Multiscale Molecular Dynamics Simulations of Fuel Cell Nanocatalyst Plasma Sputtering Growth and Deposition
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Antolini, E. Recent Developments in Polymer Electrolyte Fuel Cell Electrodes. J. Appl. Electrochem. 2004, 34, 563–576. [Google Scholar] [CrossRef]
- Litster, S.; McLean, G. PEM fuel cell electrodes. J. Power Sources 2004, 130, 61. [Google Scholar] [CrossRef]
- Greeley, J.; Stephens, I.E.L.; Bondarenko, A.S.; Johansson, T.P.; Hansen, H.A.; Jaramillo, T.F.; Rossmeisl, J.; Chorkendorff, I.; Nørskov, J.K. Alloys of platinum and early transition metals as oxygenreduction electrocatalysts. Nat. Chem. 2009, 1, 552–556. [Google Scholar] [CrossRef] [PubMed]
- Brault, P.; Caillard, A.; Thomann, A.L. Polymer electrolyte fuel cell electrodes grown by vapor deposition techniques. Chem. Vap. Depos. 2011, 17, 296–304. [Google Scholar] [CrossRef] [Green Version]
- Cuynet, S.; Caillard, A.; Lecas, T.; Bigarre, J.; Buvat, P.; Brault, P. High Power Impulse Magnetron Sputtering deposition of Pt inside fuel cell electrodes. J. Phys. D Appl. Phys. 2014, 47, 272001. [Google Scholar] [CrossRef]
- Caillard, A.; Cuynet, S.; Lecas, T.; Andreazza, P.; Mikikian, M.; Thomann, A.L.; Brault, P. PdPt catalyst synthesized by gas aggregation source and magnetron sputtering for fuel cell electrodes. J. Phys. D Appl. Phys. 2015, 48, 475302. [Google Scholar] [CrossRef] [Green Version]
- Brault, P. Review of low pressure plasma processing of proton exchange membrane fuel cell electrocatalysts. Plasma Process. Polym. 2016, 13, 10–18. [Google Scholar] [CrossRef] [Green Version]
- Bauchire, J.-M.; Thomann, A.-L.; Bedra, L. Molecular Dynamics simulations of clusters and thin film growth in the context of plasma sputtering deposition. J. Phys. D Appl. Phys. 2014, 47, 224004. [Google Scholar]
- Xie, L.; Brault, P.; Coutanceau, C.; Caillard, A.; Berndt, J.; Neyts, E. Efficient amorphous platinum catalyst cluster growth on porous carbon: A combined Molecular Dynamics and experimental study. Appl. Cat. B 2015, 62, 21–26. [Google Scholar] [CrossRef] [Green Version]
- Brault, P.; Neyts, E.C. Molecular dynamics simulations of supported metal nanocatalyst formation by plasma sputtering. Catal. Today 2015, 256, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Brault, P.; Chuon, S.; Bauchire, J.-M. Molecular Dynamics simulations of platinum plasma sputtering: A comparative case study. Front. Phys. 2016, 4, 20. [Google Scholar] [CrossRef] [Green Version]
- Brault, P.; Coutanceau, C.; Jennings, P.C.; Vegge, T.; Berndt, J.; Caillard, A.; Baranton, S.; Lankiang, S. Molecular dynamics simulations of ternary PtxPdyAuz fuel cell nanocatalyst growth. Int. J. Hydrog. Energy 2016, 41, 22589–22597. [Google Scholar] [CrossRef] [Green Version]
- Brault, P. Multiscale Molecular Dynamics Simulation of Plasma Processing: Application to Plasma Sputtering. Front. Phys. 2018, 6, 59. [Google Scholar] [CrossRef]
- Brault, P.; Chamorro-Coral, W.; Chuon, S.; Caillard, A.; Bauchire, J.-M.; Baranton, S.; Coutanceau, C.; Neyts, E.C. Molecular Dynamics simulations of initial Pd and PdO nanocluster growths in a magnetron gas aggregation source. Front. Chem. Sci. Eng. 2019, 13, 324–329. [Google Scholar] [CrossRef] [Green Version]
- Brault, P.; Coutanceau, C.; Caillard, A.; Baranton, S. Pt3MeAu (Me = Ni, Cu) fuel cell nanocatalyst growth, shapes and efficiency: A molecular dynamics simulation approach. J. Phys. Chem. C 2019, 123, 29656–29664. [Google Scholar] [CrossRef] [Green Version]
- Kouamé, B.S.R.; Baranton, S.; Brault, P.; Canaff, C.; Chamorro-Coral, W.; Caillard, A.; De Oliveira Vigier, K.; Coutanceau, C. Insights on the unique electro-catalytic behavior of PtBi/C materials. Electrochim. Acta 2020, 329, 135161. [Google Scholar] [CrossRef]
- Pikunic, J.; Clinard, C.; Cohaut, N.; Gubbins, K.E.; Guet, J.M.; Pellenq, R.J.M.; Rannou, I.; Rouzaud, J.-N. Structural modeling of porous carbons: Constrained reverse monte carlo method. Langmuir 2003, 19, 8565. [Google Scholar] [CrossRef]
- Brault, P.; Caillard, A.; Baranton, S.; Mougenot, M.; Cuynet, S.; Coutanceau, C. One-step synthesis and chemical characterization of Pt C nanowire composites by plasma sputtering. ChemSusChem 2013, 6, 1168–1171. [Google Scholar] [CrossRef] [Green Version]
- Foiles, S.; Baskes, M.; Daw, M. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 1986, 33, 7983. [Google Scholar] [CrossRef]
- Tersoff, J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Phys. Rev. B 1989, 39, 5566. [Google Scholar] [CrossRef]
- Graves, D.B.; Brault, P. Molecular dynamics for low temperature plasma–surface interaction studies. J. Phys. D Appl. Phys. 2009, 42, 194011. [Google Scholar] [CrossRef] [Green Version]
- Morrow, B.H.; Striolo, A. Assessing how metal–carbon interactions affect the structure of supported platinum nanoparticles. Mol. Simul. 2009, 35, 795. [Google Scholar] [CrossRef]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comp. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef] [Green Version]
- LAMMPS. Molecular Dynamics Simulator. Available online: http://lammps.sandia.gov (accessed on 17 June 2020).
- Chamorro-Coral, W.; Caillard, A.; Brault, P.; Andreazza, P.; Coutanceau, C.; Baranton, S. The Role of Oxygen on the Growth of Palladium Clusters Synthesized by Gas Aggregation Source. Plasma Process. Polym. 2019, 16, e1900006. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brault, P. Multiscale Molecular Dynamics Simulations of Fuel Cell Nanocatalyst Plasma Sputtering Growth and Deposition. Energies 2020, 13, 3584. https://doi.org/10.3390/en13143584
Brault P. Multiscale Molecular Dynamics Simulations of Fuel Cell Nanocatalyst Plasma Sputtering Growth and Deposition. Energies. 2020; 13(14):3584. https://doi.org/10.3390/en13143584
Chicago/Turabian StyleBrault, Pascal. 2020. "Multiscale Molecular Dynamics Simulations of Fuel Cell Nanocatalyst Plasma Sputtering Growth and Deposition" Energies 13, no. 14: 3584. https://doi.org/10.3390/en13143584
APA StyleBrault, P. (2020). Multiscale Molecular Dynamics Simulations of Fuel Cell Nanocatalyst Plasma Sputtering Growth and Deposition. Energies, 13(14), 3584. https://doi.org/10.3390/en13143584