service channel consists of the following
steps, and all steps can be divided into two categories depending on the network (WAN or HAN):

Operations via WAN:
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• Step 1: the model owner trains the service model with a private database using a noisy algorithm.
• Step 2: the trained model is sent to consumers’ private platform (personal computer, mobile

phone).

Operations via HAN:

• Step 3: the smart meter uploads the measurements to the private platforms.
• Step 4: the consumer starts a query to the platform; then the platform returns a result to the consumer.

The data flow in Figure 4 shows that the consumer’s energy data are shared inside HAN and
are never sent to the utility, but the services are enabled. The enabled services include NILM, STLF,
and demand response. The detail of the privacy-preserving deep learning NILM algorithm is shown
in our paper [73].Energies 2020, 13, x FOR PEER REVIEW 14 of 30 
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5. Evaluation

In this section, an evaluation is implemented to discuss whether the proposed scheme satisfies the
requirements in Section 2 considering both functionality and privacy.

5.1. Privacy Measure

The privacy measures are adopted to the smart meter data shared with stakeholders
(high-frequency aggregated data and down-sampled individual data). Referring to privacy intrusion
categories highlighted in Section 2.4, all privacy intrusion issues belong to two categories: data
sensitivity and algorithm sensitivity. In many previous works, researchers view the sensitive
information from the smart meter as the variation of the power consumption curve, a constantly
changing curve would reveal more private information than a flattening curve. While the advanced
NILM algorithms are used to infer individual appliance signatures, state-of-the-art algorithms such as
DNN, ML, Hidden Markov Model (HMM) are proposed.

Hence, in this paper, both above two privacy intrusion issues are studied, Mutual Information and
Mean Squared Error (MSE) is utilized to quantify the sensitivity of the data, and a NILM adversary,
named NILMTK, is adopted to examine whether the proposed scheme can blind the algorithms.

Moreover, since a noise-adding deep learning approach is applied to the value-added services,
privacy performance is evaluated to determine whether the system can provide differential
privacy guarantees.
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5.1.1. Mean Square Error (MSE) as a Privacy Measure

Mean squared error (MSE) is a naïve metric to evaluate the error between two groups of data.
In this paper, MSE is adopted to quantify the difference between original consumption data and the
modified data:

MSE =

∑N
i=1(ŷ− y)2

N
(1)

5.1.2. Mutual Information (MI) as a Privacy Measure

Mutual information (MI) is employed as a privacy measure to quantify privacy loss in [44,46,51,53,75].
MI I(Xn; Yn) measures the dependence between two random variable sequences Xn and Yn [76]. In other
word, MI can explain the reduction of the original load sequence Xn given knowledge of the modified
sequence Yn:

I(Xn; Yn) = H(Xn) −H(Xn
|Yn)

= H(Xn) + H(Yn) −H(Xn, Yn)

≈ −
1
n logp(Yn) − 1

n logp(Xn) + 1
n logp(Xn, Yn)

(2)

where H(Xn) and H(Yn) are the marginal entropies, which measures the uncertainty about the
random variable; H(Xn

|Yn) is the conditional entropies, and (Xn, Yn) is the joint entropy of H(Xn)

and H(Yn). In this paper, a variant MI named Normalized Mutual Information (NMI) is adopted to
show the normalized results between 0 and 1 (0 represents no mutual information, 1 represents perfect
correlation).

5.1.3. NILM Performance as a Privacy Measure

NILM is used as a privacy measure in previous works [33,35,56,61], the NILM plays the role
of a powerful adversary to evaluate the privacy loss of the smart metering system. The adversary
can adopt a state of the art NILM algorithms to obtains individual appliance signatures from the
measured demand, hence the NILM is a desirable privacy measure to quantify the privacy loss. In this
paper, the NILMTK toolbox [77] in Python is used to implement the NILM algorithm, we utilize the
deep neural network model proposed in [78]. Five appliances, Air conditioner (Air), EV, refrigerator,
stove, and dryer are investigated in this paper. Confusion matrix and F-score are used to evaluate the
performance of the adversary, see Table 3.

F−measure =
1

1 + (FN + FP)/(2TP)
(3)

Table 3. Confusion matrix.

Actual Positive Actual Negative

Predicted Positive True Positive (TP) False Positive (FP)
Predicted Negative False Negative (FN) True Negative (TN)

5.1.4. Differential Privacy as Privacy Guarantee

As a state of the art notion of privacy, differential privacy is proposed by Dwork in 2006 [64],
the adversary cannot distinguish two neighboring datasets with only one pair of data that are different.
Normally, differential privacy is achieved by adding noise into the data (e.g., Laplacian noise [64],
Gaussian noise [79], exponential noise). A (ε, δ) differential privacy is obtained, while ε denotes the
amount of noise added to the data, and δ represents the threshold to break the privacy.

Definition 1. (ε-Differential Privacy) A randomized function < satisfies (ε, δ) privacy PR for any two
neighboring datasets β and β′

PR[<(β) ∈ ξ] ≤ eεPR[<(β′) ∈ ξ] + δ (4)
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where ξ denotes all possible outcomes in range R, and δ is the possibility that the differential privacy is broken,
in this paper, we select 10−5 as δ.

Definition 2. (Global Sensitivity) For a random function f , the global sensitivity, S f , is the maximum
difference between the outputs of two neighboring datasets β and β′. S f also determines the overall noise to be
added into the DP mechanism:

∆ f = max
d(β,β′)=1

|| f (β) − f (β′)|| (5)

5.2. Dataset Description and Data Preprocessing

We adopted the Dataport [80] as the dataset. As the world’s largest residential electricity consumption
dataset, the dataset contains electricity data from 722 houses in the US. The interval resolution of the data
is 1 min. We delete the data from 11 pm to 6 am since fewer electricity activities occur during this period.

5.3. The High-Frequency Aggregated Channel Satisfies Privacy Requirement

In this case study, the privacy performance of the high-frequency aggregated data is evaluated.
As shown in Figure 5, with the increasing aggregation level, the curve of power consumption becomes
smoother, and the details of individual appliance signature become difficult to extract. The dataset
used for simulation is the Dataport [80] during 2018, the dataset contains both total power consumption
as well as the details of each appliance. Different aggregation sizes are investigated (1 house, 2 houses,
5 houses, 10 houses, and 50 houses, respectively). The following will evaluate the privacy loss from
both data sensitivity and algorithm sensitivity aspects.
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5.3.1. Influence of Aggregation Size on Data Sensitivity

The data sensitivity of the aggregated smart meter is evaluated in this subsection. In this scenario,
we wanted to find out whether the adversary can still infer the individual’s power usage data Preal
from the high-frequency aggregated data PAGG. Figure 6 shows the value of MI and MSE with different
aggregation sizes. A reduction of the MI value is observed, from 1 at a single house to 0 at 10 houses,
and the MI value would remain 0. The MSE value increases from 0 to 104 kW2 when the aggregation
size changes from a single house to 100 houses. The result shows that when aggregation size AGG is
larger than 10 houses, Preal and PAGG are totally independent, and no knowledge about the Preal would
be revealed from PAGG.
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5.3.2. Influence of Aggregation Size on Algorithm Sensitivity

The algorithm sensitivity of the aggregated data PAGG is evaluated via NILMTK tool, the target
of the algorithm is inferring the appliance signature inside house i given aggregated load PAGG.
From Figure 7, when implementing NILMTK to a single house, the adversary can infer the appliance
signatures with F-score between 80–100%, presenting that the NILMTK has perfect performance.
When the aggregation size AGG reaches 2, the performance of NILMTK on most appliances such as EV,
fridge, stove, and dryer has been influenced greatly, especially the F-score of EV reduces from 100% to 0.
By continuously increasing AGG to 50 houses, the F-score of all appliances decreases to zero. From the
result, it is concluded that at least 50 houses need to be aggregated to blind the NILM adversary.

To summarize, when AGG is larger than 50, both privacy intrusion issues can be prevented.
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5.4. The TOU Tariff Channel Satisfies Privacy Requirement

The temporal resolution level is another vital parameter that influences the privacy loss. In this
case study, we take the data with 1 min interval as the Preal, and then downsample Preal to the lower
interval T by taking the average values of all sampling points of Preal duration interval T (in this study,
T ranges from 5 min to 1 month).
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5.4.1. Privacy Measure of Data Sensitivity

This scenario tries to find out whether the adversary can still infer the individual’s power usage
data Preal from the downsampled data, PT. Figure 8 shows the value of MI and MSE with the increase
of interval resolution T. A dramatic reduction in MI is observed when T increases from 1 min to
180 min (3 h), the reduction of MI then becomes gentle when T continuously increases. The F-score
drops to 0 when T reaches 1440 min (24 h) when only one data is recorded each day under this interval
resolution. In contrast to MI, the value of MSE increases from 0 to 12.8, showing that the increase of T
would reduce the knowledge of the original load curve.
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5.4.2. Privacy Measure of Algorithm Sensitivity

The algorithm sensitivity on smart meter data different interval resolution is evaluated in this
subsection, as shown in Figure 9. The F-score shows how the NILMTK adversary infers appliance
information from the overall power consumption. While the NILMTK has a good performance with
1-min interval resolution data (achieving an F-score of 80–100%), the F-score drops gradually when the
interval resolution increases. Taking air conditioner as an example, the NILMTK adversary achieves
an F-score with 83%, representing that most of the operation duration of the air conditioner is detected.
When interval resolution T increases to 1 h, the F-score drops to 42%. Furthermore, the F-score
decreases to 0 when T equals to 24 h, meaning that the NILMTK is blinded totally. Most importantly,
it is observed that even with 6-h interval resolution, the NILMTK achieves an estimation with 36%,
21%, and 20% F-score in EV, fridge, and dryer respectively, showing that a large interval (such as 6 h)
still cannot guarantee the privacy.

Based on the above two discussions, to completely reduce the privacy loss, a 24 h smart meter
data is required.
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5.4.3. ES Can Verify Billing Correctness

A detailed proof is given in Appendix A. The private platform generates a bill to ES monthly
according to the stored TOU tariff and energy consumption, then the private platform sends a series
of commitments to ES. Given TOU record and bill, ES can open commitments and verify if the
commitments match the received bill.

5.5. Value-Added Service Channel Satsifies Privacy Requirements and Provides Differential Privacy to ES

Referring to the Demonstration in Appendix B, the value-added service channel provides a
(2 L

Nε
√

T, δ)-differential privacy guarantee to ES, hence the model parameters and training dataset for
the service is protected. As for consumer, since the service is implemented inside HAN and completed
by private platform, the private information never be shared with other parties.

5.6. Comparison of the Proposed System with Related Schemes

In this Subsection, a comprehensive comparison is made between the proposed smart metering
system and other related operational strategies (e.g., rechargeable battery, data aggregation, data
down-sampling) from the aspects of both functionalities and privacy protection. Referring to
Sections 2.3 and 2.4, the four compulsory functionalities: billings, TOU tariff, grid management
and operation, and value-added services. While the four privacy intrusion risks cover data sensitivity
and algorithm sensitivity, and can be further divided into fraud, real-time surveillance, behaviour
patterns identification, non-grid commercial uses of data four categories. These strategies cover
the private information by modifying the load curves or encrypting the consumer’s energy data.
And privacy evaluations employed in these would either assess the performance of data sensitivity (MI,
FI, KL-Divergence, etc.) or the performance of algorithm sensitivity (NILM as adversary). As shown in
Table 4, it is observed that most strategies settle both privacy intrusion problems, but some strategies
sacrifice conclusory functionalities: data distortion adds noise to the original data making the modified
data different from the real energy consumption, as a consequence the TOU billing is unavailable;
the data aggregation method adds dozens of smart meters’ data together and then sends it to the
utility, which also prevents the utility from obtaining individual bills’ information; and the data
down-sampling technique reduces the sampling interval of the smart meter, which would influence
grid management and value-added services. Moreover, HE and rechargeable battery approaches
require either extra expensive energy storage systems or extremely high computation ability, which is
unrealistic to roll-out. The proposed system enables different granularity data to be transmitted between
the smart meter and the utility/TP, depending on the required functionalities. What the adversaries
can obtain is high-frequency but aggregated data (substation/feeder level) and household-level but
down-sampled data, both these two information streams would not reveal useful personal information
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(see Section 6 for demonstration). In addition, instead of adopting a TTP, the proposed method installs
smart meter besides feeders or substations directly, so the worries about the privacy risks brought by
TTP are solved.

Especially, a Distribution Network Operator (DNO) would benefit from the proposed smart
metering system from both economic and technical aspects. As for economic benefits, the proposed
smart metering system provides a more cost-effective network for DNO. By monitoring the real-time
substation/feeder level demand, DNO has an insight view about the operation condition of the
distributed network. The improvement of the visibility help DNO implements better and prioritized
management to feeder voltage, and the energy loss is reduced as a result. Moreover, substation/feeder
level smart meters help DNO understand peak demand patterns of the local area, the DNO takes
advantages of these patterns when designing and planning networks. In this case, DNO can save the
unnecessary cost of networks and enable the network to operate just above the maximum peak load.
As for the technical aspect, the proposed smart metering system provide high-resolution electricity
data to DNO, DNO can utilize the collected data for following technical tasks: (1) Load forecasting
and feeder-level energy disaggregation. With feeder/substation level historical and real-time smart
meter data, DNO can forecast the variation of load demand accurately, and the load components
under the substation can be evaluated via ML or DNN algorithms, paving way for demand-side
management; (2) Batter manage distributed generation. The continuously increasing of the distributed
generation (such as solar panel and wind turbine) bring high reserve power flow to the low-voltage
(LV) network, which causes stability issues such as voltage spikes. The proposed smart metering
system help DNO identify the reserve power flow, and DNO can employ operation to maintain the
stability of the power system.

As for the cost of the proposed system, the system is mostly constructed based on existing
smart metering infrastructure, except for the installation of feeder/substation-level smart meters and
utilization of the private platform to store the historic energy data. The rechargeable battery/energy
storage system method requires each house to install a mini energy storage system or EV to flatten
the power consumption curve [7] and that they should change the battery frequently, while the cost
of each battery can reach thousands of pounds [81]. When we are comparing the cost at substation
scale (each substation contains hundreds of houses), the cost of rechargeable batteries is much higher
than the proposed system. As for encryption techniques, traditional encryption techniques such as
symmetric encryption can only guarantee the security of data transmission from the consumer side
to energy suppliers/third parties’ side. However, energy suppliers and third parties are potential
adversaries as well, the privacy of consumer’s data cannot be ensured. As for encryption methods
such as HE, they enable TP to process/manipulate data without knowing the detail of the data.
However, the disadvantages of HE is also obvious, HE requires extremely high computation ability
to encrypt/decrypt the data. Considering memory usage, 1 Mb of data results in more than 10 Gb of
encrypted data [82]. As far as computation, multiplication takes over 5 s per multiplication. The above
is just the cost of one smart meter when we move to the whole smart metering system it contains
millions of smart meters, the cost would be an astronomical figure.
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Table 4. Comparison of the performance between proposed method and related operational strategies.

Operational Strategies
Functionalities of the Smart Metering System Privacy Intrusion Issues Protection

Comments
Billing TOU Grid

Management
Value-Added

Service
Data

Sensitivity
Algorithm
Sensitivity

Proposed method X X X X X X

Demand
Shaping

Rechargeable battery
[7,35–42] X X X x X X

Battery is
expensive

Load shifting [47–49] X X X x X Unknown

Energy Storage
System [43–46] X X X x X X

Device is
expensive

Data
Manipulation

Data obfuscation
[56–60] X x x x X X

Data is useless
to grid

Data aggregation
with TTP [60] x x X x X X

TTP brings new
privacy issues

Data aggregation
without TTP
[8,22,61–63]

x x X x X X
Computation

overhead

Data aggregation
with noise-adding

[56–58]
x x X x X X

Data down-sampling
[13,33,66] X x x Unknown X X

Data anonymization
[12,65,66] X x X Unknown X X
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6. Conclusions and Future Work

6.1. Conclusions

In this paper, we have presented a smart metering scheme (strategy and model) to prevent privacy
risks (operational and ethical) raised by the smart meter. The proposed scheme has three communication
channels to enables power system management and operation, TOU billing, and value-added services
three functionalities. The different channel transmits different interval resolution data. As for privacy
aspects, we divide all privacy issues related to the smart meter into two categories, data sensitivity,
and algorithm sensitivity.

There are two main contributions of this paper to existing operational methods to deal with
privacy intrusion. Firstly, in the high-frequency aggregation channel, we adopt the distribution-level
substation as “aggregator”, the substation supplies power to over 400 houses in a light rural area
and over 7000 houses in a moderate urban area. In this way, we eliminate the risk of an inner attack
from the TTP. Secondly, we use the private platform as a data processor, only reporting billing details
monthly without frequently sending individual energy consumption data to the utility. Thirdly, privacy
preserving NILM algorithm is employed to the value-added services to protect both consumers and
ES’s privacy. Finally, an evaluation is implemented to the system which demonstrates the proposed
system satisfies all privacy requirements. From the evaluation, the conclusion is made a dataset with
aggregation size over 50, and interval resolution larger than 24 h can overcome both data sensitivity
and algorithm sensitivity.

6.2. Implications for Policy

Current smart metering systems always share the real-time household-level smart meter data with
the utility. Smart metering system policymakers (e.g., the Department for Business, Energy & Industrial
Strategy (BEIS) in the UK) should be aware of the trade-off between functionalities and privacy when
operating the system and should have a clear idea about the data granularity required by different
stakeholders. [83] suggests that the policymaker should classify the smart meter data into different
openness categories, ranging from open data (the data can be totally open to the public) to closed data
(private data that is confidential). In this case, the operators can maximize the value of data and minimize
the privacy and security issues. Different stakeholders (e.g., NO, ES, TP) should access different granularity
of smart meter data, while the granularity of the data includes the interval resolution, the aggregation
size, etc.

Policymakers could also find it difficult to sacrifice functionalities to protect individual consumers’
(i.e., households’) privacy. The importance of the smart metering system is to provide accurate real-time
reading and further reduce energy costs. Policymakers could carefully implement methods such as
noise-adding or load curve distortion. Although these methods would reduce the sensitivity of personal
information and thus risks of privacy intrusion, the usability and the value of the data would decrease
as well, potentially undermining the achievement of benefits for stakeholders. The proposed strategy
and model suggest that it might be possible to balance demands and benefits without compromising
household privacy; rather other opportunities could emerge if policy considers freedom from digital
surveillance and analysis as a creative situation. In this regard, and through the inclusion of adversaries
and aggregators as potentially valuable ‘stakeholders’ of smart meters, it might be possible to help
households comply with societal functionalities whilst retaining their sense of freedom and using it
creatively for other purposes than energy efficiencies.

6.3. Future Work

In this paper, only the overall smart metering system is proposed. However, the efficient of the
proposed smart metering system should be evaluated in practice, a pilot network with small groups of
residence to be built to validation the availability of proposed system. Secondly, the functionality for
grid management and operation in the proposed system should be verified via simulation. Thirdly,
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since we adopt multi-frequency communication channels in the proposed system, the noise would be
generated in data transmission; we would propose a further study to investigate the influence on the
quality of data. Finally, we could also devise participative methods to continue exploring the ethical
consequences of smart meters for different (digital and non-digital) stakeholders.
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Abbreviations and Notations

The following abbreviations are used in this manuscript:

TOU Time-of-use
HE Homomorphic Encryption
TP Third party
MPC Multi-party computation
GDPR General Data Protection Regulation
PRIME Powerline Intelligent Metering Evolution
PLC Powerline communication
NILM Non-intrusive Load Monitoring
ES Energy suppliers
NO Network operators
DCC Data and communications companies
DNN Deep Neural Network
MI Mutual Information
SCADA Supervisory control and data acquisition
HAN Home Area Network
WAN Wide Area Network
TTP Trusted third parties
Preal Active power of individual house
PAGG High frequency aggregated active power
PT Down sampled power consumption data
Emonth Monthly energy consumption of smart meter
Bmonth Monthly bills
Ed,t Half-Hourly Energy Consumption
πd,t Half-Hourly TOU tariff

Appendix A. Billing Verification with Zero-Knowledge Proof

After the bill is generated by the private platform, the ES should verify the correctness of the
bill. Zero-knowledge proof (ZKP) is a proof approach that can verify the correctness of the provided
information without revealing the details of the information [72,84]. ZKP protocol involves two
parties, provider (P) and verifier (V), P interacts with V to convince that a secret is true, but V has no
knowledge about the secret P wants to prove. Pedersen Commitment is employed in this verification
process [85]. A commitment with secret x is generated as c = Commit(x, r), and x is difficult to infer
from c, the commitment can be opened with c, x, r, marked as Open(c, x, y). The Open(c, x, y) would
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return True if c is the commitment of secret x, otherwise False is returned. They have homomorphic
features of commitments are important to verify the billing correctness:

Commit(x, y) ×Commit(m, n) = Commit(x + m, y + n) (A1)

Commit(x, y)n = Commit(x× n, y× n) (A2)

In the proposed TOU billing channel, the private platform is P, and the ES is V, Public Key
Infrastructure (PKI) assigns a series of commitments COM with the power consumption sequence
E = E1,1, E1,2, . . .Ed,t . . .E30,48, and random value sequences R = r1,1, r1,2 . . . rd,t . . .E30,48 to the
private platform:

Commitd,t = Commit
(
Ed,t, rd,t

)
(A3)

COM =
(
Commit1,1, Commit1,2 . . .Commitd,t . . .Commit30,48

)
(A4)

The private platform will receive the commitment c and energy consumption sequence E from
the smart meter, and the TOU tariff sequence TARIFF = π1,1,π1,2 . . . πd,t . . . π30,48 from the ES. So,
the private platform can calculate monthly price:

Bmonth =
30∑

d=1

48∑
t=1

πd,tEd,t (A5)

referring to (A1) and (A2), the ES multiplies COM with TARIFF to obtain the commitment of monthly bill:

CommitBill =
30×48∏

d=1,t=1

Commit
(
Ed,t, rd,t

)πd,t (A6)

By opening the commitment of monthly bill, ES can verify the correctness of the bill:

OpenBill = (CommitBill, Bmonth, rBill) (A7)

If CommitBill is really the commitment of Bmonth, ES accepts the generated bill, otherwise, ES reject
the bill.

Appendix B. Privacy-Preserving Deep Learning-Based NILM Algorithm

Deep learning is an important branch of machine learning, it is based on an artificial neural
network (ANN) with multi-layers (normally one input layer, one output layer, and several hidden
layers between the input and output), each layer contains a number of neurons. A neuron is a
mathematic function that computes the sum of weighted input and obtain nonlinear output via an
activation function (e.g., ReLU, Sigmoid, Tanh). Compared with a shallow ANN, a deep neural
network (DNN) contains several hidden layers, which enables much more complex computation tasks.
The expression for a typical N-layer DNN with input x is shown in (A8):

aN(x; θ1,...,N) = fN( fN−1(. . . f1(x,θ1),θN−1),θN) (A8)

where fi is the activation function of ith layer, and θi is the weight of ith layer.
A loss functionL is adopted to calculate the mismatch between ground truth y and aN. The purpose

of the DNN is to find the optimal parameters of the model θ∗ that minimize the L throughout the
whole training process:

L(θ) =
1
N

∑
(x,y)∈(X,Y)

L(y, aN(x;θ1,...,N)) (A9)

θ∗ ← argminθL(θ) (A10)
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Differential privacy-stochastic gradient descent (DP-SGD) provides ε-differential privacy to the
DNN model by adding noise to the SGD [74]. The hyperparameters of the model are shown in Table A1.
Different from conventional SGD, at each time to calculate the gradient, the gradient is clipped and
then a random Gaussian noise is added to the gradient. By adding the noise, a (ε, δ)-differential privacy
is enabled each step. Since the number of training steps are large (range from hundreds to thousands),
referring to the Composition Theorem stated as follow, the overall privacy guarantee is extremely large.

Theorem A1. (Composition Theorem) If f is (ε1, δ1)-differential privacy and g is (ε2, δ2)-differential privacy, then

f (D), g(D) is (ε1 + ε2, δ1 + δ2) −Di f f erential Privacy (A11)

To minimize the value of εtotal = Tε, δtotal = Tδ (T is the total training steps), a Moments
Accountant Theorem is proposed by M. Abadi, et al. [74]:

Theorem A2. The privacy preserving NILM algorithm provides a (2 L
Nε
√

T, δ)-differential privacy guarantee
to ES.

Proof of Theorem 1. A detailed proof is given in [74]. �

Algorithm A1. Privacy-preserving Deep Neural Network Algorithm

Input: Model input X = {x1x2 . . . xN}.
Initialisation of weights θ0;

For training time step t ≤ total training time T:
Computing Loss function L(θ) = 1

N
∑

(x,y)∈(X,Y)L
(
y, aN

(
x;θ1,...,N

))
Calculating Gradient gB = 1

B
∑

x∈B ∇θL(θ, x);
Clipping Gradient g(xi) =

g(xi)

max(1, ||g(xi)||2/C) ;

Adding Random Noise to the Gradient g̃(xi) =
1
L (

∑
x∈L g(xi) +N

(
0, ∆ f 2σ2

)
);

Update Parameters after each training step t θt+1 = θt − αg̃t(xi).
End
Output: Output Result Model weights θ and privacy cost (ε, δ).

As shown in Figure A1, the target of the NILM services is to evaluate the individual appliance
consumption (output) from overall power consumption measured by the smart meter (input). Three
hidden layers are linked between input layer and output layer to extract features. DP-SGD algorithm
is applied in the neural network to calculate the gradient of each training step.
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Figure A2 shows the relation between the performance of NILM algorithm and privacy level
ε [73], the smaller the value ε, the better privacy it provides. It is found that without using DP-SGD,
the accuracy of NILM is near 90%. By increasing the noise scale σ (a decrease of ε), and the accuracy of
the algorithm decreases. So, the TPs should carful choose a noise scale that follows privacy-utility
trade-off to settle both services and privacy.

Table A1. Hyperparameters of the Model [74,86].

Hyperparameters Value Description

Learning rate α 0.05–0.3 The steps to adjust θ according to errors.

Hidden layers number 3 The total number of hidden layers.

Lot size L
√

N The group size for computing gradient.

Batch size B � L The number of training examples utilized in
one iteration.

Activation function f ReLU fReLU = max[0, z].

Gradient clipping norm C 1–10 Control the range of each gradient value, ensure
that no gradient is much different with others.

Noise Scale σ
√

2log1/δ
ε

The amount of noise added.
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