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Abstract: Significant growth in solar photovoltaic (PV) installation has been observed during the
last decade in standalone and grid-connected power generation systems. However, the PV system
has a non-linear output characteristic because of weather intermittency, which tends to a substantial
loss in overall system output. Thus, to optimize the output of the PV system, maximum power
point tracking (MPPT) techniques are used to track the global maximum power point (GMPP) and
extract the maximum power from the PV system under different weather conditions with better
precision. Since MPPT is an essential part of the PV system, to date, many MPPT methods have been
developed by various researchers, each with unique features. A Google Scholar survey of the last
five years (2015–2020) was performed to investigate the number of review articles published. It was
found that overall, seventy-one review articles were published on different MPPT techniques; out of
those, only four were on non-uniform solar irradiance, and seven review articles included shading
conditions. Unfortunately, very few attempts were made in this regard. Therefore, a comprehensive
review paper on this topic is needed, in which almost all the well-known MPPT techniques should be
encapsulated in one document. This article focuses on online and soft-computing MPPT algorithm
classifications under non-uniform irradiance conditions along with their mathematical expression,
operating principles, and block diagram/flow charts. It will provide a direction for future research
and development in the field of maximum power point tracking optimization.

Keywords: maximum power point tracking (MPPT); photovoltaic (PV) array; non-uniform irradiance;
shading conditions; online; offline; soft computing
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1. Introduction

Global warming, fossil fuel shortage, political instability in major fuel-producing countries,
and per-unit cost reduction in power generation with technological development in renewable energy
technologies (RETs) have diverted the considerable attention of power electronics manufacturers and
power producers towards the design, development, implementation, and maximum utilization of
RETs to fulfill growing world energy demands [1–3]. However, the increasing penetration of RETs
into the conventional power generation system is changing their status from secondary energy source
to primary energy supply [4,5]. For sustainable energy development, solar photovoltaic (PV) power
generation is considered one of the most promising power generation options among all the renewable
energy sources (RESs) [6]. However, because of intermittent weather conditions and non-uniform solar
irradiance, substantial oscillation is produced in the solar photovoltaic output. This happens because
of solar irradiance, which is not uniform even between very close locations at a short time scale, and is
considered one of the imperative reasons for solar power generation output oscillation and losses [7].
To attain maximum output power from the PV system, an electronic circuit called maximum power
point tracking (MPPT) is installed between the PV system and power converter to achieve maximum
power under non-uniform solar irradiance conditions as depicted in Figure 1.
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Figure 1. Solar photovoltaic (PV) system with maximum power point tracking (MPPT). 

The researchers have proposed and practically implemented different MPPT techniques to 
optimize the PV output by considering non-uniform solar irradiation conditions as classified in 
Figure 2. To attain the maximum output from the MPPT method, solar irradiation and temperature 
levels determine the PV module output power and voltage levels. Unfortunately, the non-linear 
behavior of solar irradiance, partial shading conditions (PSC), and temperature deviations are the 
key sources that affect the PV output characteristic because of the mismatching problem (multiple 
local maxima). If the entire array does not receive uniform solar irradiation as depicted in Figure 3a,b, 
which can be exhibited on a current voltage ( IV) and power voltage (PV) curves of the solar PV array, 
it will not be possible to receive uniform solar irradiance because of PSC or temperature variation 
conditions. 

In Figure 4, IV–PV characteristic curves are shown concerning Figure 3: the black line indicates 
the output of Figure 3a and the green, red, and blue curves concern Figure 3b, the array (A, B and C) 

Figure 1. Solar photovoltaic (PV) system with maximum power point tracking (MPPT).

The researchers have proposed and practically implemented different MPPT techniques to optimize
the PV output by considering non-uniform solar irradiation conditions as classified in Figure 2. To attain
the maximum output from the MPPT method, solar irradiation and temperature levels determine the
PV module output power and voltage levels. Unfortunately, the non-linear behavior of solar irradiance,
partial shading conditions (PSC), and temperature deviations are the key sources that affect the PV
output characteristic because of the mismatching problem (multiple local maxima). If the entire array
does not receive uniform solar irradiation as depicted in Figure 3a,b, which can be exhibited on a
current voltage ( IV) and power voltage (PV) curves of the solar PV array, it will not be possible to
receive uniform solar irradiance because of PSC or temperature variation conditions.

In Figure 4, IV–PV characteristic curves are shown concerning Figure 3: the black line indicates
the output of Figure 3a and the green, red, and blue curves concern Figure 3b, the array (A, B and C)
according to PSC or mismatching conditions of solar irradiation on the PV generation system (PVGS).
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In recent years, different reviews have been published on the maximum power point tracking system.
Most of them discussed traditional MPPT techniques under non-uniform solar irradiation conditions
such as [2,8–13], and some of them reviewed partial shading or mismatching solar irradiation conditions
as in [14–17]; in [18], soft computing MPPT techniques were discussed.

A Google Scholar online survey for the last five years was conducted from 2015 to 2020 to investigate
how many review articles were published over these years. With a search query for “Maximum Power
Point Tracking Review” on the first search, we found 71 review articles. Subsequently, when the search
was narrowed to specifically “Non-Uniform Solar Irradiations” and “Shading Conditions” on Google
Scholar, only four review articles on “Non-Uniform Solar Irradiations” [19–22] and seven on “Shading
Conditions” [14,19,23–26] were found, as depicted in Figure 5. For a further detailed explanation,
the review articles with titles and years of publication are given in Table 1. Most of them discussed
the limited number of MPPT techniques, and none of them considered online and soft-computing
MPPT techniques under non-uniform solar irradiance all together in one. Therefore, it is necessary
to publish a comprehensive review article on MPPT techniques under non-uniform solar irradiance
conditions and to encompass all the related research in this area and present them in a single source in
which almost all the online and soft-computing MPPT techniques can be encapsulated in one paper to
provide researchers, energy engineers, and strategists with a valuable pathway for future research
and implementation in the field of maximum power point tracking optimization. Furthermore, it will
enable the identification of the merits and demerits of different MPPT techniques according to their
scope and impact on the solar PV power generation system, and aid future research and development
to ensure maximum power optimization from the solar PV system.
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Table 1. Review papers published on maximum power point tracking over five years (2015–2020).

Maximum Power Point Tracking Review
with Non-Uniform Solar Irradiance Journal Year Published

1
Review of maximum power point tracking
techniques for photovoltaic arrays working
under uniform/non-uniform insolation level

International Journal of
Renewable Energy

Technology

October
2018

2

Review of maximum power point tracking
control of photovoltaic systems in case of

uniform and non-uniform irradiance
conditions

Proceedings of the
International Conference

on Science and
Engineering

October
2017

3
A review of maximum power point

tracking methods of PV power system at
uniform and partial shading

Renewable and
Sustainable Energy

Reviews
January 2016

4

A comprehensive assessment of maximum
power point tracking techniques under

uniform and non-uniform irradiance and its
impact on photovoltaic systems: A review

Journal of Renewable
and Sustainable Energy

November
2015

Maximum Power Point Tracking Review
Under Shading Conditions

1

Comprehensive review on global maximum
power point tracking techniques for PV

systems subjected to partial shading
conditions

Solar Energy May
2019

2 Maximum power point tracking techniques
under partial shading condition: A review IEEE Conference October

2018

3
A review of global maximum power point
tracking techniques of photovoltaic system

under partial shading conditions

Renewable and
Sustainable Energy

Reviews

September
2018

4

Application of bio-inspired algorithms in
maximum power point tracking for PV

systems under partial shading
conditions–A review

Renewable and
Sustainable Energy

Reviews
January 2018

5
A review on maximum power point

tracking for photovoltaic systems with and
without shading conditions

Renewable and
Sustainable Energy

Reviews
January 2017

6
A review of maximum power-point
tracking techniques for photovoltaic

systems

International Journal of
Sustainable Energy

April
2016

7
A review of maximum power point

tracking methods of PV power system at
uniform and partial shading

Renewable and
Sustainable Energy

Reviews
January 2016

2. MPP under Shading (Partial) and Non-Uniform Solar Irradiance Conditions

Tracking the maximum power point under shaded and non-uniform (non-linear) solar irradiance
conditions is different and complicated compared to under uniform solar irradiance conditions.
Because of the multiple peaks under mismatching conditions, the PV voltage VPV drops and induces
disproportionate losses in PV output as depicted in Figure 4. Due to non-uniform and shaded
conditions, a hot spot ensues in the PV module, which affects PV string output immensely. To mitigate
this type of problem a bypass diode is connected in parallel with each PV module to prevent damages.
Besides, a blocking diode at the end of each series string is also connected to protect the PV system
during reverse current conditions, as depicted in Figure 6. Due to multiple peaks, the MPPT operation
is diverted to track the global maximum power point (GMPP), which causes overall output power
reduction. Therefore, in this section, MPPT methods under non-uniform and shaded solar conditions
are investigated.
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2. MPP under Shading (Partial) and Non-Uniform Solar Irradiance Conditions 

Tracking the maximum power point under shaded and non-uniform (non-linear) solar 
irradiance conditions is different and complicated compared to under uniform solar irradiance 
conditions. Because of the multiple peaks under mismatching conditions, the PV voltage VPV drops 
and induces disproportionate losses in PV output as depicted in Figure 4. Due to non-uniform and 
shaded conditions, a hot spot ensues in the PV module, which affects PV string output immensely. 

Figure 6. PV array with bypass and blocking diodes under uniform and non-uniform irradiance.

2.1. Modified Perturb and Observe (MP&O) Method

The conventional perturb and observe (P&O) algorithm performs well under stable weather
conditions with constant and variable load. However, it has a poor performance under rapid or
steady change of weather conditions. Therefore, to improve the performance of the conventional P&O
algorithm due to weather changes, the MP&O method can be used to determine the MPP point [27,28].
In Figure 7, the IV–PV curve with uniform solar irradiance in blue and under non-uniform irradiance
in red is depicted.
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As can be seen in Figure 7, mentioned above, at uniform solar irradiance the conventional P&O
MPPT method tracks the MPP point successfully at GP1, but when the weather changes multiple MPP
points from A to E are observed on the red line. According to P&O, perturbation peak E is considered
global MPP or GMPP, and the others are local MPP or LMPP. During changing weather conditions the
operating point shifts from point 1 to point 2 as intersected by the load line, and point D is determined
as GMPP, which is wrong [15]. Therefore, it can be concluded that conventional P&O has limitations in
determining the correct MPP under shaded conditions [29].

In [30] a two-mode modified MP&O algorithm with two parts, (1) the main program, and (2)
Global Point (GP) tracking, is proposed. The flow chart is shown in Figure 8. In this two-mode MP&O
algorithm, the GMPP upper and lower limits, based on PV array voltage Vmin and Vmax are adjusted in
order to avoid the scanning of the whole system repeatedly while tracking the GP. The implementation
of the process always starts with the set value of the reference voltage Vre f at 85% of open circuit
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voltage (VOC), as presented in “Main Program” in Figure 8. It continues to retain the action at the GP
by continually applying the P&O method until any disruption or timer intersection occurs. When any
unexpected disruption such as partial shading for any reason such as the passing of clouds, birds flying
or timer interrupts occurs, the “main program” detects the prerequisite for tracking the GP and calls
the “GP track subroutine.” After receiving the tracking call, the GP tracking subroutine system will
start working to track the new GP point, and once the GP is identified it will pass on the mechanism to
the “main program”, which then continues to maintain the operation at this new GP until the next GP
tracking call is generated.
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2.2. Modified Incremental Conductance (MINC) Method

The conventional incremental conductance method depends on the solar power voltage (P–V)
curve slope, following dP/dV = 0 and dI/dP = 0 [31], but under intermittent and shaded conditions,
it is unable to determine the accurate MPP. In [32], a modified incremental conductance algorithm
based on a multifaceted duty cycle control was proposed that efficiently uses the intermittent P–V
characteristics of partially shaded conditions. In this multifaceted method observation under partial
shading conditions, the P&O method was used with an incremental conductance method. In addition
to this, a novel algorithm was introduced to determine MPP with a faster tracking system. Another
modified incremental conductance method was proposed in [33], in which PV voltage (VPV) and
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current (IPV) are used in the calculation. Therefore, the change in solar irradiance and load can observed
according to VPV and IPV to determine the MPP. In another paper [34], a modified variable-step INC
with a simplified algorithm was discussed. In this algorithm, all the division computations of a
conventional INC are eliminated to simplify its structure. By using Equations (1)–(3), the following
modification is made to simplify the structure of the proposed algorithm.

∆I
∆V

+
I
V

= 0 (1)

∆I
∆V

+
I
V
> 0 (2)

∆I
∆V

+
I
V
< 0 (3)

By unifying the denominators in (1)–(3), it becomes

V(∆I) + I(∆V)

V(∆V)
= 0 (4)

V(∆I) + I(∆V)

V(∆V)
> 0 (5)

V(∆I) + I(∆V)

V(∆V)
< 0 (6)

In (4), the denominator is equalized to zero, so it can be eliminated, whereas in (5) and (6) the
denominator V can be removed as it is always positive and will not disturb the equations. Accordingly,
(5) and (6) are simplified as:

V(∆I) + I(∆V) = 0 (7)

V(∆I) + I(∆V)

(∆V)
> 0 (8)

V(∆I) + I(∆V)

(∆V)
< 0 (9)

Finally, to eradicate the dissection calculations, new rubrics for the incremental conductance
algorithm can be written as follows:

V(∆I) + I(∆V) = 0 (10)

(V(∆I) + I(∆V) > 0)&& (∆V > 0) (11)

(V(∆I) + I(∆V) > 0)&& (∆V < 0) (12)

(V(∆I) + I(∆V) < 0)&& (∆V > 0) (13)

(V(∆I) + I(∆V) < 0)&& (∆V < 0) (14)

This simplified division-free improved variable-step incremental conductance algorithm is simple
to implement, with improved transient performance and marginal steady-state power fluctuations
regarding to track the MPP successfully [35].

2.3. Modified Hill Climbing (MHC) Method

The hill-climbing (HC) method is based on the P&O method, and it has been shown that the MPPT
control system deviates from the MPP point under a sudden change in solar insolation. Therefore, this
problem could also ensue with the HC controller, which may confuse it and lead the GPP tracking point
in the wrong direction. Another HC shortcoming is its performance under dynamic and steady-state
conditions because of fixed incremental duty cycle steps [36]. A modified adaptive hill climbing
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(MAHC) method for a solar PV system was proposed in [37,38]. In this MAHC method, the tradeoff

between steady-state performance and dynamic response because of the selection of a, the duty
cycle incremental switching step problem is resolved with automatic tuning control by following
Equation (15).

a(k) = M
|∆P|

a(k− 1)
(15)

where ∆P = P(k) − P(k− 1), which corresponds to the variation of power condition, a(k− 1) is the
notable value of “a(k)”, always >0, and M is a fixed parameter.

In this algorithm, when a change in PV power is observed in a large range due to a sudden
change in solar irradiance, shading effects, or other environmental effects, the automatic tuning control
will adjust the value of a to a higher step value to track the response and satisfy the transitory stage
requirement. The controller assumes that the system is in steady state when it detects the changing
power to be smaller than previously.

2.4. Instantaneous Operating Power Optimization (IOPO) Method

This method compares the measured power PMEAS which is the product of the instantaneous
voltage Vmeas(t) and current Imeas(t) measurements and the immediate highest yield power maximum
power point PMPP to determine the GMPP. PMPP (t) is a weather-dependent parameter, whereas the
temperature T(t) and solar irradiance E(t) are the variables expressed in Equations (16) and (17) [39–41]:

PMPP(t) = PMPP(T(t), E(t) (16)

PMPP(t) = a(T(t))b(E(t)) (17)

In the instantaneous operating power optimization method, the maximum power current IMPP
corresponds with the change in solar irradiance factor b(E(t)), and a(T(t)) is a user-defined threshold
value of the ith current, which is normally half of the actual maximum power current IMPP [40].
The IOPO method continuously compares the PMES (t) with the reference power P(t) to determine the
GMPP by following two conditions as given below:

If PMES (t) < P(t) the actual current varies as:

I(t) = ICAL(t) − ∆I (18)

If PCAL(t) > (t) the actual current varies as:

I(t) =
PCAL(t)

a(t)
(19)

In Equation (18) the ∆I is a constant current for estimating the GMPP by following Equation (20):

IMAX = KiICAL(t) (20)

where Ki is the ratio of the local maxima current Ilocal−maxima and global maxima current IMAX.
The instantaneous operating power optimization method has practically proved that both the

speed and accuracy of the proposed technique produce significant differences in terms of GMPP
tracking and accuracy [42].

2.5. Output Power Increment (OPI) Method

This depends on PV system applications; the output power increment method has an advantage
in that it can be connected with either grid-connected or stand-alone PV system configurations.
In addition, it does not need any knowledge of electrical characteristics or PV array arrangement. In the
OPI method, instead of P–V curve scanning to track the GMPP, it controls a DC-DC converter coupled at
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the PV array output, which acts like a constant input power load controlled by the microcontroller unit
as a changeable constant input power load [43]. In Figure 9, the P–V characteristic curve is depicted.
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According to the above-mentioned Figure 9, GMPP tracking starts at P–V array characteristic
point B1; hence, the operating point is progressively moved towards point B5 by successfully tracking
the points (B1, B2, B3, B4, and B5) by avoiding becoming stuck at local MPP point Blc. This process
continues until point B6 is tracked and the PV array output power increment is terminated and tracks
back to GMPP point B5. For this output power increment algorithm the P&O MPPT method is used to
track the GMPP at short intervals of time concerning previously tracked GMPP points.

2.6. Two-Stage Load Line (2SLL) Method

In [44] a two-stage load line method based on equivalent resistance Rpm, proportional to the ratio
of open-circuit voltage VOC to short circuit current ISC, was introduced. In the 2SLL method, the PV
system is controlled by measuring the VOC and ISC online [45]. The GMPP is determined in two stages:
at the first stage, the tracking system moves to the vicinity of the real peak power point on the load line
Rpm, and at the second stage it converges on the real peak power point as depicted in Figure 10.
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According to the proposed method, at the first stage the control process is moved to the vicinity
operating point of the real peak power point at A to evade convergence to the local maximal power
point. The following equation for the equivalent load line Rpm is used as the ratio of the optimal
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operating voltage Vpm and current Ipm under uniform solar irradiance, where Vpm is almost equal to
80% of VOC and Ipm is 90% of ISC to obtain Rmp.

Rpm =
Vpm

Ipm
(21)

After obtaining Rmp the first-stage control moves to point C, as shown in Figure 10, which is the
intersection point of the I–V characteristic curve and the load line under non-uniform solar irradiance.
After reaching point C, the control process is swapped to the second level, where it uses the conventional
dV
dI method to determine the GMPP, where the derivative of the output power P in terms of current I is

equal to zero at the MPP [46], by following the equation:

dP
dI

=
d(V × I)

dI
= 0 (22)

By monitoring and comparing the ( V
I ) and

(
−

dV
dI

)
values, if ( V

I ) is greater than (− dV
dI ) the current I

is increased. Otherwise, it is decreased, the second stage operating point moves to D, and the difference
between ( V

I ) and
(
−

dV
dI

)
is minimized.

2.7. Power-Load Characteristic with Variable Step-Size Method

In [47], a novel method to track the GMPP under intermittent or partial shading conditions was
discussed. In this method, power converter losses are utilized to determine the GMPP by following
three steps, (i) restart, (ii) scanning, and (iii) a conventional P&O method with variable step-size as
depicted in Figure 11.
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The operating principles of power load characteristics with the variable step-size method are
adopted from [48,49] and modified with the encapsulation of three steps in one algorithm, as shown in
the above Figure 11. In this proposed method, the restart mode searches for the optimal power point
for tracking the MPP by comparing the conditions Cond1 and Cond2. In many cases, Cond1 and Cond2
give the same result, so the restart mode is applied to satisfy the two “0” and “1” binary conditions,
respectively, as explained in [48,49],. Afterward, the control algorithm switches to the scanning mode,
where it performs the scanning of the PV array voltage V_min and compares it with Vre f , and compels
Vre f = Vmin = 10 V for 0.1 s with stable PV array output voltage to estimate the approximate GMPP.
Finally, a conventional P&O MPPT with variable step-size is used to determine the GMPP accordingly.

2.8. Adaptive Maximum Power Point Tracking (AMPPT) Method

An adaptive maximum power point tracking method to track the GMPP under partial shading
conditions with two key methods, (i) change detection and (ii) global peak area (GPA) search,
was proposed in [50]. During the change, the detections process the I–V characteristic curve under
uniform solar irradiance and compare it with non-uniform solar irradiance, as depicted in Figure 12.
Under uniform solar irradiance at S0 with constant resistive load, the change in output current ∆I0 and
voltage ∆V0 will change in a positive or negative direction, but under a non-uniform solar irradiance
curve it moves from S0 to S1, an abrupt change is observed in the I–V curve, and the ∆I1 and ∆V1

change in positive and negative directions with reference to the change in solar insolation.
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Figure 12. Comparison of the current and voltage of the PV array under uniform and non-uniform
irradiance conditions [50].

If the PV array is connected with a DC/AC inverter under constant voltage load control, its output
voltage remains constant. Moreover, the change in voltage ∆V2 is approximately equal to zero, while
the change in current ∆I2 is high.

Furthermore, to find the global peak areas under partially shaded conditions, the I–V curve MPP
points are presumed equal to VOC and ISC of the PV array under uniform irradiation, as depicted in
Figure 13. In this figure, the PV array’s I–V and P–V curves under different shaded conditions with
S1, S2, S3, S4, and S5 are sketched and their GPAs are marked with A-E at the intersected load line OM.
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2.9. Direct Search (DS) Method

The new direct search or dividing rectangles approach to overcoming the weaknesses of the
existing P&O and incremental conductance methods under partial shading conditions [51], particularly
in the presence of multiple MPPs and sudden change in solar irradiance, was proposed in [52].
The proposed technique is based on the dividing rectangles (DIRECT) algorithm of the Lipschitzian
approach addressed in [53]. In the direct search method to determine the GMPP, two ideas, (i) area
dividing strategy, and (ii) potential optimal interval (POI), are discussed.

In the area dividing strategy two variables [a, b] are taken as sample intervals, as depicted in
Figure 14A. It is presumed that the algorithm has taken the voltage V1 as sample at the center point of
the interval [a, b] before applying the dividing strategy at the first step. Later, at the second step, it is
divided into three sub-intervals, V1, V2, and V3, where V2 and V3 are the center points of a-V1 and
b-V1 at its right and left sides. By following the same dividing strategy, it is divided into further center
points such as V32 and V33, etc.
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In POI, the intervals are further divided into central points. In Figure 14B the POI algorithm is
illustrated, plotting the function values at the center of every sampled interval versus the interval’s
length. In POI, among all the intervals, only those that satisfy Equations (23) and (24) are considered
optimal points.

f
(
x j

)
+ K̃

(a j − b j

2

)
≥ f (xi) + K̃

(
ai − bi

2

)
∀i (23)

f
(
c j
)
+ K̃

(a j − b j

2

)
≥ fmax+ ∈

∣∣∣ fmax
∣∣∣ (24)

To determine the GMPP, the highest optimal potential point on the voltage interval which is
expressed in Equation (23) is chosen. Further Pmax crementation is obtained with Equation (24); initially,
a finite number of iterations are considered, and the direct search algorithm follows the area dividing
strategy to obtain potentially optimal points at POI. In each recapitulation, the voltage ranges in the
interval [a, b] and the current–voltage is divided into further three subintervals. Within this entire
interval, the i-th ones are considered POIs.

2.10. Segment Search (SS) Method

The segment search method is based on the two-stage process algorithm for tracking the GMPP. In
the first stage, it develops the segmentation and in the second stage, a variable step-size P&O method
is used to quicken the GMPP exploration process [54]. The concept of the segment search method is
illustrated in Figure 15. Where at the first stage fixed spacing is used to divide the P–V characteristic
curves into numerous segments and the working points in every segment are marked near every
GMPP, by using the variable step-size P&O method the operating point will move to each marked
segment and measure the power values of that point. High power values increase the possibility of
indicating the segment comprising the highest GMPP. Finally, the segment point unveiling the highest
power value is used as the starting point for the second-stage search. The proposed segment search
method has the advantage of working under both uniform and shaded solar irradiance conditions.
Equation (25) is used to ascertain the decision of whether the PSC occurs or not.

i f ∆I1 > ∆IC1 and ∆I1 < ∆IC2 then PSC f lag = 0
Othe wise PSC f lag = 1

(25)

If partial shading conditions are observed, the suggested two-stage segment search method will
be used to find the GMPP; otherwise, only the variable step-size P&O method will be applied to track
the MPP under uniform solar irradiance conditions.
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2.11. Restricted Voltage Window Search (RVWS) Method

Almost all the GMPP search algorithms use the operating voltage range to make sure that none of
the potential global peaks is missed. Most of them scan a vide voltage range, almost 80% of the P–V
curve, which increases the scanning time and causes power losses [15].

In [55] a novel voltage window search (VWS) GMPPT algorithm was proposed, which restricts the
range of the voltage window to tracking the global peak (GP) under rapidly changing solar insolation
conditions. The proposed algorithm has two main parameters: (i) the GP voltage step or power
operating triangle (POT), and (ii) voltage window (VW) search. In the GP voltage step, the fixed
incremental voltage is imposed by the proposed method to track the GMPP as depicted in Figure 16,
where the VOC limit is fixed at 0.5, 1.5, and 1 volt respectively. This fixed voltage step decreases the
scanning time and improves the algorithm accuracy, whereas in VW, the upper and lower voltage
limits are defined as [Vmin −Vmax ], Vmin is adjusted with respect to the power, and Vmax the upper
limit, is equal to VOC. In the proposed algorithm narrowing the upper and lower limit decreases the
scanning time and scans the GMPP around the defined limits in a precise way.
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3. Overview of Soft Computing-Based MPPT

Soft computing (SC) based MPPT algorithms are fully digital and are firmware-based algorithms.
These algorithms are designed using computer coding or programming. In short, SC MPPT is an
assemblage of intelligent, adjustable, and flexible problem-solving methods to exploit the ease with
which indistinctness attains controllability, robustness, and low-cost solutions. A significant feature
of the soft-computing method is the flexibility of its algorithms, which allows the development of
robust MPPT schemes. It is good and very effective in dealing with multi-constraints problems in
solar PV optimization. Because of the abrupt variations in environmental condition—mostly solar
irradiance and temperature—the PV characteristic curve shows a non-linear, time-varying maximum
power point (MPP) problem. Some of the key parameters of SC which are considered during design
and processing for solving multi-mode MPPT optimization problems are briefly described as follows.

3.1. Soft Computing MPPT Generalized Processes

The SC-based maximum power point tracking process can be categorized into four key processes,
namely, initialization, reproduction, selection, and the stopping criterion. At the first level of the
initialization step, the population size with (n) number of candidates is generated. At the second
level of the SC process, which is reproduction, the descendants are produced from parents which are
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carefully chosen from the first step of initialization through the articulated equation, according to the
type of soft-computing technique, which is selected for particular PV design and weather conditions.
Finally, the selection phase is the informed route for picking the appropriate population number (n)
to persist for the subsequent generation. The reproduction and selection processes are repetitive
until a defined or required ending condition is met. Finally, the stopping criterion phase of soft
computing-based MPPT algorithms is used to trigger conditions that halt the algorithm. This happens
when one or more pre-defined conditions become true.

3.1.1. Initialization

In soft computing-based MPPT methods, the keyword population is referred to as the number
of elements (n); each element serves as an impending solution of the system. A smaller population
size leads to a poor MPP tracking solution; on the other hand, an outsized population increases the
processing time, which tends to decrease the efficiency of the SC method. Therefore, a balance is
obligatory to attain reliable results with an equitable number of recapitulations. Numerous methods to
select population size are acclaimed in [18,19].

3.1.2. Reproduction

Reproduction is considered a vital phase in SC processing, as it distinguishes the capability of the
algorithm to yield the subsequent population generation. In the first phase, the selected population is
titled the parent; the instant and subsequent population which is produced through the reproduction
process is called the descendants. Soft computing-based algorithms like Particle Swarm Optimization
(PSO), Ant Colony Optimization (ACO), and Cuckoo Search (CS) are established on animal or insect
social behavior. They apply precise reproduction operatives: for example, PSO uses particle velocity
and CS uses Lévy flight to produce the population. On the other hand, evolutionary-based algorithms
like Genetic Algorithm (GA), Differential Evolution (DE), and Extremum Seeking (ES) produce the
population by using natural genetic evolution. They use genetic operators such as crossover, also called
recombination, and mutation. The crossover exchanges some parts of two individuals, while the
mutation operator changes the value of a randomly chosen individual.

3.1.3. Selection

Selection is the procedure to distinguish the finest members of the population for the subsequent
generation. It is grounded on the accomplishment of measures set by the fitness function. The selection
should be taken keeping in mind that it converges to the global optimal solution deprived of having
to sacrifice too much convergence speed. There exist selection schemes proposed in the literature,
described in [20,21].

3.1.4. Stopping Criterion

The stopping criterion is the last phase of soft computing-based MPPT algorithms, with the
terminating condition that halts the algorithm. It happens when one or more pre-defined conditions
become true. The most frequently used stopping criteria are the following:

(a) Generation (n) numbers—An onset value of (n) is set. The process stops the iteration after
fulfilling the defined number of iterations.

(b) Finest fitness threshold—This condition terminates the iteration when the determined value of the

objective function (PPVBest) is smaller than the set value of
(
PPVDe f ined

)
. Population convergence—In

this condition iteration stops when the difference between the minimum and maximum (n) values
of all characters in the population is smaller than the defined acceptance value.

(c) Fitness convergence—This condition stops the iteration when the difference between the minimum
and maximum (n) values of the objective function (PPV) for all individuals in the population is
smaller than the recommended tolerance values.
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3.2. Bayesian Network (BN) Method

The BN method is also known as the probabilistic neural network method. In this method, MPP is
determined based on random variables probability. Because of the soft computing algorithm in this
method, multidimensional MPPT based on the combination of two or more algorithms can be easily
configured as depicted in Figure 17, which makes it more efficient and precise in tracking the correct
direction towards the MPP point [56,57].
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Figure 17. Bayesian network information fusion for MPPT.

In the above-mentioned Figure 17, a Bayesian network is configured with the combination of two
MPPT PSO and INC methods. The network contains 20 nodes [A1, A2, . . . . . . A20], which are divided
into two observation sections, left and right, and each section assigned ten nodes from [A1, A2, . . . . . .,
A10] for the right-side MPPT observation method and [A11, A12, . . . . . ., A20] for the left-side MPPT
observation method. The character S signifies the projected location after Bayesian fusion [58,59]. The
observations of the left and right sections are then equated by checking which of their entries match.
For every matching node, it assigns the value of 1, and to non-matching nodes, 0. In this way, the
probability is applied to all the best-known nodes to determine the MPP point [60].

3.3. Non-Linear Predictor (NLP) Method

The non-linear predictor algorithm determines the MPP based on certain predictions. The predictor
function is used for selected I–V and P–V curves, which need to be exploited. However, in most cases,
a P–V curve is considered for prediction [61]. In a non-linear predictor method, it utilizes several
previous duty cycle inputs and their corresponding power data points to determine the MP point by
using a prediction function. As depicted in Figure 18, D1, D2, and D3 are the previously used duty
cycles corresponding with the P1, P2, and P3 PV curve maximum power (MP) points during the first
round. Thereafter the new duty cycle Dm1 is found by the predictor and the power Pm1 at Dm1 is
calculated as at point A. The Pm1 and Pmpp of the P–V curve do not match, so the new duty cycle Dm2 is
predicted to find out Pm2 at Dm2, which also does not match Pmpp at point B. In this way, the prediction
process is repeated again and again until it predicts the accurate duty cycle Dm, which determines the
Pm to match the MPP [62,63].

The main feature of the non-linear predictor method is its ease of implementation and very fast
convergence with excellent efficiency under rapidly changing irradiance and temperature. However,
under partial shading conditions, this method is not competent enough to determine the MPP by
calculating the Dm values, because the predictor does not represent multiple peaks.
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3.4. Ant Colony Optimization (ACO) Method

Different researchers have reported on the ant colony optimization method with different MPPT
techniques for tracking the true GMPP [64–71]. ACO is another swarm optimization technique that
is based on ants’ shortest path seeking phenomenon toward their colony [69]. Nowadays, ACO is
frequently applied in conjunction with different MPPT techniques to determine the GMPP under
frequently changing weather conditions, because of its advantageous ability to run continuously to
observe changes in real time with only one pair of voltage and current sensors. It is also guaranteed
to track the GMPP under non-uniform and partially shaded conditions. Furthermore, it has fast
convergence speed, its convergence is independent of the initial conditions, and no knowledge of PV
array characteristics is required.

3.5. Cuckoo Search (CS) Method

The cuckoo search method is inspired by the obligate brood reproduction approach. In this
process, cuckoo birds lay and hide their eggs in different nests of other birds for breeding, and the
laid eggs’ probability of discovery by other birds is pa =∈ [0, 1]. In this case, either the egg could
be recognized by other birds who will throw it out from their nests or change the nests, or, if these
eggs are not recognized and not destroyed by host birds, the cuckoo will grow and become a mature
bird [72–74]. The concept of CS is very similar to the P&O method using particles, but in the CS method
step-sizes are characterized by the Lévy flight law

(
y = l−λ

)
[75–77], where l is the flight length and

λ is the variance. Since 1 > λ > 3, y has infinite variance. In the CS method, to determine the GP
point, two appropriate defined variables, (i) PV array voltage i.e., Vi(i = 1, 2, . . . n), where n is the total
number of sample points, and (ii) the step-size of the sample, defined with α, are selected to find the
true GP point. Finally, the fitness of maximum power depends on the fitness curve function J, where
J = f (V). By following a Lévy flight, new voltage samples are generated according to Equation (26).

Vt+1
i = Vt

i + α⊕ levy(y) (26)

In Figure 19, CS MPP tracking under partial shading conditions is depicted where different GMPP
and LMPP points are marked. The cuckoo search process consists of three samples denoted by the
variables X, Y, and Z with (green, red, and yellow) color coding. At the first iteration, Y0 is considered
to be the nearest point to MPP. Thus, X0 and Z0 are forced to move towards Y0. However, in the second
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iteration, Z2 reaches the best possible GP point. Therefore, the Lévy flight allows the local samples X
and Y to leave their existing location and move towards the Z2 to reach GMPP [78].Energies 2020, 13, 3256 19 of 38 
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3.6. Fibonacci Search (FS) Method

Fibonacci search is also known as the line search method, based on Fibonacci for optimization
with a one-variable function. This search method works on a divide and conquer principle; the process
iteratively limits and moves the searching range to reach an ideal point in the range [79,80]. The Fibonacci
search number is defined as:

C0 = 0 C1 = 1 Cn = Cn−2 + Cn−1 for n ≥ 2 (27)

Based on Equation (27), the Fibonacci numbers are calculated as:

C2 = 1 C3 = 2 C4 = 3 C5 = 5 C6 = 8 C7 = 13 (28)

c1 and cN are the two restricted Fibonacci sequence numbers used in this method, where cN is
the last term in the order, where the direction of line search shifting is determined by the value of the
function at two checkpoints in the range. The method restricts search range to determine the MPP.
The FS method for limiting and shifting the optimal hold point in the range is illustrated in Figure 20,
where the variables ai and bi are the distance between two breakpoints and the association between ai
and bi is:

ai = cn + 1bi
= cn (29)
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According to Figure 20, when the condition |bk − ak| ≤ δ or
∣∣∣ f (bk) − f (ak)

∣∣∣ ≤ ε is justified, the FS is
terminated. Where δ and ε are the fixed tolerances, when there is an abrupt change in solar insolation,
the optimal obtained point may be distracted from its direction and move outward from the search
range. Therefore, the search limit must be maintained to protract the swing confined within the same
track. Afterward, the next reiteration direction is decided and is moved either in the right or left
direction of the search point depending on which is the swing of the output power.

3.7. Particle Swarm Optimization (PSO) Method

Particle swarm optimization is a stochastic optimal algorithm inspired by the social behavior
of the birds flocking and fish schooling life mechanism to find food and travel together [81]. In the
PSO method, many cooperative sources, also known as particles, are used to track the right path,
where each source exchanges its information obtained in its respective search process, as depicted in
Figure 21 [82,83]. The position of the right path is influenced by the best source in a neighborhood
Pbest or the best solution found by all the particles in the entire population Gbest. The best position is
identified by using Equation (30)

xt+1
i = xt

i + vt+1
i (30)

where vi is the velocity component to represent the MPPT step-size. The value of vi is calculated by
following Equation (31).

vt+1
i = wvt

i + c1r1·
(
Pbest, i− xt

i

)
+ c2r2·

(
Gbest − xt

i

)
(31)

where vt+1
i is the velocity of the i-th swarm, w is the learning factor, and c1, c2, r1, and r2 are the position

constant and random number respectively.
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Figure 21. Movement of particles in a particle swarm optimization method [82,84]. 

In this method, each source follows two basic rules to track the MPP, either (i) follow the best 
and successful source of practical shared information or (ii) move towards the suitable and best 
conditions according to previous information. This way, each source ultimately evolves to or close to 
the optimal solution [85]. 

Figure 21. Movement of particles in a particle swarm optimization method [82,84].

In this method, each source follows two basic rules to track the MPP, either (i) follow the best and
successful source of practical shared information or (ii) move towards the suitable and best conditions



Energies 2020, 13, 3256 21 of 37

according to previous information. This way, each source ultimately evolves to or close to the optimal
solution [85].

3.8. Fuzzy Logic Control (FLC) Method

In fuzzy logic control, a set of multiple logics is used to determine the MPP point with the
comparison of different binary logics with the two-state condition: it could be either false or
true [9,86–90]. FLC is suitable for nonlinear control because it does not use any multifaceted equations.
The performance of fuzzy logic completely depends on the parameters of membership functions and
the rules. However, there is no strict scheme to establish fuzzy parameters precisely to track MPP.
The design of FLC and its performance, therefore, depends on the expertise of the developer. FLC is
developed by following Equations (32) and (33).

E(k) =
PPV(k) − PPV(k− 1)
iPV(k) − iPV(k− 1)

(32)

CE(k) = E(k) − E(k− 1) (33)

In Figure 22, fuzzy logic control design is depicted, which comprises the four basic operating
principles of FLC method: (i) fuzzification, (ii) knowledge base, (iii) inference engine, (iv) defuzzification.
The fuzzification block is used to change input data points into appropriate binary values with the
help of the membership function, while the knowledge base block contains a databank of desired
linguistic explanations and the control regulations set. The inference engine comprehends the FLC
based on action generated by the information from the control regulations and the linguistic variable
explanations. Finally, the defuzzification block converts a contingent output into a non-fuzzy control
action [91].
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3.9. Artificial Neural Network (ANN) Method

ANN is motivated by biological neural networks (BNN), which is used for the assessment of
an approximate generally unknown large number of input functions. In a maximum power point
tracking system, ANN is best suited to the approximation of non-linear systems, where they give good
results as compared to other traditional computational MPPT methods [88,92–95]. ANN-based MPPT
contains a huge number of interlocked processing elements, also known as neurons or nodes, that are
organized in layers. The configuration of a feed-forward ANN is depicted in Figure 23; it consists of an
input layer, one or several hidden layers, and an output layer.
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In feed-forward ANN configuration, more or less all the nodes of each layer are linked to all the
nodes of the contiguous layers employing synaptic weights [91].

3.10. Extremum Seeking (ES) Method

The extremum seeking technique uses the ripples of the switching converter to evaluate the
slope of the voltage–power curve and sinusoidal perturbation, as illustrated in Figure 24. Where the
non-linear input-output map is given, if a sinusoidal signal of little amplitude is added to the input
signal x, the output signal y oscillates around its average value. Using this slope’s values, ES tracks the
MPP of the PV system [96,97]. This technique is operated with an algorithm that seeks the minimum or
maximum of a nonlinear plot. A system run by the extremum seeking method auto oscillates around
the optimum to track the MPP successfully [98].
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3.11. Chaotic Search (CS) Method

In the chaotic search method, PV voltage VPV and power PPV are selected for an optimization
variable and fitness function [18]. The optimization is performed in a superior way to the blindfold
random search method by selecting single or multiple variables. The main characteristics of the
CS method are its randomness, dynamicity, sensitivity, and regularity in tracking the MPP under
non-linear conditions [99,100]. In the chaos search algorithm, a single carrier search is not sufficient to
perform optimization to determine the MPP. Therefore, the dual-carrier CS search method is used,
which improves system efficiency, robustness, and precision. The logistic mapping of the dual-carrier
chaotic search method is followed according to:

xn+1 = yxn(1− xn) (34)

yn+1 = µ sin(πyn) (35)

where, n = 1, 2, . . . . . . , N. The two optimization methods are:

xr
i = a + xn(b− a) (36)

yr
i = a +

1
4
(yn + 2)(b− a) (37)

where a and b are two defined variables for an initial mapping search to determine the MPP points as
depicted in Figure 25.
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and smaller, and halts the searching when it reaches less than or equal to the set threshold value.
The foremost difference between CS and other soft computing MPPT methods is that in the chaotic
method, MPP search commences randomly in the selected region as described in the above Figure 25.
In this way, the search at both PV ends forces a faster convergence by a fast narrowing process because
of the dual search process, which guarantees the tracking of multiple maximum power points.

3.12. Differential Evolution (DE) Method

Differential evolution is a stochastic-based evolutionary algorithm belonging to the genetic
algorithm (GA) family. The DE method determines the MPP by creating and maintaining the number
of sample points based on its population optimization algorithm [101]. The working principle of DE is
almost the same as GA, where it uses mutation as a search and selection engine to determine the MPP
toward the prospective region as depicted in Figure 26 by following five steps [102].
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The DE method is used for both dynamic modeling of PV modules and MPPT designing, and
has three key features: (i) it is capable of determining the correct GMPP regardless of the initial
PV parameter values, (ii) it has fast convergence, and (iii) it is easy to implement with few control
parameters [101].

3.13. Genetic Algorithm (GA) Method

The genetic algorithm is a metaheuristic search optimization method based on biological evolution
principles and categories in the evolutionary algorithm family, which produces solutions to optimize
the problems using techniques inspired by natural evolution. In GA, chromosomes or genotypes are
used as an input parameter for MPP searching and optimization purposes. In the case of PV MPPT,
the chromosome parameters could be VPV or duty cycle where they need to be defined in either a
binary or a real system with their length limit. A larger number of chromosomes will increase the
processing time, but has the advantage of determining an accurate MPP.
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Genetic algorithms work on three steps: (i) selection, (ii) crossover, and (iii) mutation. In the
selection process, chromosomes are chosen from the current generation’s population to be inserted
into the next level of the population according to fitness level. The PV equation is used for the
fitness function. Afterward, a new chromosome is developed by using the crossover process with
the combination of two first- and second-generation chromosomes. Finally, the mutation is used to
maintain the genetic diversity of the generation until the stochastic variability of the genetic algorithm
is achieved. Usually, GA is used in conjunction with other evolutionary and soft computing algorithms
for optimization purposes: for example, in [103] GA with ANN, in [90] GA with FLC, and in [104] GA
with PSO are used.

3.14. Simple Moving Voltage Average (SMVA) Method

A new method for MPPT optimization named simple moving voltage average was discussed
in [7,105]. The proposed method is used for recuperating oscillatory effects such as ripples in solar PV
output voltage under non-uniform solar irradiance. Figure 27 shows the configuration of the PV system
with the proposed method, where X(n) and Y(n) are the input and output signals of the system and (N)
is the magnitude of the moving average buffer, with a defined number of samples. The buffer holds
the samples coming from X(n) as an input signal, computes them following the averaging method and
generates the output signal Y(n), as depicted in Figure 26.
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Figure 27. Simple moving voltage average configuration. Abbreviations: SMVA, simple moving
voltage average.

In Figure 28 the output signal Y(n) of the proposed method is given, where fluctuated (noisy)
input signals are smoothed by using Equation (37), with 10 and 20 buffer sample points. It is witnessed
that as the buffer sample size increases (the parameter N), the output Y(n) receives a more stable and
smooth signal [106].

SMVA5 = M1+M2+M3+M4+M5
5

SMVA6 = M2+M3+M4+M5+M6
5

SMVA7 = M3+M4+M5+M6+M7
5

SMVA20 =
M16+M17+M18+M19+M20

5

(38)
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3.15. Gauss–Newton (GN) Method

The Gauss–Newton method is also known as the Newton–Raphson method. In [107] this method
was reported to exhibit faster convergence as compared to the steepest descent and hill-climbing
techniques. The GN method uses a root-finding algorithm [108], in which the first and second
derivatives of PV power PPV are used to determine the direction and estimate the number of iterations
of convergence by solving the following equation:

v(k + 1) = v(k)

dp
dv

∣∣∣∣ v = v(k)

dp

dv2

∣∣∣ v = v(k)
(39)

The advantage of root-finding algorithms is their iterative approach to tracking the MPP. This is
not a model-based technique; for example, PV module parameters, such as Rp or RS, are required to be
identified or estimated. The root-finding algorithm is a completely general approach that searches for
the zero crossing of a given function—any given function used as the input for the algorithm [109,110].

3.16. Grasshopper-Optimized Fuzzy Logic (GOFL)

In [111], a novel grasshopper-optimized (GO) MPPT based on adaptive fuzzy logic was discussed.
The GO algorithm is used to tune the membership function (MF) scaling factors of fuzzy logic control
and to handle uncertainties in irradiances and temperature. The schematic diagram of the GO method
with adaptive FLC is depicted in Figure 29.
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PV system, where PV voltage (VPV) and current (IPV) are given as inputs to the boost converter to 
calculate the power (PPV) of the system and are considered equal to the value of k. Now, because of 
initial changes in PPV after initializing the system, the GO controller starts tracking and increases or 
decreases the duty cycle. In addition, the new IPV and VPV are measured to calculate the new power 
PPV (k ± 1). Based on the previous and current data on PV power, the controller decides to increase or 
decrease the duty cycle. This process of tracking continues until the GMPP is reached. A flowchart of 
the GO method is given in Figure 30. 
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The GO algorithm is used to track the GMPP with the duty cycle of the boost converter of the
PV system, where PV voltage (VPV) and current (IPV) are given as inputs to the boost converter to
calculate the power (PPV) of the system and are considered equal to the value of k. Now, because of
initial changes in PPV after initializing the system, the GO controller starts tracking and increases or
decreases the duty cycle. In addition, the new IPV and VPV are measured to calculate the new power
PPV (k ± 1). Based on the previous and current data on PV power, the controller decides to increase or
decrease the duty cycle. This process of tracking continues until the GMPP is reached. A flowchart of
the GO method is given in Figure 30.
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4. Discussion and Comparative Analysis

In the literature, many maximum power point tracking techniques can be found. This paper
discussed a wide range of literature presented on MPPT techniques under non-uniform (shading) solar
irradiance conditions. These techniques can be classified into two main collections: one is conventional
(online), and the other consists of soft computing MPPT techniques. Both MPPT techniques have the
same aim of optimizing the PV system output power regardless of non-uniform irradiance or partial
shading conditions. In this section, the discussion focuses on the following factors: the capability to
track the GMPP, convergence speed, design complexity, and sensitivity to environmental changes.
In Tables 2 and 3, all the techniques discussed in this paper are surmised based on the aforementioned
properties. Furthermore, in Tables 4 and 5, features of all the MPPT techniques are gathered for the
quick and easy understanding of the readers.
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Table 2. Comparison of online maximum power point techniques under non-uniform solar irradiance.

Online Methods

Technique PV Array
Dependency

Sensor
Tracking

Speed
Tracking
Accuracy

Efficiency
Circuitry Application

V I T A D Stand
Alone

Grid
Connected

Modified P&O No 3 3 Fast High High 3 3 3 3

Modified INC No 3 3 Fast Very High High 3 3 3 3

Modified HC No 3 3 Slow Moderate High 3 3 3 3

Instantaneous
Operating Power

Optimization
No 3 3 Fast Very High High 3 3 3

Two-Stage Load
Line No 3 3 Fast Moderate High 3 3 3

Power Load with
Variable Step No 3 3 Medium Very High High 3 3 3 3

Adaptive MPPT No 3 3 Fast Moderate Low 3 3 3 3

Direct Search No 3 3 Fast Moderate High 3 3 3 3

Segment Search No 3 3 Fast Moderate Good 3 3

Restricted
Voltage Window

Search
No 3 3 Fast Moderate Medium 3 3 3

Output Power
Increment No 3 3 Medium Very High High 3 3 3 3

V = Voltage, I = Current, T = Temperature, A = Analog, D = Digital.

Table 3. Comparison of soft computing maximum power point techniques under non-uniform
solar irradiance.

Soft-Computing Methods

Technique PV Array
Dependency

Sensor
Tracking

Speed
Tracking
Accuracy

Efficiency
Circuitry Application

V I T A D Stand
Alone

Grid
Connected

Bayesian
Network No 3 3 Medium Moderate High 3 3 3 3

Nonlinear
Predictor No 3 3 Fast High High 3 3 3 3

Ant Colony
Optimization Yes 3 3 Fast Moderate High 3 3

Cuckoo Search No 3 3 Very Fast High High 3 3

Fibonacci Search No 3 3 Fast Moderate Medium 3 3

Practical Swarm
Optimization No 3 3 Fast Moderate High 3 3

Fuzzy Logic
Control Yes 3 3 Fast Moderate High 3 3

Artificial Neural
Network Yes 3 3 Fast Moderate High 3 3

Extremum
Seeking No 3 3 Fast Moderate Medium 3 3

Chaotic Search No 3 3 Fast Moderate Medium 3 3

Differential
Evolution No 3 3 Fast Moderate High 3 3

Genetic
Algorithm No 3 3 Fast Moderate High 3 3

Simple Moving
Voltage Average Yes 3 Fast High High 3 3 3

Gauss–Newton No 3 3 Fast High High 3 3

Grasshopper No 3 3 Fast High High 3 3

Table 4. Features of online maximum power point tracking techniques.

Online Maximum Power Point Tracking Methods

Section Technique/Method Reference No Features

2.1 Modified Perturb and Observe
(MP&O) Method [27–30]

• Accurate and fast judgment
• Short training time
• Low computational complexity
• Low realization cost

2.2 Modified Incremental
Conductance (MINC) Method [31–35]

• No steady-state oscillation
• Reduced power losses
• Improved transient performance

under sudden irradiance changes
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Table 4. Cont.

Online Maximum Power Point Tracking Methods

Section Technique/Method Reference No Features

2.3 Modified Hill Climbing (MHC)
Method [36,38]

• Automatic parameter tuning
• Better steady-state performance than

adaptive hill climbing (AHC)
• Faster tracking speed than AHC

2.4 Instantaneous Operating Power
Optimization (IOPO) Method [39–42] • High tracking speed and accuracy

2.5 Output Power Increment (OPI)
Method [43]

• Can be applied in PV arrays with
unknown electrical characteristics

• Does not require PV
module configuration

• Can easily be incorporated into any
existing MPPT control system

2.6 Two-Stage Load Line (2SLL)
Method [44–46] • Control system response time is 0.3 s

2.7 Power-Load Characteristic with
Variable Step-Size Method [47–49]

• Maximizes load power and improves
PV system efficiency by around 2%

• Converter losses reduced using the
proposed MPPT (20 W instead of 30 W
with classical MPPT)

2.8 Adaptive Maximum Power Point
Tracking (AMPPT) Method [50]

• Successfully tracks the GMPP under a
large number of different partial
shade conditions

• Outstanding MPPT performance with
fewer sensors

2.9 Direct Search (DS) Method [51–53]
• Better tracking performance and

robustness in fast-changing conditions

2.10 Segment Search (SS) Method [54]

• Simple structure and easy
parameter design

• Could find a good compromise
between tracking accuracy, tracking
time, and success rate

• Average tracking accuracy of the
proposed method is 99.74%

• Probability of successfully obtaining
the GMPP is 90.5%

2.11 Restricted Voltage Window Search
(RVWS) Method [55]

• Improves searching performance
• Large voltage step
• Capability to skip some perturbation

steps by using the POT

Table 5. Features of soft computing maximum power point tracking techniques.

Soft Computing Maximum Power Point Tracking Methods

Section Technique/Method Reference No Features

3.2 Bayesian Network (BN) Method [56–60]
• Converges to the highest output power in the

least amount of time under dynamically
changing weather conditions

3.3 Non-linear Predictor (NL P)
Method [61–63]

• This algorithm can be easily integrated with
other sensors and the control unit

• Operates efficiently in both fast-changing and
stable atmospheric conditions

3.4 Ant Colony Optimization (ACO)
Method [64–71]

• Effectively integrates ant colony-based global
search in the formative stages with the
traditional P&O method

• GMPP with minimum tracking time
• Enables more energy to be extracted from the

PV system

3.5 Cuckoo Search (CS) Method [72–78]

• Better convergence speed, transient
fluctuations and steady-state performance as
compared to conventional P&O and particle
swarm optimization (PSO) MPPT methods

• Capable of tracking GMPP under
partial shading

• An algorithm can be implemented easily
using the standard (16-bit) modern
microcontroller/microprocessor
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Table 5. Cont.

Soft Computing Maximum Power Point Tracking Methods

Section Technique/Method Reference No Features

3.6 Fibonacci Search (FS) Method [79,80]
• Efficiently tracks the GMPP when multiple

LMPP peaks exist

3.7 Particle Swarm Optimization
(PSO) Method [81–85]

• This method can reach the GMPP in less than
27 iterations

• Average tracking efficiency is higher than
99.9%

• Can track the GMPP no matter where the
GMPP is located

3.8 Fuzzy Logic Control (FLC)
Method [86–91]

• Intelligent control system
• Fast tracking and response under intermittent

weather conditions
• Improves the transitional state and reduces

fluctuations in the steady state

3.9 Artificial Neural Network (ANN)
Method [92–95]

• Fast and precise GMPP tracking
• Better dynamic performance in comparison

with the other methods
• Distinguishes between the GMPP and local

maximum power points (LMPPs) and
guarantees a rapid convergence to the GMPP
with good efficiency

3.10 Extremum Seeking (ES) Method [96–98]

• Drastic performance in transient rise time to
track GMPP

• Guaranteed convergence and stability
properties, which are ideal for variable
weather conditions

3.11 Chaotic Search (CS) Method [99,100]

• Increases the sufficiency of chaos search and
overcomes the blindness of traditional
chaos methods

• Rapid tracking response and excellent
optimizing result

• Can track the GMPP from multiple LMPP
under partial shading conditions

3.12 Differential Evolution (DE)
Method [101,102]

• Suitable for both uniform and partial
shading conditions

• Tracks GMPP fast, without any oscillation,
and accurately

3.13 Genetic Algorithm (GA) Method [103,104]

• Can track the global MPP in little time
• Able to find the global MPP even under

complex partial shading or
uniform conditions

3.14 Simple Moving Voltage Average
(SMVA) Method [105,106]

• Reduces VPV oscillations
• Reduces the power losses faced by the

conventional algorithm under non-uniform
solar irradiation

• Improves not only the steady and dynamic
states but also the design efficiency of
the system

3.15 Gauss–Newton (GN) Method [107–110]

• Can extract considerable power from the
photovoltaic panel under varied
weather conditions

• Supervised machine learning techniques such
as ANN and adaptive neuro-fuzzy inference
systems (ANFIS) are much easier and
less complex

3.16 Grasshopper-Optimized Fuzzy
Logic (GOFL) [111]

• Can handle all possible abnormal conditions,
improves efficiency and convergence speed,
and reduces steady-state oscillations

4.1. Capability to Track the GMPP

As the solar PV system does not receive uniform solar irradiance even between very close locations
at a short time scale, there are also chances of partial shading that could occur due to any unavoidable
circumstances. These conditions could be a cause of the formation of multiple LMPPs on the I–V
and P–V characteristic curves, which affect the tracking efficiency of the MPPT. Conventional MPPT
algorithms are not good at tracking the GMPP under non-uniform and shading conditions, while
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stochastic and soft computing-based MPPT algorithms are prepared with the competency to track the
GMPP over multiple LMPPs.

4.2. Convergence Speed

An efficient maximum power point tracking algorithm should have the ability to converge to the
required current and voltage with good speed and accuracy, irrespective of steady or drastic changes
in solar irradiance. Comparatively, traditional maximum power point tracking takes more time to
converge to the GMPP as compared to the soft computing techniques. Moreover, the soft computing
algorithms converge the GMPP with minimal or negligible oscillation.

4.3. Design Complexity

The selection of a suitable maximum power point tracking because of its design complexity for a
particular PV system is considered one of the most important factors. The complexity of the MPPT
technique depends on how accurately the algorithm searches for the true GMPP in the presence of
different LMPPs; otherwise, the maximum solar energy is not harvested by the PV system. In addition,
the configuration and implementation of the MPPT also depend on user knowledge in handling the
device; some users are good at dealing with analog circuits while other prefer digital circuits. However,
stochastic and soft computing-based maximum power point tracking algorithms are instigated in
digital form, which requires experts in computer programming and software.

4.4. Sensitivity

A good maximum power point tracking algorithm must have enough sensitivity to operate under
any condition and atmospheric changes. It must have the capability to react speedily and track the
GMPP of the particular PV system at the given condition.

5. Conclusions

Because of the abundant availability of sunlight, solar PV is considered the most promising source
of energy in the renewable power generation system. However, it has certain limitations such as
weather intermittency, low efficiency, and high upfront cost. Therefore, to retrieve the maximum power
from the PV system under non-uniform and shading conditions, MPPT is used as a power electronics
interface. So far, extensive research has been done on enhancing the efficiency of MPPT power extraction
from the PV system under different weather conditions. However, it has always been challenging to
choose the right MPPT for the particular PV system’s configurations and conditions. For this purpose,
in this review, we have discussed and analyzed the most important and recent techniques presented in
the literature, revealing the features of each technique under non-uniform shading conditions. After
the appropriate assessments of all studies, a summary table was developed, which gives an overview
of the results based on the sensor used, complexity, application, and convergence speed.

After the assessment of all the online and soft-computing methods, it was concluded that most
of the conventional MPPT algorithms are good for tracking GMPP under uniform solar irradiance
conditions but fail to obtain accurate GMPP under rapidly changing and partial shading conditions.
However, soft computing algorithms are fast and accurate in tracking GMPP under partial shading and
rapidly changing solar irradiance conditions. However, they are complex algorithms and, therefore,
difficult to implement using embedded technologies.
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