SimBench—A Benchmark Dataset of Electric Power Systems to Compare Innovative Solutions Based on Power Flow Analysis
Abstract
:1. Introduction
1.1. Motivation
1.2. Introducing SimBench
2. Methodology to Compile the SimBench Dataset
- a clear formulation of the objectives,
- a comprehensive view of the task and a literature review,
- a determination of use case requirements,
- an analysis of available data,
- the compilation of the grid dataset and
- the evaluation of the dataset.
2.1. Voltage Level Dependent Methods to Generate the Grid Data
2.1.1. Extra-High and High Voltage Level
2.1.2. Medium Voltage Level
2.1.3. Low Voltage Level
2.2. Approach for Compiling Time Series
2.2.1. Consumer Time Series
2.2.2. Generation Time Series
2.2.3. Storage Time Series
2.2.4. Aggregated Grid Time Series
2.2.5. Reactive Power Time Series
2.3. Approach for Generating Future Scenarios
3. Overview of the SimBench Dataset
3.1. Extra-High Voltage Grid
3.2. High Voltage Grids
3.3. Medium Voltage Grids
3.4. Low Voltage Grids
- Transformers (): {160, 400, 630}
- Cables: NAYY 4 x {150, 240}
3.5. Load, Generation, Storage and Aggregated Grid Time Series
3.6. Future Scenarios
4. Application Example of the SimBench Dataset
4.1. Predefined Study Cases and Time Series
4.2. Applied Algorithms and Grid Planning Use Case
- Implement a forecast scenario
- Power flow analysis
- Optimization of the transformer tap position
- Grid expansion
- Investment evaluation
- Generate new candidate solutions from the actual solution and (randomly) select one
- Evaluate an acceptance criterion, whether the new solution should replace the previous solution or be rejected
4.3. Comparison of the Performance of the Applied Algorithms
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Project SimBench—Simulation Data Base for a Consistent Comparison of Innovative Solutions in the Field of Grid Analysis, Grid Planning and Grid Operation Management. Available online: www.simbench.net/en (accessed on 5 July 2018).
- Christie, R.D. Power Systems Test Case Archive; University Of Washington: Washington, DC, USA, 1999; Available online: http://www2.ee.washington.edu/research/pstca/ (accessed on 20 June 2018).
- Schneider, K.P.; Mather, B.A.; Pal, B.C.; Ten, C.; Shirek, G.J.; Zhu, H.; Fuller, J.C.; Pereira, J.L.R.; Ochoa, L.F.; de Araujo, L.R.; et al. Analytic Considerations and Design Basis for the IEEE Distribution Test Feeders. IEEE Trans. Power Syst. 2018, 33, 3181–3188. [Google Scholar] [CrossRef]
- Strunz, K.; Hatziargyriou, N.; Andrieu, C. Benchmark systems for network integration of renewable and distributed energy resources. Cigre Task Force C 2009, 6, 78. [Google Scholar]
- Meinecke, S.; Thurner, L.; Braun, M. Review and Classification of Published Electric Steady-State Power Distribution System Models. 2020. Available online: https://arxiv.org/abs/2005.06167 (accessed on 14 May 2020).
- Bialek, J.; Ciapessoni, E.; Cirio, D.; Cotilla-Sanchez, E.; Dent, C.; Dobson, I.; Henneaux, P.; Hines, P.; Jardim, J.; Miller, S.; et al. Benchmarking and validation of cascading failure analysis tools. IEEE Trans. Power Syst. 2016, 31, 4887–4900. [Google Scholar] [CrossRef] [Green Version]
- Mateo, C.; Prettico, G.; Gómez, T.; Cossent, R.; Gangale, F.; Frías, P.; Fulli, G. European representative electricity distribution networks. Electr. Power Energy Syst. 2018, 99, 273–280. [Google Scholar] [CrossRef]
- Pilo, F.; Pisano, G.; Scalari, S.; Canto, D.D.; Testa, A.; Langella, R.; Caldon, R.; Turri, R. ATLANTIDE—Digital archive of the Italian electric distribution reference networks. In Proceedings of the CIRED 2012 Workshop: Integration of Renewables into the Distribution Grid, Lisbon, Portugal, 29–30 May 2012; pp. 1–4. [Google Scholar] [CrossRef]
- Celli, G.; Pilo, F.; Pisano, G.; Soma, G.G. Reference scenarios for Active Distribution System according to ATLANTIDE project planning models. In Proceedings of the 2014 IEEE International Energy Conference (ENERGYCON), Cavtat, Croatia, 13–16 May 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1190–1196. [Google Scholar]
- Bracale, A.; Caldon, R.; Celli, G.; Coppo, M.; Dal Canto, D.; Langella, R.; Petretto, G.; Pilo, F.; Pisano, G.; Proto, D.; et al. Analysis of the Italian distribution system evolution through reference networks. In Proceedings of the 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe), Berlin, Germany, 14–17 October 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1–8. [Google Scholar]
- Subcommittee, P.M. IEEE Reliability Test System. IEEE Trans. Power Appar. Syst. 1979, PAS-98, 2047–2054. [Google Scholar] [CrossRef]
- Grigg, C.; Wong, P.; Albrecht, P.; Allan, R.; Bhavaraju, M.; Billinton, R.; Chen, Q.; Fong, C.; Haddad, S.; Kuruganty, S.; et al. The IEEE Reliability Test System-1996. A report prepared by the Reliability Test System Task Force of the Application of Probability Methods Subcommittee. IEEE Trans. Power Syst. 1999, 14, 1010–1020. [Google Scholar] [CrossRef]
- Josz, C.; Fliscounakis, S.; Maeght, J.; Panciatici, P. AC Power Flow Data in MATPOWER and QCQP Format: iTesla, RTE Snapshots, and PEGASE. 2016. Available online: https://arxiv.org/abs/1603.01533 (accessed on 12 May 2020).
- Fliscounakis, S.; Panciatici, P.; Capitanescu, F.; Wehenkel, L. Contingency Ranking With Respect to Overloads in Very Large Power Systems Taking Into Account Uncertainty, Preventive, and Corrective Actions. IEEE Trans. Power Syst. 2013, 28, 4909–4917. [Google Scholar] [CrossRef] [Green Version]
- Marten, F.; Löwer, L.; Töbermann, J.C.; Braun, M. Optimizing the reactive power balance between a distribution and transmission grid through iteratively updated grid equivalents. In Proceedings of the Power Systems Computation Conference (PSCC), Wrocław, Poland, 18–22 August 2014; pp. 1–7. [Google Scholar]
- Schäfer, F.; Menke, J.H.; Marten, F.; Braun, M. Time Series Based Power System Planning Including Storage Systems and Curtailment Strategies. In Proceedings of the CIRED 2019 25th International Conference on Electricity Distribution, Madrid, Spain, 3–6 June 2019; AIM: Madrid, Spain, 2019. [Google Scholar]
- Schäfer, F.; Menke, J.H.; Braun, M. Comparison of Meta-Heuristics for the Planning of Meshed Power Systems. 2020. Available online: https://arxiv.org/abs/2002.03619 (accessed on 12 May 2020).
- Larscheid, P.; Klettke, A.; van Leeuwen, T.; Meinecke, S.; Moser, A. Einfluss der Modellierungsgenauigkeit des Höchstspannungsnetzes auf die Simulation von Hochspannungsnetzen [Impact of the Extra High Voltage Grid Modeling Accuracy on the Simulation of High Voltage Grids]. 15. Symposium Energieinnovation. 2018. Available online: https://www.tugraz.at/fileadmin/user_upload/Events/Eninnov2018/files/lf/Session_D4/541_LF_Klettke1.pdf (accessed on 24 May 2020).
- Liu, Z.; Wende-von Berg, S.; Banerjee, G.; Bornhorst, N.; Kerber, T.; Maurus, A.; Braun, M. Adaptives Statisches Netzäquivalent Mit künstlichen Neuronalen Netzen [Adaptive Static Network Equivalent with artificial Neuronal Networks]. 16. Symposium Energieinnovation. 2020. Available online: https://www.tugraz.at/events/eninnov2020/nachlese/download-beitraege/stream-d/#c279406 (accessed on 24 May 2020).
- Meinecke, S.; Bornhorst, N.; Braun, M. Power System Benchmark Generation Methodology. In Proceedings of the NEIS-Conference, Hamburg, Germany, 20 September 2018. [Google Scholar]
- Meinecke, S.; Drauz, S.; Klettke, A.; Sarajlic, D.; Sprey, J.; Spalthoff, C.; Kittl, C.; Braun, M.; Moser, A.; Rehtanz, C. SimBench Documentation—Electric Power System Benchmark Models; Technical Report EN-1.0.0; University of Kassel, Fraunhofer IEE, RWTH Aachen University, TU Dortmund University: Kassel, Germany, 2020. [Google Scholar]
- Thurner, L.; Scheidler, A.; Schäfer, F.; Menke, J.; Dollichon, J.; Meier, F.; Meinecke, S.; Braun, M. Pandapower—An Open-Source Python Tool for Convenient Modeling, Analysis, and Optimization of Electric Power Systems. IEEE Trans. Power Syst. 2018, 33, 6510–6521. [Google Scholar] [CrossRef] [Green Version]
- DIgSILENT GmbH. DIgSILENT PowerFactory. Version 2017. Available online: https://www.digsilent.de/en/news.html (accessed on 20 January 2020).
- FGH GmbH. INTEGRAL. Available online: https://www.fgh-ma.de/de/ueber-uns/fgh-organisation/fgh-gmbh (accessed on 20 January 2020).
- OpenStreetMap. About Openstreetmap—Openstreetmap Wiki. Available online: https://wiki.openstreetmap.org/wiki/Main_Page (accessed on 1 July 2018).
- Reiners, D. Flosm Powergrid. Available online: http://www.flosm.de/en/powergrid.html (accessed on 1 July 2018).
- Matke, C.; Medjroubi, W.; Kleinhans, D. SciGRID—An Open Source Reference Model for the European Transmission Network (v0.2). 2016. Available online: http://www.scigrid.de (accessed on 12 May 2018).
- Bundesnetzagentur. Marktstammdatenregister [Market Data Register]. Available online: https://www.marktstammdatenregister.de/MaStR/Einheit/Einheiten/OeffentlicheEinheitenuebersicht (accessed on 31 May 2019).
- DESTATIS—Statistisches Bundesamt [German Federal Statistical Office]. Available online: https://www.destatis.de/EN/Home/_node.html (accessed on 1 July 2018).
- Meinecke, S.; Klettke, A.; Sarajlic, D.; Dickert, J.; Hable, M.; Fischer, F.; Braun, M.; Moser, A.; Rehtanz, C. General Planning and Operational Principles in German Distribution Systems Used for SimBench. In Proceedings of the CIRED 25th International Conference on Electricity Distribution, Madrid, Spain, 3–6 June 2019. [Google Scholar]
- Klettke, A.; van Leeuwen, T.; Flörkemeier, S.; Moser, A. Generierung von Benchmark—Modellnetzen in der Hochspannungsebene auf Basis öffentlich verfügbarer Daten [Generation of high Voltage Benchmark Grids Based on Publicly Accessible Data]. 10. Internationale Energiewirtschaftstagung an der TU Wien. 2017. Available online: https://simbench.de/wp-content/uploads/2019/02/IEWT2017_lf_Klettke.pdf (accessed on 24 May 2020).
- Kittl, C.; Sarajlić, D.; Rehtanz, C. k-means based identification of common supply tasks for low voltage grids. In Proceedings of the 2018 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Sarajevo, Bosnia and Herzegovina, 21–25 October 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Kays, J.; Seack, A.; Smirek, T.; Westkamp, F.; Rehtanz, C. The Generation of Distribution Grid Models on the Basis of Public Available Data. IEEE Trans. Power Syst. 2017, 32, 2346–2353. [Google Scholar] [CrossRef]
- Sarajlić, D.; Rehtanz, C. Low Voltage Benchmark Distribution Network Models Based on Publicly Available Data. In Proceedings of the IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe), Bucharest, Romania, 29 September–2 October 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Spalthoff, C.; Sarajlić, D.; Kittl, C.; Drauz, S.; Kneiske, T.; Rehtanz, C.; Braun, M. SimBench: Open source time series of power load, storage and generation for the simulation of electrical distribution grids. In Proceedings of the International ETG Congress, Esslingen, Germany, 28–29 November 2019. [Google Scholar]
- Tjaden, T.; Bergner, J.; Weniger, J.; Quaschning, V. Repräsentative elektrische Lastprofile für Wohngebäude in Deutschland auf 1-sekündiger Datenbasis [Representative Electrical Load Profiles for Residential Buildings in Germany Based on 1-Second Data]. 2015. Available online: https://doi.org/10.13140/RG.2.1.5112.0080 (accessed on 18 July 2018).
- Drauz, S. Synthesis of A Heat and Electrical Load Profile for Single and Multi-Family Houses Used for Subsequent Performance Tests of A Multi-Component Energy System. Master’s Thesis, RWTH Aachen University, Aachen, Germany, 2016. [Google Scholar]
- Follmer, R.; Gruschwitz, D.; Jesske, B.; Quandt, S.; Lenz, B.; Nobis, C.; Köhler, K.; Mehlin, M. Mobilität in Deutschland 2008 [Mobility in Germany]; Technical report; infas Institut für angewandte Sozialwissenschaft GmbH; Deutsches Zentrum für Luft- und Raumfahrt e.V: Cologne, Germany, 2010. [Google Scholar]
- Prior, J. Testverfahren zur Bestimmung des Elektrischen Verhaltens von Batteriesystemen in Elektrofahrzeugen [Test Method to Determine the Electric Behaviour of Battery Systems in Electric Vehicles]. Ph.D. Thesis, University Kassel, Kassel, Germany, 2017. [Google Scholar]
- Statista. Neuzulassungen von Elektroautos nach Marke/Modellreihe bis 2018 [New Registrations of Electric Vehicles by Brand/model Line Until 2018]. Available online: https://de.statista.com/statistik/daten/studie/224041/umfrage/neuzulassungen-von-elektroautos-nach-marke-modellreihe/ (accessed on 14 April 2020).
- Kays, J.; Rehtanz, C. Planning process for distribution grids based on flexibly generated time series considering RES, DSM and storages. IET Gener. Transm. Distrib. 2016, 10, 3405–3412. [Google Scholar] [CrossRef]
- Kays, J.; Seack, A.; Häger, U. The potential of using generated time series in the distribution grid planning process. In Proceedings of the CIRED 23rd International Conference on Electricity Distribution, Lyon, France, 15–18 June 2015. [Google Scholar]
- ENTSO-E. Historical data (until December 2015)—Consumption Data: Hourly Load Values 2006–2015. 2015. Available online: https://www.entsoe.eu/data/data-portal/ (accessed on 8 August 2019).
- Fraunhofer IEE. Sektorübergreifende Einsatz- und Ausbauoptimiertung für die Analysen des Zukünftigen Energieversorgungssystems [Multi-Sectors Deployment and Expansion Optimization for the Analyses of the Future Energy Supply System]. Available online: https://www.iee.fraunhofer.de/content/dam/iee/energiesystemtechnik/de/Dokumente/Broschueren/2018_F_SCOPE_Einzelseiten.pdf (accessed on 17 April 2020).
- Scholz, Y. Renewable Energy Based Electricity Supply at Low Costs. Ph.D. Thesis, University Stuttgart, Stuttgart, Germany, 2012. [Google Scholar]
- Regionalversammlung Mittelhessen. Anhang 2—Steckbriefe der im Teilregionalplanentwurf Ausgewiesenen Vorranggebiete zur Nutzung der Windenergie (VRG WE) [Appendix 2 —Briefings of Priority Areas for the Use of Wind Energy (VRG WE) Identified in the Sub-Regional Plan Draft]; Technical Report; Regierungspräsidium Gießen, Dezernat 31: Gießen, Germany, 2012. [Google Scholar]
- van den Busch, U.; Gauler, A.; Müller, H.; Frings, K.; Petkova, G. Energiewende in Hessen—Monitoringbericht 2016 [Energy Transition in Hesse—Monitoring Report 2016]; Technical Report; Hessisches Ministerium für Wirtschaft, Energie, Verkehr und Landesentwicklung: Wiesbaden, Germany, 2016.
- Scheidler, A.; Bolgaryn, R.; Ulffers, J.; Dasenbrock, J.; Horst, D.; Gauglitz, P.; Pape, C.; Becker, H.; Braun, M. DER Integration study for the German state of hesse—Methodology and key results. In Proceedings of the CIRED 25th International Conference on Electricity Distribution, Madrid, Spain, 3–6 June 2019. [Google Scholar]
- Braun, M.; Krybus, I.; Becker, H.; Bolgaryn, R.; Dasenbrock, J.; Gauglitz, P.; Horst, D.; Pape, C.; Scheidler, A.; Ulffers, J. Veteilnetzstudie Hessen 2024-2034 [Der Integration Study for The German State of Hesse]; Technical Report; BearingPoint GmbH and Fraunhofer IEE: Frankfurt am Main, Germany, 2018. [Google Scholar]
- 50Hertz Transmission GmbH and Amprion GmbH and TenneT TSO GmbH and TransnetBW GmbH. In Netzentwicklungsplan Strom 2030, Version 2019 [Network Development Plan of Electricity 2030, Version 2019]; Technical Report; CB.e Clausecker | Bingel AG: Berlin, Germany, 2019.
- Zimmerman, R.D.; Murillo-Sánchez, C.E.; Thomas, R.J. MATPOWER: Steady-state operations, planning, and analysis tools for power systems research and education. IEEE Trans. Power Syst. 2011, 26, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Bundesnetzagentur. Monitoringbericht 2017 [Monitoring Report 2017]. Available online: https://www.bundesnetzagentur.de/SharedDocs/Mediathek/Monitoringberichte/Monitoringbericht2017.pdf?_blob=publicationFile&v=4 (accessed on 14 April 2020).
- Wagner, C.; Kittl, C.; Kippelt, S.; Rehtanz, C. A Heuristic Process for an Automated Evaluation of Distribution Grid Expansion Planning Approaches. In Proceedings of the International ETG Congress, Bonn, Germany, 28–29 November 2017; pp. 1–6. [Google Scholar]
- Scheidler, A.; Thurner, L.; Braun, M. Heuristic optimisation for automated distribution system planning in network integration studies. IET Renew. Power Gener. 2018, 12, 530–538. [Google Scholar] [CrossRef] [Green Version]
- Thurner, L. Structural Optimizations in Strategic Medium Voltage Power System Planning. Ph.D. Thesis, University Kassel, Kassel, Germany, 2018. [Google Scholar]
- Klaus Faber AG. Technical Data—NAYY-J 01X400RM BK. Available online: https://shop.faberkabel.de/en/Power-cables-1-up-to-30-kV/Low-voltage-cables/Power-cable-NAYY-J-O/090225.html (accessed on 15 March 2020).
- Rehtanz, C.; Greve, M.; Häger, U.; Hagemann, Z.; Kippelt, S.; Kittl, C.; Kloubert, M.L.; Pohl, O.; Rewald, F.; Wagner, C. Verteilnetzstudie für das Land Baden-Württemberg; Technical Report; Ruhr GmbH: Dortmund, Germany, 2017. [Google Scholar]
Acro-nym | SimBench Code | Urbanization Characteristic | Rated Voltage [kV] | No. of Supply Points | Transformer Types | Generation Unit Types | Geo-References |
---|---|---|---|---|---|---|---|
EHV1 | 1-EHV-mixed--0-sw | mixed | 380, 220 | 390 | 209 × 600 MVA | Nuclear, Coal, Gas | √ |
HV1 | 1-HV-mixed--0-sw | mixed | 110 | 58 | 2 × 300 MVA, 4 × 350 MVA | Wind | √ |
HV2 | 1-HV-urban--0-sw | urban | 110 | 79 | 3 × 300 MVA | Wind | √ |
MV1 | 1-MV-rural--0-sw | rural | 20 | 92 | 2 × 25 MVA | Wind, PV, BM, Hydro | (√) |
MV2 | 1-MV-semiurb--0-sw | semi-urban | 20 | 112 | 2 × 40 MVA | Wind, PV, BM, Hydro | (√) |
MV3 | 1-MV-urban--0-sw | urban | 10 | 134 | 2 × 63 MVA | Wind, PV, Hydro | (√) |
MV4 | 1-MV-comm--0-sw | commercial | 20 | 98 | 2 × 40 MVA | Wind, PV, BM, Hydro | (√) |
LV1 | 1-LV-rural1--0-sw | rural | 0.4 | 13 | 1 × 160 kVA | PV | (√) |
LV2 | 1-LV-rural2--0-sw | rural | 0.4 | 93 | 1 × 250 kVA | PV | (√) |
LV3 | 1-LV-rural3--0-sw | rural | 0.4 | 118 | 1 × 400 kVA | PV | (√) |
LV4 | 1-LV-semiurb4--0-sw | semi-urban | 0.4 | 39 | 1 × 400 kVA | PV | (√) |
LV5 | 1-LV-semiurb5--0-sw | semi-urban | 0.4 | 104 | 1 × 630 kVA | PV | (√) |
LV6 | 1-LV-urban6--0-sw | urban | 0.4 | 53 | 1 × 630 kVA | PV | (√) |
Available Measures | Measure Costs | A | B1 | B2 | B3 |
---|---|---|---|---|---|
Transformer reinforcement by 630 kVA | 12,000€ | √ | √ | √ | √ |
Transformer tap position change | 0€ | √ | √ | √ | √ |
Reinforce lines by 240 mm2 | 70,000€/km | √ | √ | √ | √ |
Reinforce lines by 400 mm2 | 75,000€/km | √ | |||
Add parallel lines to 240 mm2 lines | 10,000€/km | √ | √ | √ | √ |
Measures of the (Best) Solution | A | B1 | B2 | B3 |
---|---|---|---|---|
Transformer reinforcement | √ | - | - | - |
Transformer tap position change | - | - | - | - |
Reinforced lines by 240 mm2 | 5–32, 32–36 | 5–26, 5–32 | 5–26, 5–32 | 32–36, 36–37 |
36–37, 37–38 | 32–36, 36–37 | |||
Reinforced lines by 400 mm2 | - | - | 32–36, 36–37 | - |
Added parallel lines | 32–36, 36–37 | 32–36, 36–37 | - | |
Overall costs | 21,724€ | 8256€ | 7816€ | 6160€ |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meinecke, S.; Sarajlić, D.; Drauz, S.R.; Klettke, A.; Lauven, L.-P.; Rehtanz, C.; Moser, A.; Braun, M. SimBench—A Benchmark Dataset of Electric Power Systems to Compare Innovative Solutions Based on Power Flow Analysis. Energies 2020, 13, 3290. https://doi.org/10.3390/en13123290
Meinecke S, Sarajlić D, Drauz SR, Klettke A, Lauven L-P, Rehtanz C, Moser A, Braun M. SimBench—A Benchmark Dataset of Electric Power Systems to Compare Innovative Solutions Based on Power Flow Analysis. Energies. 2020; 13(12):3290. https://doi.org/10.3390/en13123290
Chicago/Turabian StyleMeinecke, Steffen, Džanan Sarajlić, Simon Ruben Drauz, Annika Klettke, Lars-Peter Lauven, Christian Rehtanz, Albert Moser, and Martin Braun. 2020. "SimBench—A Benchmark Dataset of Electric Power Systems to Compare Innovative Solutions Based on Power Flow Analysis" Energies 13, no. 12: 3290. https://doi.org/10.3390/en13123290
APA StyleMeinecke, S., Sarajlić, D., Drauz, S. R., Klettke, A., Lauven, L. -P., Rehtanz, C., Moser, A., & Braun, M. (2020). SimBench—A Benchmark Dataset of Electric Power Systems to Compare Innovative Solutions Based on Power Flow Analysis. Energies, 13(12), 3290. https://doi.org/10.3390/en13123290