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Abstract: The importance and urgency of energy efficiency in sustainable development are increasing.
Accurate assessment of energy efficiency is of considerable significance and necessity. The data
envelopment analysis (DEA) method has been widely used to study energy efficiency as a total
factor efficiency assessment method. In order to summarize the latest research on DEA in the field
of energy efficiency, this article first analyzes the overall situation of related literature published in
2011–2019. Subsequently, the definition, measurement and evaluation variables of energy efficiency
are introduced. After that, this article reviews the current DEA model and its extension models and
applications based on different scenarios. Finally, considering the shortcomings of the existing DEA
model, possible future research topics are proposed.
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1. Introduction

Energy efficiency is a major global issue that plays an essential role in achieving sustainable
development. Although the use of clean energy is gradually increasing, about 80% of global energy
consumption is still fossil fuels, such as oil and natural gas, and about 50% of power generation
depends on coal resources [1]. As a result, the public, researchers and governments are paying more
attention to this issue. It is of considerable significance to evaluate the energy efficiency of different
regions and sectors, not only can help identify differences in energy efficiency, but also to provide
a quantitative basis for improving efficiency [2]. Patterson [3] first proposed the concept of energy
efficiency, considering that it means using fewer resources at the same output, and gave four indicators
of energy efficiency measurement. According to this definition, the indicators that measure energy
efficiency can be divided into economic energy efficiency and physical energy efficiency.

To the best of our knowledge, the energy efficiency measured by different definitions and indicators
varies widely. In order to measure energy efficiency more accurately, many scholars have studied the
measurement of energy efficiency. Among them, Hu and Wang [4] proposed the concept of total factor
energy efficiency (TFEE), which was widely recognized. TFEE believes that a single energy input
cannot produce any output, which means that energy must be combined with other factors (such as
labor and capital) to produce output. Based on the TFEE framework, energy efficiency is defined as the
ratio of the target energy input to the actual input required at a particular output level. The proposal of
TFEE effectively makes up for the shortcomings of traditional single-factor energy efficiency evaluation
and has significant enlightening effects on subsequent research.

Early TFEE assessment methods consider that the input of production factors such as labor, capital,
and energy will ultimately yield a single output, which is generally expressed as the gross domestic
product (GDP). As fossil fuels dominate the world’s energy consumption structure, environmental
pollution is becoming increasingly severe. Therefore, a large number of studies have gradually
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incorporated ecological issues into energy efficiency evaluation [5]. It also means that energy efficiency
is a significant issue related to the coordinated development of economy, energy and the environment.

With regard to energy efficiency measurement methods, there are parametric and non-parametric
methods. Parametric Stochastic Frontier Analysis (SFA) requires the assumption of production
function [6], which may have a multicollinearity problem [7]. The Non-parametric DEA method can
better deal with the efficiency evaluation of decision-making units under the complicated situation of
multiple inputs–outputs and has been widely used to evaluate the TFEE. DEA was first proposed in 1978
as a mathematical programming method for determining the relative effectiveness of homogeneous
decision-making units (DMUs) [8]. Zhu, et al. [9] pointed out that DEA is a data-oriented method
for evaluating the efficiency of a set of homogeneous DMUs. Compared with previous efficiency
evaluation methods, DEA does not need to build a production function, which means that it can better
deal with the efficiency of DMUs.

In the existing research, a large number of studies are conducted from the perspective of theory
and application based on the data of countries, regions, industries and enterprises. In order to sort
out the latest research results of DEA in the field of energy efficiency, this article reviews different
DEA models used in energy efficiency evaluation, including basic DEA models and their extensions in
different scenarios. Future research directions of DEA-based energy efficiency evaluation methods
have also been proposed.

In the rest of this article, the basics of the literature published by DEA Energy Efficiency are
presented in Section 2. Section 3 introduces the definition of energy efficiency and input and output
variables. Sections 4 and 5 review the DEA-based energy efficiency assessment models and applications,
respectively. Conclusions and future research discussions are illustrated in Section 6.

To produce clear descriptions, all the acronyms mentioned in this paper are listed in
the nomenclatures.

2. DEA-Based Energy Efficiency Publications

This section first analyzes the publication years, journals and authors. Subsequently, through a
visual analysis of the keywords and their evolutionary context, the basic situation of research in the
field of energy efficiency evaluation based on DEA can be discovered.

2.1. Number of Publications, Journal Distribution and Authors

In order to analyze the latest research in the field of DEA energy efficiency evaluation, this article
searches the relevant articles in the core database of the web of science. The search method used in
this article is for the literature with the subject “energy efficiency” and the titles containing “DEA”, as
well as a publication period of 2011–2019. In the search results, the “article” type was selected, and
281 articles were selected in the end.

Based on the published papers retrieved, this article first analyzes the journal distribution of the
literature. Journals with more than six published articles are shown in Figure 1. Among them, the
journal with the most published articles is Energy Economics, with 26 published articles. Besides, the
number of journals published in Sustainability and Energy exceeded 20. Energies and Journal of Cleaner
Production have also published more than 15 articles.
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Figure 1. Journal distribution and number of publications.

Figure 2 shows the number of papers published in the field of DEA energy efficiency from 2011
to 2019. As can be seen from Figure 2, the number of papers published since 2011 has shown a clear
upward trend. The quantity reached 61 articles in 2019. This also indicates that the issue of energy
efficiency is getting more and more attention from researchers.
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Figure 2. Number of publications from 2011 to 2019.

2.2. Keyword Evolution Analysis

In order to further analyze the research progress of DEA in the field of energy efficiency, this
article uses Citespace to visualize the keywords and their research evolutionary context between 2010
and 2019. The context of keyword evolution is shown in Figure 3.

It can be found from Figure 3 that related research is mainly carried out from theory and
applications. Theoretical analysis is primarily based on the DEA method to improve the evaluation
model to evaluate the energy efficiency better.

Combined with the development and evolution of the DEA model, with the deepening of the
research, the construction of the DEA-based energy efficiency evaluation model is more in line with
the actual situation. These models have changed from traditional radial models (CCR, BCC) to radial
SBM models, from a single output to considering undesirable output, and from simple static structures
to dynamic models of complex network structures. Besides, it can be seen in Figure 3 that the primary
research objects of the existing literature are regional energy efficiency (country, province, and city),
industrial energy efficiency (manufacturing and agriculture), and company energy efficiency (power
plant). The detailed theory and application of DEA in energy efficiency will be further discussed in the
following article.
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3. Energy Efficiency Definition and Input–Output Variables

3.1. Energy Efficiency Definition

As traditional energy efficiency measurement methods ignore other inputs, the concept of TFEE
proposed by Hu and Wang [4] has been widely accepted. In the TFEE framework, it is believed that
energy itself cannot produce any output and must be put together with other factors to produce output.
The TFEE index incorporates energy, labor, and capital into the input system to generate economic
output. Energy efficiency is defined as the ratio of target energy input to actual energy input, as
shown below.

0 ≤
Target Energy Input
Actual Energy Input

≤ 1

3.2. Input–Output Variables

Selecting the appropriate input and output variables is an important step in the evaluation of
TFEE using the DEA model. Although there have been many studies on energy efficiency analysis,
there is still no unique standard for selecting input and output variables. In conventional energy
efficiency measures, energy is used as a single input to generate GDP [3]; Hu and Wang [4] introduced
labor and capital as input into the energy efficiency evaluation system for the first time, to evaluate
the energy efficiency of 29 provinces and cities in China. By adopting the same variables, Honma
and Hu [10] calculated the energy efficiency of a Japanese region from 1993 to 2003. Zhang, et al. [11]
evaluated the energy efficiency of 27 developing countries.

In production activities, as the energy consumption structure is still dominated by fossil energy, a
large number of carbon emissions, wastewater, and waste gas generated by the input of traditional
energy have a serious impact on the environment. In this context, carbon emissions, waste gas, etc., are
included as undesirable outputs when evaluating energy efficiency [12]. For example, Zhang, Sun
and Huang [5] used carbon emissions as undesirable output and GDP as a desirable output when
evaluating the energy efficiency of CDM member states. Li and Lin [13], Zhang and Choi [14], and
Wang, et al. [15] also used GDP and carbon emissions as output variables when evaluating energy
efficiency in 30 provinces and cities in China. Makridou, et al. [16] and Feng and Wang [17] also use
the above variables to evaluate the efficiency of high energy consuming industries in EU countries and
Chinese provincial-level industrial sectors.



Energies 2020, 13, 3548 5 of 20

Through the above analysis, it can be seen that there is a common system when using DEA for
TFEE evaluation. Without loss of generality, energy, capital and labor are used as inputs. The main
reason for introducing labor and capital is that energy itself cannot produce any output, and it must be
put together with other factors to produce the output [4]. Regarding output variables, GDP is generally
used as the expected output. Considering the impact of energy consumption on the environment,
carbon emissions are typically used as undesirable output.

The variables will also vary depending on the different subjects. For example, when evaluating
the energy efficiency of industries or enterprises, the input–output variables should be consistent
with their actual production processes. Wu, et al. [18] selected passenger seats, transportation energy
consumption, fixed assets, and transportation mileage as inputs. Passenger turnover and carbon
emissions are selected as outputs to evaluate the energy efficiency of China’s transportation sector.
Zhang and Choi [14] used the amount of power generation as the expected output when assessing the
energy efficiency of 252 power plants in China.

4. Construction of DEA-Based Models in Energy Efficiency Evaluation

Since DEA was proposed in 1978, it has been widely used in the efficiency evaluation of multiple
input–output problems. Since then, there has been continuous research to expand the DEA model
based on different theoretical and realistic backgrounds. Many models have also been proposed,
including radial and non-radial, static and dynamic, single structure and network structure models,
etc. [19]. In the field of energy efficiency assessment, due to the existence of undesirable carbon
emissions, modeling of energy efficiency, including undesirable outputs, has also attracted the attention
of researchers. This section reviews the energy efficiency methods from the perspective of basic and
extended DEA methods.

4.1. The Theoretical Basis of DEA

Data Envelopment Analysis (DEA) is a data-oriented method for estimating the full factor
efficiency of homogeneous decision units (DMUs) [19]. DEA can obtain the weight of a set of optimal
input and output variables through optimization methods based on objective data of the evaluation
object, and determine the efficiency level of DMU in the form of input and output ratio [8]. The basic
logic of the DEA method is to construct a set of homogeneous DMU convex combinations based on
input–output data to obtain an efficient production frontier. By comparing the actual input–output data
of the DMU with the projection data of the frontier, the DMU is evaluated by relative efficiency [20,21].
Since the DEA method was proposed, it has been widely used in different fields [9,19]. As to the DEA
method, many scholars have also proposed new concepts and models, such as the cross-efficiency
model, the super-efficiency model, SBM model, network structure model, etc. [22–24].

Charnes, Cooper and Rhodes [8] first proposed the DEA theory method. In the later DEA literature,
the first DEA model they created, namely the CCR model, was named after the first letters of the three
surnames of Charnes, Cooper and Rhodes. The CCR model assumes constant returns to scale (CRS).
In the DEA method, the evaluated objects are represented by DMUs. Each DMU produces R outputs
by inputting M production factors. In model (1), xmo, yro represents the m-th input and r-th output of
the DMU, respectively, and um, vr are the weights of the corresponding output and input variables.
The input–output efficiency of the o-th DMU can be obtained from model (1). According to the weights
of input and output variables, the CCR model can be understood as turning the multi-input–output
problems into a virtual single input–output one. For a specific DMU, this single efficiency is measured
by the ratio of virtual output to input. The linear programming of the CCR model can be expressed as
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maximizing the efficiency of a specific DMU with the condition that the efficiency of all DMUs does
not exceed 1.

max

M∑
m=1

um ymo

R∑
r=1

vrxro

s.t.

M∑
m=1

um ymn

R∑
r=1

vrxrn

≤ 1;

u ≥ 0; v ≥ 0; m = 1, 2, . . . , M;
r = 1, 2, . . . , R; n = 1, 2, . . . , N

(1)

Since model (1) is a nonlinear programming one, let t = 1
R∑

r=1
vrxro

,µ = tu, ν = tv, model (1) can be

transformed into an equivalent linear programming model, as shown in model (2). Model (2) is called
the DEA multiplier form, and its dual model can be represented by model (3), known as the envelope
form. The CCR model assumes that the returns to scale are unchanged, and the technical efficiency
obtained includes the scale efficiency component, so it is called comprehensive technical efficiency [8].
According to the way efficiency is measured, DEA models can also be divided into input-oriented,
output-oriented, and non-oriented.

max
M∑

m=1
µmymo

s.t.
M∑

m=1
µmymn−

R∑
r=1

νmxmn ≤ 1 m = 1, 2, . . . , M

R∑
r=1

νmxmo = 1 r = 1, 2, . . . , R

ν ≥ 0;µ ≥ 0; n = 1, 2, . . .N

(2)

minθ

s.t.
N∑

n=1
λnxmn ≤ θxmo m = 1, 2, . . . , M

N∑
n=1

λnyrn ≥ yro r = 1, 2, . . . , R

λn ≥ 0, n = 1, 2, . . . , N
j = 1, 2, . . .N

(3)

As mentioned above, many scholars have also proposed various new concepts and models in the
field of the DEA method, and many of those novel methods are utilized to evaluate energy efficiency.
In this paper, some basic or extended DEA models for assessing the efficiency of energy performance
will be summarized. To better understand these models more visually and clearly, the main features of
these models as well as their application scenario are presented in Table 1.

Table 1. The main features and application scenario of DEA.

Type Model Main Features and Application Scenario

Basic DEA

CCR DEA CCR model assumes constant returns to scale, so that the
results of the model include scale efficiencies

BCC DEA The BCC model assumes variable returns to scale, and the
results obtained are referred to as pure technical efficiency

SBM DEA
As a non-oriented efficiency evaluation model, SBM can be
better used to deal with the slack improvement of the input

and output variables
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Table 1. Cont.

Type Model Main Features and Application Scenario

Extended DEA

Undesirable DEA A good solution which can solve the problem of bad output in
the production process

Network DEA
By constructing a DEA model with intermediate output, the
network DEA can open the black box to show more detailed

efficiency in the production process

Dynamic DEA
Dynamic DEA can effectively analyze the efficiency of different

stages and the changes in efficiency, which can be achieved
through the window DEA method or the Malmquist index

Game Cross-Efficiency DEA
Game Cross-Efficiency DEA can analyze the situation of

competition between DMUs, which is helpful to improve the
accuracy of efficiency assessment

Meta-Frontier DEA
Meta-Frontier DEA can solve the difference between different
decision-making units due to technical or resource problems,

and improve the accuracy of evaluation

4.2. Energy Efficiency Evaluation Model Based on Basic DEA

4.2.1. CCR-Based Evaluation Model

Based on the input-oriented CCR model, Hu and Wang [4] proposed a TFEE evaluation model, as
shown in model (4). It is also assumed that there are N DMUs, and the production process of each
DMU is the input of energy and other M production factors, resulting in R outputs. The energy input
of the o-th DMU is denoted by eo. xmo, yro represents the non-energy input and expected output of the
DMU respectively.

minθ

s.t.
N∑

n=1
λnen ≤ θeo

N∑
n=1

λnxmn ≤ θ
∗xmo m = 1, 2, . . . , M

N∑
n=1

λnyrn ≥ yro r = 1, 2, . . . , R

λn ≥ 0, n = 1, 2, . . . , N

(4)

The optimal solution can be obtained by solving model (4), which represents the efficiency of
the o-th DMU. However, the above model cannot directly obtain the target energy input. Thus, Ali
and Seiford [25] proposed a two-stage method so that the slack variables of input and output can be
obtained. The slack variable of energy input can be expressed by s−e . The TFEE based on the CCR
model can be calculated by formula (5).

CCR− based TFEE =
θ× eo − s−e

eo
= 1−

(1− θ) × eo + s−e
eo

(5)

4.2.2. BCC-Based Evaluation Model

The CCR model assumes that the scale effect of production technology is maintained, but in fact,
not all DMUs are in the optimal production scale state. Therefore, the efficiency calculated by the
CCR model includes scale efficiency. Subsequently, Banker, Charnes and Cooper [21] proposed a DEA
model that considers returns to scale, known as the BCC model. The BCC model is based on variable
returns to scale, and the technical efficiency derived excludes the effects of returns on the scale, so it
is called pure technical efficiency. The BCC model adds a constraint

∑N
n=1 λn = 1 to the CCR model;

λ is the linear combination coefficient of input–output variables. The BCC-based energy efficiency
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evaluation model is shown in model (6), and the meaning of the variables in model (6) is consistent
with their counterparts in model (4).

minθ

s.t.
N∑

n=1
λnen ≤ θeo

N∑
n=1

λnxmn ≤ θxmo m = 1, 2, . . . , M

N∑
n=1

λnyrn ≥ yro r = 1, 2, . . . , R

N∑
n=1

λn = 1

λn ≥ 0, n = 1, 2, . . . , N

BCC− based TFEE =
θ×eo−s−e

eo
= 1− (1−θ)×eo+s−e

eo

(6)

4.2.3. SBM-Based Evaluation Model

The CCR and BCC models improve the inefficient DMU by reducing (increasing) all inputs (or
outputs) proportionally, which are called radial models. In fact, for the inefficient DMU, the gap
between the current state and the effective target value also includes part of the slack improvement.
Therefore, Tone [26] proposed the Slack-Based Model (SBM), a non-oriented efficiency evaluation
model, which is used to deal with the slack improvement of the input and output. The SBM has a
higher discriminating ability than the CCR and BCC model. The energy efficiency evaluation model
based on the non-oriented SBM is shown in model (7).

In model (7), the optimal value of the objective function is the efficiency value of the unoriented SBM.
s−e represents the slack variable of the energy input, S−m and S+

m represent the slack variable of the m-th
input and r-th output. The remaining variables are consistent with those in the model (6). According
to the Charnes–Cooper transformation, the abovementioned nonlinear SBM can be transformed into a
linear model for solving.

min
1− 1

M+1 (
M∑

m=1

s−m
xmo

+
s−e
eo
)

1− 1
R

R∑
r=1

s+r
yro

s.t.
N∑

n=1
λnen = eo − s−e

N∑
n=1

λnxmn = xmo − s−m, m = 1, 2, . . . , M

N∑
n=1

λnyrn = yro + s+r , r = 1, 2, . . . , R

λn ≥ 0, s−e ≥ 0, s−m ≥ 0, s+r ≥ 0, n = 1, 2, . . . , N

(7)

4.3. Energy Efficiency Evaluation Model Based on Extended DEA

4.3.1. Evaluation Model Considering the Impact of Carbon Emissions

In recent years, the use of clean energy has gradually increased, but the energy consumption
structure has not changed in the short term, with fossil energy as the mainstay. A large number of
carbon emissions, wastewater and gas caused by the use of traditional energy sources have a serious
impact on the environment. Therefore, it is necessary to consider the impact of carbon emissions and
wastewater emissions when evaluating energy efficiency [12]. For example, He, et al. [27] found that
undesirable output has a great impact on energy efficiency when studying the energy efficiency of
OECD countries. Disregarding undesirable output often leads to an overestimation of energy efficiency.



Energies 2020, 13, 3548 9 of 20

Regarding the setting of the undesirable output in the DEA method, it can be divided into strong
disposability and weak disposability [28]. The first is strong disposability, which can reduce undesirable
output without reducing expected output [29]. In the case of strong disposability assumptions, the
undesirable output can be treated as input [30,31] or transform the data of the undesirable output,
including linear transformation, inverse transformation and exponential transformation [32–34].
The second is the assumption of weak disposability of undesirable output, that is, to reduce undesirable
output requires additional input or reduce expected output [35,36]. It implies that the reduction
in undesirable output comes at the cost of expected output. There is also a null joint hypothesis
for undesirable output, which indicates that as long as there is expected output in production
activities, it must accompany undesirable output. The only solution to avoid undesirable output is to
stop production.

In the existing literature, the assumption of weak disposability is widely adopted. As the setting
of null-jointness is more in line with reality, that is to say, the input of energy, labor and capital will
produce greenhouse gas emissions while generating economic benefits. According to Apergis, et al. [37],
in the SBM-DEA model considering undesirable output, it is assumed that there are N DMUs, and
the production process of each DMU is through the input of energy and other M production factors.
This results in R expected outputs and K undesirable outputs. uqo represents the q-th undesirable output
of the o-th DMU, and the remaining variables are consistent with model (7). The SBM-DEA model
based on weak disposability is shown in model (8). The constraint of model (8) on the undesirable

output, (1 + 1
R

R∑
r=1

s+r
yro

) indicates that the expected output and the undesirable output have the same

proportion of change.

min
1− 1

M+1 (
M∑

m=1

s−m
xmo

+
s−e
eo
)

1+ 1
R+Q (

R∑
r=1

s+r
yro

+
Q∑

q=1

s−q
uqo

)

s.t.
N∑

n=1
λnen = eo − s−e

N∑
n=1

λnxmn = xmo − s−m, m = 1, 2, . . . , M

N∑
n=1

λnyrn = yro + s+r , r = 1, 2, . . . , R

N∑
n=1

λnuqn = (1 + 1
R

R∑
r=1

s+r
yro

)uqo − s−q , q = 1, 2, . . . , Q

λn ≥ 0, s−e ≥ 0, s−m ≥ 0, s+r ≥ 0, s−q ≥ 0, n = 1, 2, . . . , N

(8)

4.3.2. Evaluation Model Considering the Network Structure

The basic DEA method regards the production system as a “black box”, which means that only
the initial input and final output of the system are considered to evaluate the efficiency of the decision
unit [22]. However, the energy system is regarded as a complex process, in other words, the “black box”
assumption ignores the process of energy conversion or transmission. For example, the conversion
process of primary energy (such as coal, oil, and natural gas) to secondary energy (such as coke,
liquefied petroleum gas, and thermal power) in industrial systems, as well as the process of power
generation, power distribution transmission, and end-user energy consumption by power generation
companies. The energy efficiency obtained under the “black box” assumption cannot provide specific
process guidance in the energy production sector and the energy utilization sector to improve energy
efficiency separately [38].

In order to open the “black box” to evaluate the process efficiency of DMUs, Färe and Grosskopf [22]
first proposed a network DEA model considering intermediate output. Since Seiford and Zhu [39] first
applied two-stage DEA to US commercial banks, network DEA has been widely used for efficiency in



Energies 2020, 13, 3548 10 of 20

various industrial and commercial sectors. Since then, Tone and Tsutsui [40] proposed the SBM-Network
DEA model, and Fukuyama and Weber [41] extended the SBM network DEA model to evaluate the
efficiency of systems with undesirable outputs.

In the two-stage DEA structure, the DMU is divided into two sub-DMUs, where each sub-DMU
consumes input to generate output, where the input of the second stage is the output of the first stage.
When evaluating energy efficiency, Liu and Wang [38] divided the energy efficiency of the industrial
sector into two phases of energy production and energy consumption and used a two-stage network
DEA to evaluate energy efficiency, as shown in model (9).

In the network structure of model (9), the first stage is the energy production sector, where
the input is primary energy and the output is secondary energy. The second stage is the energy
consumption sector, whose input is the output produced in the first stage. λ1 and λ2 represent the
linear combination coefficients of the input and output in the first and second phases, respectively; eo

is the primary energy input in the first phase; xmo is the m-th input index of the o-th DMU in the first
phase; zto is the t-th secondary energy of the o-th DMU generated in the first stage, and it is also the
input index of the second stage; yro is the r-th output index of the o-th DMU in the second stage.

max 1
2 ·

1
M+1 (

M∑
m=1

s−m
xmo

+
s−e
eo
) + 1

2 ·
1
R

R∑
r=1

s+r
yro

s.t.
N∑

n=1
λ1

nen = eo − s−e
N∑

n=1
λ1

nxmn = xmo − s−m, m = 1, 2, . . . , M

N∑
n=1

λ1
nztn = zto + s1+

t , t = 1, 2, . . . , K


stage1

N∑
n=1

λ2
nztn = zto − s2−

t , t = 1, 2, . . . , K

N∑
n=1

λ2
nyrn ≥ yro + s+r , r = 1, 2, . . . , R

stage2

λ1
n ≥ 0,λ2

n ≥ 0, s−e ≥ 0, s−m ≥ 0, s1+
t ≥ 0,

s2−
t ≥ 0, s+r ≥ 0, n = 1, 2, . . . , N

Network−DEA− based TFEE = 1− s−e
eo

(9)

4.3.3. Evaluation Model Considering the Dynamic Process

When the data of the evaluated DMU are panel data of multiple periods, the assumption that
the production technology of the basic DEA method is the same all the time does not meet the actual
situation. Therefore, Charnes and Cooper [42] introduced DEA window analysis as an extension of the
traditional DEA method. DEA window analysis can analyze section data and panel data to analyze the
dynamic efficiency of the evaluated object. As a commonly used dynamic efficiency analysis method,
window DEA analysis is based on the moving average principle. It treats each DMU in different
periods as a separate unit for efficiency measurement. When evaluating energy efficiency under the
window analysis framework, the energy efficiency of a region in one period can be compared with the
efficiency of other regions and its efficiency in other periods [43]. In addition, window analysis can
also explore the energy efficiency of different regions in different years through a series of overlapping
windows [44].

Besides, the non-parametric Malmquist productivity index (MPI), as a time series analysis
technique, has also been extended to DEA models to characterize dynamic changes in efficiency.
Färe, et al. [45] introduced the Malmquist index into the DEA model to evaluate the efficiency changes
of different DMUs and the dynamic changes of production technology in two periods. In the field of
energy efficiency evaluation, the Malmquist model is also widely used [17,46].
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4.3.4. Evaluation Model Considering Game Relations

The basic DEA method maximizes the efficiency of the evaluation object by selecting a set
of optimal weights, which usually leads to an overestimation of the evaluation object’s efficiency
value [47]. Therefore, Sexton, et al. [48] proposed cross-efficiency DEA, in which the mutual evaluation
weights were added between DMUs to improve objectivity. In reality, there is often a direct or indirect
competitive relationship between different DMUs. Especially in the evaluation of energy efficiency,
competition may be more intense due to the scarcity of energy. Considering that when there is a
competitive relationship, the cross-efficiency DEA evaluation method will not be able to evaluate the
efficiency value of the DMU correctly. To this end, Liang, et al. [49] consider the game relationship
between different DMUs and extend the DEA cross-efficiency to the DEA game cross-efficiency, by
maximizing the cross-efficiency of each DMU without reducing the efficiency of other DMUs.

In the field of energy efficiency evaluation, DEA efficiency is widely used in game cross-efficiency.
Chen, et al. [50] introduced the game cross-efficiency DEA for the first time to measure the energy
efficiency of the power industry in China’s provincial regions under environmental constraints. Studies
have shown that the energy efficiency of eastern China is much higher than that of central and western
China. Xie, et al. [51] evaluated the environmental efficiency of China’s power generation industry
through the game cross-efficiency DEA, and the results showed that there was a significant efficiency
gap between regions. Yang and Wei [52] also used this method to analyze the energy efficiency of
26 prefecture-level cities in China. Considering that the cross-game DEA model requires multiple
steps, this article does not describe the model in detail here. The detailed model can be understood by
reading the relevant literature mentioned in this section.

4.3.5. Evaluation Model Considering Technical Heterogeneity

Based on a unified reference technology assumption, the basic DEA method assumes that all
DMUs participate in the evaluation with the same technical benchmark. It means that the heterogeneity
of different evaluation objects is ignored in the efficiency evaluation. In fact, there are huge differences
in natural resources, economic foundations, urbanization levels, and industrial structures in various
regions of China. For example, some provinces are dominated by agriculture and services, while others
are dominated by manufacturing. In this case, each region of China may have its own characteristics of
typical energy use, and the energy structure and technological level among the provinces are quite
different [53,54].

In order to solve the problem of bias in efficiency evaluation results due to heterogeneity between
DMUs, Battese, et al. [55] introduced a meta-frontier model for different groups with different
technologies. It can calculate comparable technical efficiency for DMUs under different technologies.
Since then, DEA and meta-frontier models have been widely used in energy efficiency evaluation.
Yu, et al. [56] combined the meta-frontier method with super-SBM to study the energy efficiency of
various regions in China during 2006–2016. Yu, You, Zhang and Ma [55] analyze the energy efficiency
of 277 cities in China from 2007 to 2014, taking into account the effects of technological heterogeneity.
Wang, et al. [57] classified Guangdong enterprises based on geographic boundaries and industry
classification systems and used group frontier and meta-frontier direction distance functions to analyze
their energy efficiency. The technical explanation and detailed settings of the meta-frontier model can
be obtained in the related literature mentioned in this section.

5. Application of DEA Model in Energy Efficiency Evaluation

As DEA has become an important and commonly used analysis tool and method in the field of
energy efficiency assessment, a large amount of the literature evaluates energy efficiency based on data
from countries, regions, industries and companies. This section will introduce the application of DEA
in energy efficiency evaluation.



Energies 2020, 13, 3548 12 of 20

5.1. Energy Efficiency Evaluation of Regions

After Hu and Wang [4] first proposed the total factor energy efficiency framework and evaluated
the energy efficiency of various regions in China, the DEA method was widely used in national and
regional energy efficiency evaluation. This section reviews the studies that have evaluated energy
efficiency in different regions using DEA from 2015 to 2019 and the results are shown in Table 2.

Jebali, et al. [58] analyzed the energy efficiency and influencing factors of Mediterranean countries
during 2009–2012. The results of the study indicate that the energy efficiency levels in Mediterranean
countries are high and decline over time. Gross national income per capita, population density and the
use of renewable energy can affect energy efficiency. Zhao, et al. [59] measured the energy efficiency
of 35 Belt and Road countries in 2015 based on a three-stage DEA model. The results show that
South Korea, Singapore, Israel, and Turkey have a TFEE of 1. Uzbekistan, Ukraine, South Africa
and Bulgaria are less efficient. He, Sun, Shen, Jian and Yu [27] established an DEA-based energy
efficiency evaluation model for measuring the energy efficiency of 32 OECD countries from 1995 to
2016. Additionally, the effects of environmental factors on energy efficiency assessment were compared
through efficiency analysis and predicted value analysis. Wang, et al. [60] use the DEA-Malmquist
method to measure the energy efficiency of 25 countries; the results of this study show that by using
the same inputs as developing countries, the developed countries’ balance between GDP growth
and carbon dioxide emissions is more balanced. In addition, India and China increased their energy
intensity during 2010–2017.

Table 2. Energy efficiency evaluation of regions.

Author Subject of Evaluation Model

He, Sun, Shen, Jian and Yu [27] 32 OECD countries CCR DEA
Bampatsou, et al. [61] 15 EU countries CCR-DEA

Zhang, Cheng, Yuan and Gao [11] 23 developing countries BCC DEA
Zhang and Choi [14] 30 provinces in China SBM DEA

Guo, et al. [62] Western of China SBM DEA
Apergis, Aye, Barros, Gupta and Wanke [37] 20 OECD countries SBM-Undesirable DEA
Zhao, Zhang, Zeng, Li, Liu, Qin and Yuan [59] 35 Belt and Road countries Network DEA

Jebali, Essid and Khraief [58] 24 Mediterranean countries Network DEA
Wu, Yin, Sun, Chu and Liang [12] 30 provinces in China Network DEA

Wu, et al. [63] 30 provinces in China Dynamic DEA
Wang, Yu and Zhang [43] 29 provinces in China Dynamic DEA

Guo, et al. [64] 27 countries Dynamic DEA
Wang, Le and Nguyen [60] 25 countries Dynamic DEA

Amowine, et al. [65] 25 African countries Dynamic DEA
Wang, Deng, Zhang and Zhang [57] Guangdong province Meta-Frontier DEA

Zhang, Sun and Huang [5] 16 CDM countries Meta-Frontier DEA
Li and Lin [13] 30 provinces in China Meta-Frontier DEA

Yu, Zhou and Yang [53] 30 provinces in China Meta-Frontier DEA
Sun, et al. [66] 211 cities in China Meta-Frontier DEA

Yu, You, Zhang and Ma [56] 277 cities in China Meta-Frontier SBM
Yang and Wei [52] 26 cities in China Game Cross-Efficiency DEA

In addition to evaluating a country’s energy efficiency, the energy efficiency of provinces and
cities has also attracted the attention of many researchers, especially in China’s provinces and cities.
Wang, Yu and Zhang [43], Li and Lin [13], and Wu, Zhu, Yin and Song [63] adopt the DEA method to
evaluate the energy efficiency of 30 provinces in China, and research shows that most provinces are less
energy efficient. Eastern China has the highest energy efficiency, while western China has the worst
energy efficiency. Efficiency has improved in most regions during 2006–2010. Yu, You, Zhang and
Ma [56] proposed an energy efficiency evaluation model that takes into account regional technological
heterogeneity and carbon emissions. By evaluating the energy efficiency of 277 cities in China between
2007 and 2014, the study found that there are large differences in the energy efficiency of Chinese cities.
Sun, Wang and Li [66] considered the heterogeneity and technology gap of energy management in
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different regions and measured the energy efficiency of 211 cities in the country. The results show that
the overall efficiency of Chinese cities is low, while that of central China is the lowest, and there is
a huge technological gap between regions. Yang and Wei [52] used the game cross-efficiency DEA
method to analyze the urban total factor energy efficiency of 26 prefecture-level cities in China from
2005 to 2015. The results show that the energy efficiency of cities considering competition is lower
than traditionally calculated energy efficiency. During the study period, the study concluded that
urban energy efficiency did not improve. There are also studies evaluating regional energy efficiency
in other countries. For example, Honma and Hu [10] used the DEA method to analyze total factor
energy efficiency based on data from 47 cities and counties in Japan.

5.2. Energy Efficiency Evaluation of Industries and Companies

DEA is also widely used in assessing industry energy efficiency. Through a search of the related
literature, it can be found that research on industry energy efficiency is mainly concentrated in high
energy consuming industries such as electricity, construction, and transportation. Table 3 shows the
energy efficiency evaluation of industries.

Makridou, Andriosopoulos, Doumpos and Zopounidis [16] used the DEA method to assess
the energy efficiency of five energy-intensive industries (building, power, manufacturing, mining,
and transportation sectors) in 23 EU countries between 2000 and 2009. The study found that overall
efficiency has improved across all sectors during this period. Lee and Choi [67] evaluated the energy
and environmental efficiency of seven manufacturing sectors in South Korea from 2011 to 2017, and the
results showed that energy efficiency improved by an average of 0.3% during the study period. Zhou,
Xu, Wang and Wu [34] conducted an empirical study on the energy efficiency of China’s industrial
sector from 2010 to 2014, and the results showed that most sectors of Chinese industry performed
poorly, especially those related to energy extraction. Lei, et al. [68] evaluated the energy efficiency
of 30 provincial transport departments in China. The results show that the energy efficiency of the
provincial transport departments in China varies widely; efficiency is better than in the midwest of
China. Djordjevic and Krmac [69] uses a non-radial DEA to evaluate the energy efficiency of the
transportation industry (road, railway and aviation sectors) in Europe. Studies indicate that the energy
efficiency of the road sector is improving, while the energy efficiency of the railway transport sector in
many assessed countries is low.

Table 3. Energy efficiency evaluation of industries.

Author & Year Subject of Evaluation Model

Zhou, Xu, Wang and Wu [34] 38 Chinese industrial sectors BCC DEA

Wang, Zeng, Wei and Zhang [15] 30 Chinese provincial
industrial sectors BCC DEA

Lei, Li, Zhang, Dai and Fu [68] 30 Chinese interprovincial
transport sectors SBM-DEA

Liu and Wang [38] 30 Chinese provincial
industrial sectors Network DEA

Wu, et al. [70] 30 Chinese provincial
industrial sectors Network DEA

Makridou, Andriosopoulos, Doumpos and
Zopounidis [16]

23 Energy-intensive industries
in EU countries Dynamic DEA

Lee and Choi [67] 7 Korean manufacturing
sectors Dynamic DEA

Perez, Gonzalez-Araya and Iriarte [46] 20 Chilean manufacturing
industry Dynamic DEA

Fei and Lin [71] 30 Chinese provincial
agricultural sectors Meta-Frontier Malmquist DEA

Feng and Wang [17] 30 Chinese provincial
industrial sectors Meta-Frontier Malmquist DEA

Han, et al. [72] 42 Chinese industrial sectors Game Cross-Efficiency DEA

Xie, Gao, Zhang, Pang and Zhang [51] 30 Chinese provincial
generation sectors Game Cross-Efficiency DEA
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Compared to the regional and industry levels, energy efficiency at the enterprise level is relatively
low. In the existing research, Cui and Li [73] used DEA to analyze the energy efficiency of 11 airlines
from 2008 to 2012. The results show that capital efficiency is an important factor to promote energy
efficiency. The US financial crisis had a significant impact on energy efficiency. Zhang and Choi [14]
carried out an empirical analysis of the energy efficiency of fossil fuel power generation in Korea
by using the DEA method. The results show that coal-fired power plants have higher total energy
efficiency than oil-fired power plants, and the technology gap of coal-fired power plants is smaller than
that of oil-fired power plants. Studies show that the Korean government should promote technological
innovation to reduce the technology gap in coal-fired power plants. Bi, et al. [74] analyzed the energy
efficiency of Chinese fossil fuel power generation enterprises. They pointed out that the energy and
environmental efficiency of the enterprises are low, and there are large differences between provinces.
In addition to power generation companies, Zhang, et al. [75] also analyzed the energy efficiency of
62 power generation equipment.

6. Findings and Future Research Discussions

6.1. Main Findings

By analyzing the literature on energy efficiency evaluation using the DEA method, it can be found
that a large number of studies are conducted from the perspective of theory and application based on
the data of countries, regions, industries and enterprises. The research has attracted more researchers’
attention and the number of publications has gradually increased since 2011. From a methodological
perspective, the DEA-based energy efficiency evaluation models are more consistent with the actual
situation, such as extending from a single output model to an evaluation model that considers pollution
emissions. The analysis of the research stage also ranges from a single stage to a multi-stage energy
conversion issue. In addition, a dynamic analysis of multi-year efficiency is also the focus of one study.
In other words, the construction of the energy efficiency evaluation model based on DEA has evolved
from a static structure of a simple structure to a dynamic model of a complex network structure, and
the accuracy of the efficiency evaluation has also been continuously improved.

Based on the above analysis of the related research on energy efficiency using DEA, this article
discusses the overall situation of existing research and existing research deficiencies as follows:

(1) From the perspective of research objects, a large number of documents use data from countries,
regions, industries and companies. Many research results have been obtained. Especially as China is
a large country of energy consumption and carbon emissions, a large number of studies have been
conducted on energy efficiency in China. Aiming at the technical heterogeneity of energy efficiency and
competitive cooperation between different research objects, existing research proposes corresponding
expansion models for different scenarios to improve the accuracy of efficiency assessment. It is not
difficult to find that most of the existing energy efficiency is analyzed at the regional level. Although
the energy efficiency at the company level has also attracted the attention of many scholars, compared
with the regional and industry sectors, the energy efficiency analysis for enterprises is relatively small.

(2) From a method point of view, a large number of scholars have improved the model from
different perspectives, and the accuracy of energy efficiency assessment has also continuously improved.
With the expansion of research, the level of agreement between the construction of the DEA-based
energy efficiency evaluation model and the actual situation continues to increase. However, as a
data-oriented efficiency assessment method, DEA is mainly based on analysis with structured and
clear data. Model studies that can deal with energy efficiency issues in complex data environments
such as heterogeneity, uncertainty, or big data are still lacking. As the complexity of products and
services continues to increase, the depth of energy efficiency assessment objects, especially at the
microdata level, such as enterprise-level data and production line data, is often unstructured, and
different data structures affect DEA. The accuracy of the assessment will also have an impact, resulting
in increased errors in the efficiency assessment. Therefore, with the increasing complexity of the energy
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system, building a DEA model in a complex data environment will enable a more effective evaluation
of energy efficiency.

6.2. Future Research Discussions

In order to inspire subsequent research on energy efficiency assessment using DEA, this paper
proposes possible future studies from the perspective of application areas and models.

6.2.1. Further Research on Energy Efficiency Issues in Enterprises

This paper believes that research on the energy efficiency of enterprises will help to further
improve energy efficiency if data are available. Specifically, the analysis of corporate data helps reveal
the state of corporate energy-saving technologies. Besides, with the continuous improvement of carbon
trading markets and policies, analyzing the energy efficiency level of enterprises will help companies
to manage carbon emission quotas and improve their competitiveness.

6.2.2. Further Research on Energy Efficiency Based on Complex Data Environment

For energy efficiency assessment models based on complex data environment, as the complexity
of energy systems continues to increase, it is particularly important to build evaluation models that can
analyze complex data. In this article, complex data may include inaccurate or ambiguous observations
of input and output data, large datasets for analysis, and heterogeneous data due to differences in
input or output structure.

(1) The DEA energy efficiency evaluation model in the heterogeneous data environment.
Despite the continuous development of current information technology and the continuous

improvement of data retrieval and analysis capabilities, there will still be data heterogeneity in the
evaluation. Unlike the problem of data loss caused by data retrieval and data storage, the data
heterogeneity discussed here is due to differences in the input or output variables caused by the
complexity of the production system. For instance, Cook, et al. [76] pointed out that steel plants
will produce different types of steel even if they invest the same resource structure. When the
traditional DEA method is used for evaluation, the efficiency will be biased. In fact, researchers have
begun to consider the heterogeneity of output indicators. Wu, et al. [77] have started to discuss the
use of improved DEA analysis to evaluate the efficiency of DMUs with different input and output
indicators. It is not difficult to find that under different energy consumption scenarios, especially at the
microdata level, it is particularly important to expand the efficiency assessment method in the case of
heterogeneous input–output variables.

(2) The DEA energy efficiency evaluation model in the uncertain data environment.
In the reality of energy efficiency assessments, the observations of input and output data may be

inaccurate or ambiguous [78]. The efficiency evaluation in the uncertain environment has attracted the
attention of many researchers. Among them, the fuzzy set theory proposed by Zadeh, et al. [79] and
others has been widely adopted. Based on fuzzy theory, some researchers have suggested the Fuzzy
DEA model [80,81]. In the field of energy efficiency assessment, the expansion and application of the
Fuzzy DEA model will help to improve the accuracy of energy efficiency assessment.

(3) The DEA energy efficiency evaluation model in the big data environment.
In the big data environment, the dataset used for analysis is usually very large, which causes

the traditional DEA calculation process to take a long time. Therefore, analyzing big data makes
researchers face many difficulties [82]. Recently, scholars have begun to evaluate energy efficiency
based on a large number of data environments. For example, Zhu, et al. [83] proposed a DEA-based
method for the allocation and utilization of natural resources in China, using big data technology to
characterize the production technology in each region. Li, et al. [84] uses big data theory to analyze and
evaluate the efficiency of China’s forest resources, taking into account many evaluation indicators and
large amounts of data in the big data environment. With the continuous improvement of information
and information technology and data retrieval capabilities in the future, how to make full use of the
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big data environment in the energy field and expand DEA models and algorithms will help further
enhance the application space of DEA.
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Nomenclatures

DEA Data Envelopment Analysis
DMU Decision-Making Unit
CRS Constant Returns to Scale
TFEE Total Factor Energy Efficiency
GDP Gross Domestic Product
CCR Authors’ initials (Charnes, Cooper and Rhodes)
BCC Authors’ initials (Banker, Charnes and Cooper)
CDM Clean Development Mechanism
SBM Slack-based Model
OECD Organization for Economic Co-operation and Development
MPI Malmquist productivity index
EU European Union
SFA Stochastic Frontier Analysis
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