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Abstract: A condition-based maintenance policy for offshore wind turbines is presented in
consideration of the maintenance uncertainty and the weather effect. In this paper, the offshore
wind turbine is divided into four main assemblies—namely, the rotor, gearbox, generator, and pitch
system. The support vector machine classification technique is implemented to analyze the failure
information, which was collected from field data in China. According to the results of fault diagnosis
and prediction, the assembly that reaches the corresponding maintenance threshold will be repaired.
At the same time, a maintenance opportunity occurs for the rest of the components, and an optimized
plan can be determined by arranging the maintenance combination and time. The calculated results
indicate that the proposed condition-based maintenance policy is beneficial to reduce the maintenance
expenditure of offshore wind turbines.

Keywords: offshore wind turbine; condition-based maintenance; support vector machine;
fault diagnosis

1. Introduction

With the characteristics of stable wind energy resources, large power generation, and easy
consumption, offshore wind energy has developed rapidly in recent years and has a broad market
prospect [1,2]. Offshore wind energy has significant advantages compared with onshore. (1) Energy
reserves are more than three times those of onshore wind. (2) Average available hours of offshore
wind power are more than 3000 h per year, which is higher than the 2000 h of onshore wind power [3].
This happens because the offshore wind is more stable and the average wind speed is higher, which
can meet the minimum wind speed requirements for longer time than onshore wind power. (3) The
offshore wind turbine (OWT) has little impact on human life and is close to the coastal electricity
concentration area, which is convenient for the supply of wind energy.

Despite the great potential of offshore wind power, its high risk of failure and serious consequences
of failure pose challenges to safe and efficient energy development [4,5]. As an important wind energy
collection and conversion equipment, OWTs are in a harsh climate, and the waves, tides, and other
factors are complex and variable, resulting in the risk of failure changing with the increase of running
time [6,7]. The design life of OWT is 20 years, and its cost of the operation and maintenance (O&M)
occupy approximately 25–30% of the 75–90% of the investment costs or whole energy generation
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cost [8,9]. It can be explained by the following: (1) insufficient accessibility due to the unpredictable
weather and the remote location; (2) compared with onshore ones, more failures owing to the oceanic
environment, for example, storm surge, sea wave, sea ice; (3) extra inventory expense, specific vessels,
and technicians are needed.

Risk control measures should analyze the influences of various factors such as safety, economy,
and cost [10]. Under the traditional periodic maintenance and time-based maintenance methods,
if the system conditions are acceptable when performing preventive maintenance work, it will cause
a waste of the remaining life of the system, and if the system deteriorates faster than expected,
a failure may occur. Recently, researches related to data-based wind turbines condition monitoring are
proposed. Pandit et al. [11] presented a reference power curve using Supervisory Control And Data
Acquisition (SCADA) datasets from a healthy turbine, which is developed by using a Gaussian Process
and then was compared with a power curve from an unhealthy turbine. Yang et al. [12] studied a
new condition monitoring method with the help of the concept of the transmissibility of Frequency
Response Functions. Experiment of verification showed that the new technique is effective not only in
damage detection but in damage location in certain conditions. With the continuous maturity of state
monitoring, storage and analysis technologies, condition-based maintenance (CBM) is a solution of
this problem and has become a hot issue in the field of risk control [13,14]. The CBM method focuses
on the specific operating conditions of the system, evaluates the true state of the monitored equipment,
overcomes the blindness of maintenance, and can effectively reduce accidental failures caused by
insufficient maintenance and waste of resources due to over-maintenance. Simulation methods are
usually used in studying the effect of CBM in any type of system [15]. Scheu et al. [16] presented a
transparent risk-based methodology for the prioritization of OWT systems toward the application of
condition monitoring systems. Calculated results contained information related to various kinds of
wind turbines and substructure concepts. This work shows details of paths that leads to critical failure
modes, which is the basis of designing a condition monitoring system. Shafiee et al. [17] proposed a
CBM optimization model for a multi-blade fan system. The calculation results show that the CBM
method can effectively reduce the maintenance cost. Ghamlouch et al. [18] proposed a method of
condition-based maintenance strategy mainly adopting option theory, which solved the maintenance
interval optimization problem of complex systems considering the uncertainty of production and
deterioration. Verbert et al. [19] analyzed the multi-component problem of the research object and
proposed a new CBM optimization method. Based on the analysis of economic correlation and
structural correlation between components, the rational planning of maintenance tasks can be made to
achieve system-level maintenance program optimization.

In terms of multi-component systems such as OWTs, whenever a component of the OWT system
needs to be repaired, other components will be given the opportunity to repair in advance and form a
certain number of group maintenance plans [20]. Opportunistic maintenance, often abbreviated as OM,
has superiority in the following aspects: (1) it is critical for OWTs that joint maintenance processes only
spend one portion of the fixed cost; (2) vessels, technicians, and tools are all maintenance resources
that can also be in common use. Whereas, the preventative maintenance (usually abbreviated as
PM) should not be conducted when the previous maintenance date results in the loss of assemblies.
Regarding Remaining Useful Life (RUL), by comparing the maintenance costs corresponding to
different grouping schemes, the best repair solution could be determined. Song et al. [21] introduced a
two-stage framework to optimize the operation of offshore wind farms. Computational models were
developed for opportunistic condition-based maintenance. Minimum maintenance costs are calculated
and used to determine the schedule of periodic inspections. Pandit et al. [22] presented a support vector
regression-based pitch curve, which was adopted in anomaly detection exploration. The comparative
results in consideration of a binned pitch curve showed that the blade pitch curve closely follows
the binned pitch curve, but above the rated wind speed. Zhou and Yin [23] formulated a dynamic
opportunistic condition-based maintenance strategy. The varying maintenance lead-time effect on the
maintenance decision was analyzed, which remarkably affects the maintenance cost. The comparative
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analysis illustrated the capability of the proposed strategy. Lu et al. [24] proposed a CBM optimization
method for OWT systems in consideration of opportunities. An artificial neural network (ANN)
was employed to analyze the RUL based on the system monitoring data. A comparative study was
performed, and the feasibility of the presented approach was proved.

The objective of this paper is to achieve an optimized economy and availability by an opportunistic
maintenance policy. First, we calculate the preventive repair threshold and the opportunity maintenance
threshold from the parameters such as the lost shutdown loss, maintenance cost, and failure probability
of the component. By comparing the support vector machine (SVM) fault prediction results with the
maintenance thresholds, the components that need to be repaired at that time are identified, and finally
the maintenance operation optimization scheme in the entire calculation interval is formed. The core
idea of this method is to obtain the optimal repair time and maintenance combination by analyzing the
correlation between components, so as to reduce the number of repairs and reduce the repair cost.

The following sections of the paper are organized as this: Section 2 presents the OWT system
description. The fault diagnosis model based on SVM is introduced in Section 3. A case study is
performed in Section 4, including the discussion of the results. Conclusions are addressed in the
last section.

2. System Description of a Generic Offshore Wind Turbine

The basic function of the OWT is to use the rotor blade system to absorb wind energy and convert
it into mechanical energy; then, transfer the mechanical energy to the generator system through the
transmission system; then, convert it into electric energy by the generator; and finally, output the
electric energy through the grid to complete the whole process. In the entire process of converting to
electricity, OWTs can be divided into a certain amount of assemblies according to various functions.
In this paper, the OWTs system [25] is divided into four main assemblies according to the various
functions (Figure 1), which are the more relevant ones from a failure rate point of view [26].

A rotor can be divided into three components, including rotor blades, rotor bearings, and a rotor
hub. A rotor system functions to absorb and transmit the wind energy. A generator is installed inside
the nacelle. This equipment is used to convert mechanical energy to electrical energy and adapt the
output energy from the wind turbine to the grid. The gearbox functions to transform high-torque to
low-torque and transform the low speed of the main shaft to the high speed of the generator. A pitch
system is a mechanism that turns the blade, or part of the blade, in order to adjust the angle of attack of
the wind.
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Figure 1. Components of the offshore wind turbine (OWT) system.
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Carroll et al. [27] addressed three parameters of offshore wind turbines including maintenance
cost, repair time, and failure rate. The results indicate that the pitch system and generator are the largest
contributors to failure rates, and the gearbox has the highest average cost per failure. The downtime
of the gearbox and rotor are the longest, which can be explained by the high installation position
and weight.

3. Support Vector Machine Classification Algorithm

Fault analysis based on big data is the frontier method for the risk identification of offshore wind
turbines. Support vector machine (SVM) classifiers is an effective data processing technology, which is
based on the structural risk minimization principle solving a quadratic programming problem [28].
By applying the kernel function, the method can map the data into a higher dimensional input space
and construct an optimal hyperplane. In this study, “ν”-Soft Margin Support Vector Classifiers (SVC),
a class of ν-SVM, is applied, which can predetermine the fraction of training sample that are support
vectors [29].

Given a training dataset as
{
(x1, y1), . . . , (xi, yi), . . . , (xN, yN)

}
, xk ∈ Rn, yk ∈ R, the goal is to find a

function f (x) to construct the classifier, taking the form

f (x) = sign(wTϕ(x) + b) (1)

where w is the weight vector; φ(·) is the nonlinear function; and b is the bias term. For the original
Support Vector Classifier (SVC) algorithm, the optimization process can be described as follows

min
w,ξi

1
2
‖w‖2+C

∑
i

ξi (2)

subject to
yi · ((xi ·w) + b) ≥ 1− ξi, ξi ≥ 0 (3)

The regularization constant C determines the trade-off of a large margin and noise tolerance,
which is a hyperparameter that needs to be determined. Data points that are closer to the hyperplane
and affect the position and orientation of the hyperplane are called support vectors (as shown in
Figure 2). In the ν-SVC algorithm, the hyperparameter C is replaced by the formulation of constant ν
to control the number of margin errors and the support vectors. The optimization problem becomes

min
w,ξi

1
2
‖w‖2 − νρ+

∑
i

ξi (4)

subject to
yi · ((xi ·w) + b) ≥ ρ− ξi, ξi ≥ 0, ρ ≥ 0 (5)

Note that C does not appear in the objective function. Instead, a parameter ν and an additional
variable ρ are added to be optimized. The new hyperparameter ν is an upper bound on the fraction
of margin errors and a lower bound on the fraction of Support Vectors (SV) [29]. To derive the dual,
the Lagrangian can be constructed as

L(w,ξ, b,ρ,α, β, δ)
= 1

2‖w‖
2
− νρ+

∑
l
ξi −

∑
i
(αi(yi((xi ·w) + b) − ρ+ξi) + βiξi) − δρ

(6)

where αi, βi, δ ≥ 0 are Lagrange multipliers. The optimal solution is given by the saddle point of the
Lagrangian. Thereby, the conditions are
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∂L
∂w = 0 → w =

∑
i
αiyixi

∂L
∂b = 0 →

∑
i
αiyi = 0

∂L
∂ρ = 0 →

∑
i
αi − δ = ν

∂L
∂ξ = 0 → 1− αi − βi = 0

(7)

Substituting Equation (7) into Equation (6), the ν-SVC is obtained in a Lagrange dual form

max
αi
−

1
2

∑
i j

αiα jyiy jk(xi, xj) (8)

subject to ∑
i
αiyi = 0∑

i
αi ≥ ν

0 ≤ αi ≤ 1

(9)

In the above equations, the dot product of φ(x) is substituted by kernel functions. In this study,
the Gaussian kernel is used to map the data into a higher dimensional input space, meanwhile avoiding
the dimensionality curse

k(x, xi) = exp(−‖x− xi‖
2/σ2) (10)

σ is the hyperparameter that determines the width of the Gaussian kernel. Then, the regression function
Equation (1) can be rewritten as follows

f (x) = sign

∑
i

αiyik(x, xi) + b

 (11)

Only the training data belonging to the Support Vectors will affect the classifier, and the number
of Support Vectors is controlled by the hyperparameters ν. It should be noted that the selection of
hyperparameters ν and σ is significant to avoid overfitting. They can be selected by the cross-validation
procedure, finding the support vector classifiers with a good performance on data not yet observed.
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4. Opportunistic CBM Optimization for OWTs

The downtime of OWT brings an opportunity for joint maintenance activities. This section
proposed a maintenance method that aims to take advantage of the opportunity to determine the
optimized maintenance plan aiming to obtain the minimum long-term operational expenditure.

The Opportunistic CBM method presented in this study is based on an assumption that an OWT
is regarded as a multi-component system consisting of n independent units. A binary model is applied
to describe the condition of each unit, which means that the components are either in a functional or
failure state.

4.1. Reliability Threshold Calculation

According to the Opportunistic CBM strategy, the maintenance decision for each component can
be concluded.

The probability density f(t) can be described by

f (t) =
d
dt

F(t) =
d
dt
(1−R(t)) = −R′(t) (12)

where R(t) is the corresponding survivor function. The failure rate λ(t) can be derived as

λ(t) =
f (t)
R(t)

= −
R′(t)
R(t)

= −
d
dt

ln R(t) (13)

Since R(0) = 1, then ∫ ∆ti, j

0
λi, j(t)dt = − ln Ri, j(t) (14)

where
∫ ∆ti, j

0 λi, j(t)dt expresses the cumulative failure risk of component i in maintenance cycle j,
implying that the number of corrective maintenance (CM) for component i in each maintenance cycle
is equal to − ln Ri, j(t), which is considered as the PM threshold.

Since the number of CM during ∆ti,j is − ln Ri, j(t), assuming that the maintenance times for
component i during the operation period is Mi, the mean maintenance cost per unit time of this
component is defined as follows

ECi =
Mi[C0 + (CCM(i) + CD(i)(Wt + τ′i, j))(− ln Ri, j(t)) + C′PM(i) + CD(i)τi, j]

Ni∑
j=1

(∆ti, j + Wt + τi, j)

(15)

where τi,j is the PM duration and τ’i,j is the CM duration. τi,j consists of the repair time and travel
time, and τ’i,j is usually longer than τi,j because CM requires extra logistic time, resulting in more
downtime losses. The influence of changeable marine environment is considered in the presented
model. In Equation (15), Wt is the waiting time for an appropriate sea condition, which satisfied the
requirement of offshore operation. CCM(i) is the CM cost, including the recovery expense and the
downtime losses. C′PM(i) and CD(i) represent the imperfect PM expense and unit downtime losses,
respectively. C′PM(i) is related to age reduction factor σ i,j and PM cost CPM(i), which can be evaluated as

C′PM(i) =
(
1− σi, j

)2
CPM(i) (16)

The individual optimal Ri,j(t) can be obtained by minimizing ECi. Obtaining threshold Ri,j(t) is
the basis of the presented approach.
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4.2. The Calculation of Assemblies’ Remaining Life

In this paper, the SVM method proposed in Section 3 is implemented to address the collected
OWT monitoring information. A dataset with 80% of the historical data is used as incentive data to
complete the training of the model. The remaining 20% of the historical data are used as verification
data to prove the accuracy of the model prediction. In practice, temperature and vibration are closely
related to system failure. Therefore, this research selects these two feature quantities as the regressors.
The trained SVM model is employed to identify the real-time status of the components. If the threshold
Ri,j(t) is reached, a PM activity should be performed.

In the modeling process, “kernel trick” is used to approximate the upper bound of the generalization
error by minimizing the norm of the weights in the feature space. The Gaussian kernel function is used
to determine the nonlinear mapping of regressors. Compared to the polynomial kernels, the Gaussian
kernel has less numerical difficulty, and only one hyperparameter needs to be determined, which is
easier to choose. In this way, the model structure is chosen with a trade-off between empirical errors in
training data and model complexity. By using the kernel dot product trick, the curse of dimensionality,
which usually happens in other black-box modeling methods such as ANN, can be avoided, and a
unique global solution can be solved through a convex optimization problem.

4.3. Determination of the Maintenance Group

For an OWT system, when units k and i are jointly repaired, the corresponding cost preservation
can be evaluated as

CS(i,k, j) = C0 + CD(i,k, j) + CM(i,k, j) −CP(i,k, j) (17)

where CD(i,k, j) is the downtime cost preservation resulting from the joint maintenance, which can be
defined as

CD(i,k, j) = Cd(i) × τi,k∈min (18)

When the component i is recovered in advance, the unexpected failures would be reduced. The
cost saving for the decline of random malfunctions is CM(i,k, j), which can be expressed as

CM(i,k, j) = [(− ln Ri, j(t)) − (− ln Ri,k(t))]CCM(i) (19)

After one PM activity is performed in advance, every planned maintenance time should be
rearranged. Assuming ti, j represents the previous maintenance time and t′i, j represents the latest one,
the overall time switch should be

δti,k =
M∑

j=1

(∆ti, j − ∆t′i, j), M = min{Ni, N′i} (20)

in which Ni represents the originally planned number of PM, and N′i is the number of PM activities
after the update.

However, the substantial RUL is wasted when the unit is repaired in advance and the penalty
cost is

CP(i,k, j) = ECi × δti,k (21)

The cost savings can be achieved based on Equations (17)–(21).
The maintenance activities of components can be regarded as a finite set Φ in terms of a

multi-component system. When a maintenance opportunity appears, each maintenance combination
Φ1, Φ2, . . . , Φl is a subcollection of Φ, satisfying

Φp ∩Φq = ∅ p , q
Φ1 ∪Φ2 ∪ . . .∪Φl = Φ

(22)
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The size of Φ explodes as the amount of element rises, making the solution process extremely
complicated. When a CM or planned PM is performed on component r(r ∈ {1, . . . n}), all the
opportunistic maintenance (OM) combination can be identified, and the expense preservation should be

C(Φl) =
∑
i∈Φl

CS(i,r, j) i , r (23)

The OM combination corresponding to the maximum C(Φl) can be identified as the
optimized solution.

4.4. Rolling-Horizon Update

If ti,1 is the j-th maintenance execution time of unit i (i = 1, 2, . . . , N), thus, the following equations
can be established:

ti,1 = tbegin + ∆ti,1 (24)

and
ti, j = ti, j−1 + ∆ti, j−1 + Wt ( j > 1) (25)

where tbegin is the initial time, which is generally set as 0. ∆ti,1 is the interval of the first PM activity.
Wt is the waiting time for a weather window. After completing a maintenance activity, the failure rate
of the corresponding component is renewed. If one preventative maintenance or failure replacement is
conducted for unit I, a new life period need to be started.

4.5. Maintenance Schedule Determination and Maintenance Cost Calculation

The total maintenance expenditure of OWT can be derived as follows when the last inspection
is accomplished.

CT =

∑T
k=0 Ct

T × L
(26)

L represents the inspection interval, and T represents the inspection time of the OWT operation
process. The entire cost at inspection time k is denoted as Ct, which can be calculated by

Ct = C0 + Ccm ×

N∑
i=1

∆cmi + Cpm ×

N∑
i=1

∆pmi +
N∑

i=1

Cd(i) × τmax (27)

∆cmi =

{
1 Assembly i is correctively maintained in time node k
0 No CM on component i in time point k

∆pmi =

{
1 Assembly i is preventively maintained in time node k
0 No PM on component i in time point k

(28)

where N represents the amount of OWT assemblies. The complete calculation process of opportunistic
CBM optimization based on SVM is presented in Figure 3.
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Figure 3. Flow diagram of OWT Opportunistic condition-based maintenance (CBM) optimization.

5. Case Study

5.1. Input Information

Carroll et al. [27] collated and analyzed the operation data of 1768 turbine years, including
malfunction and repair information. The calendar ages of the selected OWTs are from 3 to 10 years,
which is a period where the failure rate is relatively stable. Some OWT component parameters are also
listed in [10,30]. These studies are the main references of the maintenance cost information for each
piece of component information in Table 1.

Table 1. Maintenance cost information for each component.

Component PM Cost Cpi
(€)

CM Cost Cmi
(€)

Fixed Cost
C0 (€)

Downtime
Cost Cdi (€/d)

Repair Time
(d)

Rotor 3000 185,000 30,000 7500 5
Gearbox 2500 230,000 30,000 7500 3

Generator 3500 60,000 30,000 7500 3
Pitch system 1900 14,000 30,000 7500 3

Assuming the capacity of the analyzed OWTs is 3 MW and the electricity tariff is 0.1 €, therefore,
the financial loss caused by system unavailability is Cd(i) = 3000 × 24 × 0.1 = 7200 (€/d).

The maintenance activities of OWTs are significantly affected by the marine environment such as
wind speed and effective wave height [31,32]. The maintenance ship needs to wait for the appropriate
time to complete the O&M activities and a round trip. According to Scheu et al. [33], wave height is the
key factor to determine the accessibility of an offshore site. Generally, the significant wave heights (Hs)
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less than 3.5 m are considered as the operational environmental conditions. Martins et al. [34] studied
the winter months (December, January, February) wave height data in the North Atlantic Portuguese
waters. The results are presented in Table 2, demonstrating the waiting time for a weather window
corresponding to different significant wave heights.

Table 2. The waiting time (in days) information corresponding to different wave heights (2–3.4 m).

Height Tmin Taverage Tmax

2.0 0.41 7.8 25.46
2.2 0.48 6.35 22.03
2.4 0.54 4.85 18.48
2.6 0.3 3.94 15.14
2.8 0.24 3.39 14.23
3.0 0.23 2.93 12.16
3.2 0.23 2.33 10.03
3.4 0.23 2.21 9.23

Lu et al. [24] presented the condition monitoring information of an invalidation period and the
suspended period for five OWTs, which is the data source for SVM model training and validation. Partial
information including time, vibration velocity, and temperature (abbreviated as T (days), V (mm/s),
T (◦C)) of OWT-rotor, OWT-gearbox, OWT-generator, and OWT-pitch is listed in Tables 3–6, respectively.

Table 3. Invalidation period and the suspended period for an OWT rotor.

No.
Invalidation Period Suspended Period

T(days) V (mm/s) T(◦C) T(days) V(mm/s) T(◦C)

1 526 3.287 56.8 511 3.052 54.7
2 571 4.021 55.2 509 3.963 48.2
3 496 3.036 57.7 467 3.008 44.6
4 534 3.852 56.1 479 3.445 49.5
5 602 4.365 58.4 503 4.105 51.2

Table 4. Invalidation period and the suspended period for an OWT gearbox.

No.
Invalidation Period Suspended Period

T(days) V (mm/s) T(◦C) T(days) V(mm/s) T(◦C)

1 625 5.836 68.1 557 5.466 64.6
2 649 6.023 67.7 569 5.793 64.9
3 576 6.046 66.9 534 5.282 62.7
4 597 5.874 68.7 482 5.431 63.2
5 704 6.226 65.4 553 5.594 58.1

Table 5. Invalidation period and the suspended period for an OWT generator.

No.
Invalidation Period Suspended Period

T(days) V (mm/s) T(◦C) T(days) V (mm/s) T(◦C)

1 400 2.065 68.7 322 2.011 67.9
2 411 2.117 68.4 341 2.005 68.1
3 387 2.098 69.2 356 2.157 67.7
4 394 2.247 69.1 328 1.849 67.5
5 405 1.952 68.0 370 2.101 68.2
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Table 6. Invalidation period and the suspended period for an OWT pitch.

No.
Invalidation Period Suspended Period

T(days) V (mm/s) T(◦C) T(days) V (mm/s) T(◦C)

1 357 3.002 52.7 300 2.856 51.8
2 342 3.314 53.6 295 2.942 52.0
3 359 2.871 52.7 310 3.001 52.1
4 361 3.119 52.9 305 2.972 52.1
5 338 2.992 52.5 298 2.889 51.7

5.2. Maintenance Optimization Based on Condition-Based Maintenance Method

In this paper, the cross-validation method is used to calculate the accuracy of fault evaluation
under a small amount of real data and verify the feasibility of the SVM algorithm. Then, white
noise is added to these real data to generate simulation data for the determination of maintenance
schedule. Due to the insufficient data, this paper verifies the accuracy of the state assessment using
a cross-validation method (Figure 4). One of the OWTs is regarded as the verification data, and the
remaining four were used as the training group, forming five different grouping schemes, and the SVM
model is constructed and tested five times. The advantage of this method is that the information of real
data is fully mined and the influence of simulation data on calculation results is avoided. The results
are presented in Table 7. Case 2 and Case 3 have the highest and lowest accuracy, which means
that the sample size has a significant impact on the results. With the least amount of training data,
the accuracy of Case 3 is over 85%, indicating that the SVM classification algorithm is able to recognize
the OWT fault.
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Table 7. Results of SVM classification.

Case 1 Case 2 Case 3 Case 4 Case 5

Total number of support vector 37 29 45 31 44
Classification 88.3% 90.2% 85.9% 88.9% 87.7%

Accuracy (53/60) (46/51) (61/71) (47/54) (50/57)

This paper adds white noise based on existing statistics to generate a set of simulated data.
According to industry suggestions, Gaussian noise is used to better simulate unknown real noise.
The real noise is regarded as the sum of various random variables with different probability distributions,
and each random variable is independent. Based on the Central Limit Theorem, the normalized sum
increases with the number of noise sources and is finally close to a Gaussian distribution. The Gaussian
noise function is determined by four parameters: µ, σ, m, and n. According to industry suggestions,
in this paper µ is set to 3.5 and 55 in vibration and temperature series, respectively. σ is set to 0.12 and
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1.06 in vibration and temperature series, respectively. m and n together determine the dimensions of
the matrix, which are set to 30,000 and 1.

The proposed CBM method is adapted to optimize the maintenance planning for OWT during
the mission period with the simulated data. Assuming that the critical operation wave height is 3 m
and the age reduction factor is 0.01, a detailed maintenance schedule and the cost savings in the first
three calendar days are presented in Figure 5 and Table 8. The outcomes demonstrated that the overall
cost savings is 120,000 Euros, and the maintenance expenses are significantly reduced through the
presented strategy.

Table 8. The maintenance schedule and cost savings in the first year. OM: opportunistic maintenance,
PM: preventative maintenance.

Component Time Point for PM Activity (Days)

158 258 495 597 821 919 1074

Rotor OM OM OM OM
Gearbox OM PM OM PM

Generator P M OM OM PM OM
Pitch system P M O M P M OM PM OM OM

C(G1)/1000 € 0 27.54 12.52 36.12 21.00 12.62 36.47
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In Table 9, the OWT is repaired 7 times in the first three years, including 5 PM activities and 13
OM activities. No CM is executed during this period. It is worth noting that every assembly was
maintained on the 258th, 597th, and 1074th day, leading to the largest cost saving happening at these
time points. On the 158th day, only one PM activity is performed; thereby, the cost saving is zero.

Table 9. Summary of different types of maintenance activities.

Component
Maintenance Activities

PM OM CM

Rotor 0 4 0
Gearbox 2 2 0

Generator 2 3 0
Pitch system 3 4 0

Figure 6 indicates that the generator is the largest contributor to overall costs, followed by the
pitch system and gearbox. It can be explained that the failure probability and maintenance cost of the
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generator are relatively higher within the entire system. In terms of pitch and gearbox, they have the
highest repair frequency and expense respectively, explaining their large cost proportions. In Figure 7,
the rotor ranks on the top of cost savings. One reason is that the rotor has 4 times the amount of OM,
which is more than the rest of the assemblies except for the pitch system. Another reason is that the
cost saving of the rotor in a single maintenance operation is relatively larger.Energies 2020, 13, x FOR PEER REVIEW 14 of 18 
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5.3. Comparison Analysis

The maintenance strategy can be divided into three categories, namely time-based maintenance
(TBM), reliability-based maintenance (RBM), and the CBM method. The TBM method has been widely
implemented in practice [35]. Under this maintenance strategy, PMs are carried out on device and
structures at constant intervals, and CMs are conducted after system malfunctions. In Goldwind Sci.
and Tech. Co., Ltd., a leading wind energy developer in China, the period of overall inspection is six
months. In order to improve the maintenance efficiency, researchers established different RBM and
CBM models considering joint maintenance, attempting to achieve the optimized cost savings. This
section performs a comparison analysis of five representative studies and the current paper; the results
are presented in Figure 8 and Table 10.

Tuyet and Chou [36] used two-parameter Weibull distribution to describe the OWT degradation
and established a maintenance optimization algorithm considering maintenance duration and power
loss. The proposed grouping maintenance schedule saved 4.56% of maintenance cost over the
baseline maintenance schedule. Xie et al. [37] developed the system degradation model based on the
three-parameter Weibull distribution. The outcomes demonstrated that the failure rate short-term
prediction of the three-parameter Weibull model was superior to the two-parameter Weibull model
when the fault data were limited, improving the cost savings pare part arrangement issue the time
window of waiting for appto 10%. Zhang et al. [38] presented a dynamic opportunistic maintenance
strategy, considering the sropriate weather. In this research, when the wind speed is high, the
maintenance decision tends to concentrate on restoring the OWT and starting its function as soon as
possible, in order to generate more power. Conversely, when the wind speed is low, the decision-making



Energies 2020, 13, 3518 14 of 17

algorithm tends to carry out joint maintenance. The O&M cost for the presented method showed a
decline of 18.3%.Energies 2020, 13, x FOR PEER REVIEW 15 of 18 
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In terms of CBM strategy, Lu et al. [23] and Zhou and Yin [24] developed an ANN predictive model
based on statistics failure information and assessed the RUL of OWT components. With real-time
status evaluation data, the optimized maintenance decisions can be determined, improving the cost
savings to over 30%. It is notable that Zhou and Yin [24] investigated the influence of maintenance
lead time, including the time required to assemble the maintenance team, arrange the spare parts,
prepare the specific equipment, and travel to the offshore site. The results of Lu et al. [23] and the
current paper show that CM does not happen during the calculation cycle, conforming the statistics
provided by Goldwind Science and Technology Corporation., Ltd. The reason is that the corrective
replacement leads to huge economic losses, compelling the maintenance decision-making models to
prepare adequate security redundancy to avoid it happening.

In Table 10, it can be summarized that (1) the cost-saving rates of CBM are generally higher than
RBM, resulting from a more accurate assessment of the real-time state of the system; (2) the more
interference factors (weather window, inventory management, etc.) are considered, the greater the cost
savings that are achieved, demonstrating the necessity of research on the maintenance strategy.

Table 10. Comparison of maintenance costs. RBM: reliability-based maintenance.

Maintenance Strategy References Components are Considered Cost Savings Compare
with TBM (%)

RBM
Tuyet and Chou, 2018 Rotor, gearbox, generator, bearing, electrical

system, transmission cable 4.56%

Xie et al., 2019 Blade, gearbox, bearing, generator 10%

Zhang et al., 2019 Rotor, bearing, gearbox, generator 18.3%

CBM
Lu et al., 2018 Rotor, pitch system, gearbox, generator 31.5%

Zhou and Yin, 2019 Rotor, bearing, gearbox, generator 32.46%

Current paper Rotor, pitch system, gearbox, generator 32.5%

6. Conclusions

In this research, a CBM strategy based on the SVM algorithm is introduced to optimize the OWT
maintenance arrangement. The SVM classifier is implemented to determine whether the component
needs to be repaired. The maintenance activities are grouped, taking into account the economic
dependence of different assemblies, aiming at reducing the overall expenditures. The extra downtime
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caused by a changeable marine environment is also addressed. The calculated results demonstrate
that the presented strategy can significantly preserve the costs compared with separate periodic
maintenance, improving the cost savings to 32.5%. The pitch system is the top assembly in terms
of total maintenance times, which is caused by its high system complexity and frequent failures.
The generator is the largest contributor to maintenance cost due to its high failure rates and repair
expenditures. The rotor is the top assembly part in terms of cost savings, since it requires more
maintenance opportunities, and the cost of its single maintenance activity is relatively higher. It can be
concluded that the developed model provides an economically efficient method of OWT maintenance
planning. Future research could be conducted by taking into account the failure interactions between
OWT components and the limited maintenance resources, including vessels and technicians.
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