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Abstract: A series of 5%Ni-CexZr1−xO2 (x = 0.3, 0.5, 0.7) catalysts has been prepared via one-pot
solvothermal continuous synthesis in supercritical isopropanol and incipient wetness impregnation
of CexZr1−xO2 obtained by the same route. The textural, structural, red-ox, and catalytic properties in
methane dry reforming (MDR) of Ni-modified Ce-Zr oxides synthesized by two routes have been
compared. It was shown by XRD, TEM, and Raman spectroscopy that the method of Ni introduction
does not affect the phase composition of the catalysts, but determines the dispersion of NiO. Despite
a high dispersion of NiO and near-uniform distribution of Ni within Ce-Zr particles observed for
the one-pot catalysts, they have shown a lower activity and stability in MDR as compared with
impregnated ones. This is a result of a low Ni concentration in the surface layer due to segregation of
Ce and decoration of nickel nanoparticles with support species.

Keywords: methane dry reforming; Ce-Zr oxide; synthesis in supercritical isopropanol; Ni loading

1. Introduction

The carbon dioxide reforming of methane-generating synthesis gas has now attracted considerable
attention as the environmental friendly process transforming undesirable greenhouse gases into
syngas [1]. Ni-based catalysts, due to their high activity and low cost, are very promising for the
practical use. However, the major problem of nickel nanoparticles deposited on traditional supports is
rapid deactivation caused by Ni sintering and coke formation [2]. CeO2-based supports are considered
as the promising ones for Ni-based MDR catalysts, because of their ability to store and release oxygen
that prevents coke poisoning of Ni nanoparticles [3–13]. It is known that oxygen vacancies and mobile
surface/subsurface lattice oxygen provide the activation of CO2 and carbon oxidation near/at the
metal-support interface, respectively. Besides this, a strong interaction of Ni with CeO2-based supports
ensures high Ni dispersion that helps to enhance the catalytic activity and resistance to coking [6,11,13].
Compared to CeO2 itself, mixed Ce-Zr oxides show a higher thermal stability, improved oxygen
mobility and better catalytic performance [3–5,7,9].
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The performance of Ni-CexZr1−xO2 catalysts in MDR depends on the methods of their synthesis:
impregnation of supports [5,7,9,10] or one-pot routes (co-precipitation [4,7,8], sol-gel [3]), which affect
Ni interaction with oxide matrix, its dispersion, and, to a large extent, the features of Ce-Zr oxides [3–
13]. The MDR activity and stability of Ni/Ce0.75Zr0.25O2 catalysts prepared by impregnation and
co-precipitation with or without the surfactant (CTAB) have been studied elsewhere [4]. For the
co-precipitated catalysts, Ni cations are embedded into the lattice of Ce0.75Zr0.25O2 that leads to a
stronger interaction of nickel species with the support and higher nickel dispersion in comparison
with the impregnated catalysts. In addition, the large specific surface area and pore volume of the
surfactant-assisted co-precipitated catalyst provide its highest activity [4]. Kumar et al. studied
Ni-containing catalysts obtained by impregnation of CexZr1−xO2 solid solutions (x = 0.4 – 0.92),
which have been prepared by co-precipitation using alcogel or the surfactant CTAB [9]. Testing in the
low-temperature MDR has revealed that the catalysts prepared with CTAB are very active and stable
because of a higher dispersion of Ni species and enhanced reducibility of the supports [9]. In contrast,
5%Ni-Ce0.6Zr0.4O2 catalyst prepared by impregnation of the surfactant-assisted precipitated support is
not active in MDR, as has been reported in the recent work by Wolfbeisser [7]. This result has been
explained by the inaccessibility of Ni particles due to their encapsulation by ceria–zirconia species
after reduction at 600 ◦C, as revealed by TEM and H2 chemisorption.

The dependence of MDR performance of Ni-CexZr1−xO2 on the composition of Ce-Zr-O solid
solution has been reported in a number of works but obtained results and their interpretation differ
considerably [3,5,7,8,10]. The study of 5%Ni-CexZr1−xO2 with x varied from 0.28 to 0.75 shows
superior MDR activity and a high coke resistance of zirconium-rich 5%Ni-Ce0.28Zr0.72O2 catalyst [5].
The amount and type of coke formed in the course of MDR were not straightforwardly related to the
activity but obviously depended on the Ce/Zr ratio. On the contrary, the remarkable performance of a
Ce-rich Ni/Ce0.8Zr0.2O2 sample and a low activity or fast deactivation of Ni supported on Ce0.5Zr0.5O2

and Ce0.2Zr0.8O2 carriers were observed in [8,10]. Makri et al. studied the carbon formation pathways
and carbon reactivity during MDR over 5%Ni/Ce0.8Zr0.2O2 and 5%Ni/Ce0.5Zr0.5O2 catalysts using
temperature-programmed methods and transient isotopic experiments [10]. The Ce-rich catalyst was
found to be more active and selective despite a lower oxygen capacity. The authors have underlined
that the rate of oxygen transfer from the support towards the Ni-support interface is more important
parameter than the oxygen storage capacity itself. Roh et al. explained the better performance of
co-precipitated Ni-Ce0.8Zr0.2O2 by a proximate contact between finely dispersed Ni and support
particles [8]. On the other hand, Ni/Ce0.6Zr0.4O2 was considered as the most active MDR catalyst due
to the ability of the Ce-Zr support to provide better transfer of oxygen species to Ni nanoparticles, thus
accelerating the removal of carbon [9].

It is well known that the Zr content strongly affect the structure of Ce–Zr mixed oxides. Only
a cubic fluorite phase is detected in the Ce-rich samples, while three tetragonal phases (t, t’, t”)
can form at intermediate Zr concentrations [14,15]. Except for the composition, the structural and
morphological features of CexZr1−xO2 nanoparticles are determined by their synthesis method [16].
Mixed CeO2-ZrO2 systems can be prepared using various methods including co-precipitation [4,5],
sol-gel [3], microemulsion [17], high energy ball milling [18], and synthesis in supercritical fluids
(SCS) [19–30]. The last one is highly attractive due to its usability and high productivity especially in a
continuous mode.

Supercritical (SC) and near-critical (NC) fluids exhibit unique properties, which can be tuned by
the reaction temperature and pressure. Along with these parameters, the morphology, crystallinity,
dispersion of cerium and zirconium oxides, as well as their solid solutions prepared using SC fluids
depend on the process mode (batch or continuous), nature of SC media (for example, water or alcohols),
presence of complexing agents, heating rate, and reaction time [19–30].

The synthesis of CeO2 and CexZr1−xO2 nanoparticles using NC and SC water was presented
in a number of articles [20–25]. It was shown that the rapid reaction kinetics in SC water makes
possible the preparation of oxide nanoparticles using continuous process, which is easily scalable
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and attractive for industry [20,22–25]. The formation of highly crystallized oxide nanoparticles in
hydrothermal conditions occurs at relatively low temperatures and does not require calcination that
allows preparation of highly dispersed CeO2 and CexZr1−xO2 [22]. Some authors pointed out a higher
specific surface area and thermal stability of samples produced by hydrothermal SCS in comparison
with those synthesized by conventional co-precipitation method [23,24].

The ligand-assisted hydro- and solvothermal synthesis was developed to produce surface-modified
ceria and Ce-Zr mixed oxides. The interaction between the surface hydroxyl groups and organic
molecules results in a high dispersion of oxide nanoparticles in organic media and unusual morphology
of individual crystals or secondary aggregates [25–28]. Except this, the usage of surface modifier leads
to decrease in the particle size because of the inhibition of crystal growth [25,27].

Some reports suggest that alcohols can act as not only a reaction media, but also as ligand molecules
modifying the surface with carboxylate-, alkoxide-, and alkyl- groups [26,29]. The solvothermal
continuous synthesis (T = 300 ◦C, p = 24.5 MPa) of CeO2 nanocrystals with different crystal size and
textural properties was reported by Slostowski and co-workers [29,30]. Primary particles of CeO2

(3 – 7 nm) aggregated in spherical agglomerates (20 – 100 nm) have demonstrated two types of thermal
behavior depending on the alcohol used (MeOH, EtOH, PrOH, i-PrOH, ButOH, PentOH, or HexOH).
First, a significant drop in the specific surface area and an increase in the crystallite size due to a
thermal treatment are observed, if alcohol had nC ≤ 3. When alcohol with nC = 4 – 6 is used, CeO2

nanoparticles show an increase in the specific surface area (up to 190 m2/g) and retention of crystallite
size. The authors have concluded that the thermal resistance of CeO2 samples depends on the thermal
stability of organic grafts provided by different alcohols.

It has been demonstrated in our previous papers that solvothermal continuous synthesis
using SC-i-PrOH along with a complexing agent allows to obtain homogeneous CexZr1−xO2 solid
solutions, which provide the high MDR activity and stability of Ni/CexZr1−xO2 catalysts prepared by
impregnation [31,32]. In the present work, for the first time, we have realized the one-pot solvothermal
continuous synthesis of Ni-Ce-Zr-O oxides as precursors of the MDR catalysts. CexZr1−xO2 and
5%Ni-CexZr1−xO2 with the different Ce/Zr ratio were prepared and characterized by the complex of
physical–chemical methods. The textural, structural, red-ox, and catalytic properties of the Ni-modified
Ce-Zr oxides obtained by one-pot route and impregnation technique were studied. The influence
of the preparation method on the physicochemical properties of Ni-CexZr1−xO2 and their catalytic
performance in MDR has been discussed.

2. Materials and Methods

CexZr1−xO2 oxides and 5%Ni-CexZr1−xO2 catalysts were prepared by the solvothermal continuous
synthesis using SC-i-PrOH along with acetylacetone as a complexing agent, which was added into
the Zr solution at the 2:1 molar ratio to Zr. Zr(OBu)4 (Alfa Aesar, 80% solution in n-butanol) and
Ce(NO3)3·6H2O (Vecton, pure for analysis grade) i-propanol solutions, were used as Zr and Ce
precursors. The mixture of Ce and Zr precursor’s solutions was fed into a U-shaped reactor (l = 75 cm,
inner d = 4 mm) at a rate of 5 mL/min along with i-PrOH preheated to 150 ◦C, which flow rate was
8 mL/min. For one-pot synthesis of NiCeZrO samples, the required amount of Ni(NO3)2·6H2O (Vecton,
pure for analysis) was additionally dissolved in the Ce(NO3)3 solution. The synthesis of CexZr1−xO2

and NiCeZrO one-pot catalysts was carried out at 400 ◦C under a pressure of 120–130 bar using an
installation described elsewhere [33]. The solid product separated from a mother liquid by decantation
was dried and calcined at 600 ◦C for 2 h to obtain samples marked as CexZr1−x or Ni-CexZr1−xop.
Along with one-pot NiCeZrO samples, Ni was supported on Ce-Zr oxides by a wet impregnation
using an aqueous solution of Ni(NO3)2. The obtained catalysts dried and calcined at 600 ◦C were
denoted as Ni-CexZr1−xim.

XRD patterns of the samples were recorded on a D8 Advance diffractometer (Bruker, Germany) in
the 2θ angle range of 20 – 85 ◦ using the CuKα radiation. The data were collected in a step-scanning
mode with a step of 0.05 ◦ and a step-counting time of 3 s. In order to analyze the phase composition
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of complex oxides, the full-profile analysis was done using the software TOPAS (Bruker, Germany).
At first, the lattice constants for each phase contained in the samples have been refined to determine
the unit cell volume. The chemical composition of the phases was evaluated from the literature data
on the dependence of the cell volume versus the Ce content [14,15]. Then, we fixed the occupancies of
Ce and Zr atoms in TOPAS to determine a weight ratio of two or three phases. The average particle
sizes of nickel oxide were estimated by the Selyakov–Scherrer equation from the integral broadening
of the most intensive (200) peak.

Raman spectra were recorded on a LabRAM HR Evolution spectrometer (Horiba, Japan) in the
backscattering configuration excited by 488 nm line of an Ar-ion laser.

The texture of CexZr1−xO2 or Ni-CexZr1−xop samples was studied by low-temperature N2

adsorption technique using an ASAP-2400 instrument (Micromeritics, USA). Prior to analysis,
the samples were degassed at 150 ◦C under vacuum for 16 h. The micropore volume was determined by
t-plot analysis. The mean pore size was evaluated as 4V/A. The specific surface area of Ni-CexZr1−xim
catalysts was estimated with a SORBI N.4.1 apparatus by the four-point BET method. Prior to
measurements, samples were pretreated at 200 ◦C for 1 h in vacuum.

The TEM-EDX studies were performed using a JEM-2010 instrument (JEOL Ltd., Japan) operated
at acceleration voltage of 200 kV and lattice resolution of 0.14 nm. The samples were prepared by
depositing drops of the powders dispersed in ethanol onto copper–carbon grids. EDX mappings and
line scan spectra were provided using a JEM-2200FS microscope (JEOL Ltd., Japan).

X-ray photoelectron spectroscopy (XPS) study was carried out with a spectrometer from SPECS
Surface Nano Analysis GmbH (Germany) using the monochromatic AlKα radiation. The charge
correction was performed by setting the Ce3d3/2-u”’ peak at 916.7 eV. The samples were analyzed in
the calcined and reduced state. After ex-situ reduction at 500 ◦C, they were transferred to the analysis
chamber under an ambient atmosphere. The relative element concentrations were determined from the
integral intensities of the core-level spectra using the cross-sections according to Scofield [34]. For the
detailed analysis, the spectra were fitted into several peaks after the background subtraction by the
Shirley method. The fitted procedure was performed using the CasaXPS software.

The reducibility of catalysts was studied by H2-temperature-programmed reduction (TPR).
The sample (200 mg) was heated at a rate of 10 ◦C/min to 900 ◦C in an installation equipped with a
thermal conductivity detector under a H2 (10%)–Ar mixture with a flow of 40 mL/min. To analyze the
TPR data, the Asymmetric Gauss Decomposition method (AGDM) was applied.

The catalytic performance in MDR was studied in a conventional fixed-bed quartz microreactor
in the feed of 5% CO2+5% CH4 (He – balance) at the contact time of 7.5 ms and 700 ◦C. All tests
were conducted for 3 h. Before the reaction, 15–20 mg of the catalyst (depending on its poured bulk
density) was pretreated in-situ at 600 ◦C for 30 min in the feed of 10% O2 in He. Due to a fast in-situ
NiO reduction in the reaction media at 650 ◦C [30], the pretreatment in H2 flow was not required.
The reaction products were analyzed at each 30 min using a Test-201 gas analyzer (Boner, Russia)
equipped with optical, IR, and electrochemical sensors.

3. Results

3.1. Textural Properties of Supports and Catalysts

The N2 adsorption and desorption isotherms for CexZr1−xO2 supports and Ni-containing catalysts
prepared by one-pot synthesis are shown in Figure 1. According to the classification adopted by the
IUPAC, all isotherms belong to IV type with H3 shaped hysteresis loop at P/P0 ~ 0.4–0.7, which is
associated with open-ended mesopores [35]. A similar shape of isotherms was obtained for CeO2

prepared by the continuous synthesis in supercritical C4-C6 alcohols, while only micro- or macropores
were found when C1, C3, or iso-C3 alcohols were used [30]. It is probable that the formation of
mesopores in our CexZr1−xO2 mixed oxides prepared using supercritical isopropanol is due to the
presence of zirconium butoxide and acetylacetone in the reaction solution.
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Table 1. Textural characteristics of the CexZr1-xO2 and Ni-containing catalysts. 
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Ce0.3Zr0.7 32 0.052 0.0013 9.9 
Ce0.5Zr0.5 42 0.047 0.0002 5.6 
Ce0.7Zr0.3 66 0.090 0.0033 7.5 

Ni-Ce0.3Zr0.7im 20 n.d. n.d. n.d. 
Ni-Ce0.5Zr0.5im 23 n.d. n.d. n.d. 
Ni-Ce0.7Zr0.3im 50 n.d. n.d. n.d. 
Ni-Ce0.3Zr0.7op 29 0.045 0 9.8 
Ni-Ce0.5Zr0.5op 25 0.045 0.0011 16.9 
Ni-Ce0.7Zr0.3op 36 0.060 0.0018 8.9 

1 Mean pore size. 
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Figure 1. Adsorption–desorption isotherms of CexZr1−xO2 and Ni-CexZr1−xop catalysts: 1—Ce0.7Zr0.3,
2—Ce0.5Zr0.5, 3—Ce0.3Zr0.7, 4—Ni-Ce0.7Zr0.3op, 5—Ni-Ce0.5Zr0.5op, and 6—Ni-Ce0.3Zr0.7op. Note:
samples isotherms were shifted along the Y-axis for clarity to avoid superposition.

The specific surface area (SSA), pore and micropore volume of Ce-Zr mixed oxides and
Ni-CexZr1−xop catalysts increase at increasing Ce content, whereas the mean pore size is not directly
related to Ce/Zr ratio (Table 1). The introduction of Ni leads to decrease in SSA and pore volume of all
samples. In the case of one-pot catalysts, this could be caused by the influence of nickel cations on the
formation of CexZr1−xO2 framework during the SC-synthesis, while for the impregnated ones, this
could be due to blocking a part of pores with NiO particles formed after calcination at 600 ◦C.

Table 1. Textural characteristics of the CexZr1−xO2 and Ni-containing catalysts.

Sample SSA (m2
·g−1) Vpore (cm3

·g−1) Vmicropore (cm3
·g−1) D 1 (nm)

Ce0.3Zr0.7 32 0.052 0.0013 9.9
Ce0.5Zr0.5 42 0.047 0.0002 5.6
Ce0.7Zr0.3 66 0.090 0.0033 7.5

Ni-Ce0.3Zr0.7im 20 n.d. n.d. n.d.
Ni-Ce0.5Zr0.5im 23 n.d. n.d. n.d.
Ni-Ce0.7Zr0.3im 50 n.d. n.d. n.d.
Ni-Ce0.3Zr0.7op 29 0.045 0 9.8
Ni-Ce0.5Zr0.5op 25 0.045 0.0011 16.9
Ni-Ce0.7Zr0.3op 36 0.060 0.0018 8.9

1 Mean pore size.

3.2. Structural Properties of Supports and Catalysts

XRD data for the initial CexZr1−xO2 supports with a different Ce/Zr ratio are presented in Table 2
and Figure 2. XRD patterns of all Ce-Zr oxides show rather broad reflections typical for the fluorite-like
structure [15,22]. The positions of reflections shift to lower angles at increasing Ce content due to a larger
size of Ce4+ cation (ionic radius r = 0.97 Å) as compared with that of Zr4+ (r = 0.84 Å). For CexZr1−xO2

solid solutions with x = 0.2–0.9, three different tetragonal phases could be distinguished according to
the literature: the stable phase t, metastable phase t’ obtained through a diffusionless transition, and t”
- intermediate between t’ and cubic (c) phases [36]. The t” phase has the cubic cation sublattice, but the
oxygen atoms are shifted from their ideal fluorite sites along c-axis [36].

The results of full-profile analysis presented in Table 2 have shown that only the Ce0.3Zr0.7 sample
comprises a single phase solid solution of the stable tetragonal t structure with c/a’ equal to 1.015.
The CexZr1−x samples with a larger Ce concentration along with a main tetragonal phase showing
c/a’ = 1.005 contain admixtures of other phases. The Ce0.5Zr0.5 sample includes minor impurities of
c and t phases enriched by Ce and Zr, respectively, while Ce0.7Zr0.3 contains the admixture phase
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with composition close to pure CeO2. The mean crystallite size of the CexZr1−xO2 main phases was
estimated to be 10–14 nm independent on their composition (Table 2).

Table 2. Lattice parameters and phase composition of CexZr1−xO2 and Ni-CexZr1−xO2op samples.

Sample a (Å) c (Å) c/a’ 1 V D (nm) N(Ce) 2 W 3 (%)

Ce0.3Zr0.7 3.686(7) 5.291(1) 1.015 71.9 14 0.34 100

Ce0.5Zr0.5

3.754(1) 5.335(2) 1.005 75.19 14 0.59 93
3.674(3) 5.27(1) 1.014 71.16 10 0.28 4
5.402(3) - - 157.7 11 0.94 3

Ce0.7Zr0.3
3.780(1) 5.372(2) 1.005 76.75 14 0.71 86
5.41(1) - - 158.3 14 0.97 14

Ni-Ce0.3Zr0.7op 3.677(1) 5.277(1) 1.015 71.3 10 0.29 100

Ni-Ce0.5Zr0.5op 3.748(1) 5.326(1) 1.005 74.8 14 0.56 98
5.405(3) - - 157.9 11 0.95 2

Ni-Ce0.7Zr0.3op 3.78(2) 5.36(7) 1.003 76.6 14 0.70 86
5.410(1) - - 158.3 13 0.97 14

1 a·
√

2; 2 Ce occupancy in CeO2–ZrO2 oxide; 3 phase content.
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Figure 2. XRD patterns of CeZrO supports (a) and NiCeZrO catalysts prepared by impregnation (b)
and one-pot method (c): 1—Ce0.3Zr0.7; 2—Ce0.5Zr0.5; 3—Ce0.7Zr0.3. #-reflections of NiO phase.

The XRD patterns of all catalysts are mainly similar to the patterns of CexZr1−x supports showing
the broad reflections of CeO2–ZrO2 complex oxides (Figure 2). The reflections of NiO have been
observed only for the impregnated catalysts (Figure 2b). The size of NiO crystallites is within the
value of 18–20 nm not depending on the support. The absence of NiO reflections in the case of
catalysts prepared by the one-pot method evidences high NiO dispersion. The full-profile analysis
of XRD patterns for Ni-CexZr1−xop catalysts has shown that their phase composition, like that of
CexZr1−x samples, depends on the Ce content (Table 2). Thus, only the tetragonal t phase is observed
in Ni-Ce0.3Zr0.7op likewise for the pure Ce0.3Zr0.7, while for Ni-Ce0.5Zr0.5op and Ni-Ce0.7Zr0.3op
admixtures of cubic phases enriched by Ce are present along with the main tetragonal phase.

It is known that the reflections broadening due to a high dispersion of CexZr1−xO2 makes it
difficult to distinguish between the cubic and metastable tetragonal phases [14]. In this context, Raman
spectroscopy characterizing the anion sublattice can be applied to get the additional information on
the structural features of samples [14,37]. Raman spectra of CexZr1−xO2 samples calcined at 600 ◦C are
presented in Figure 3. In the spectrum of Ce0.3Zr0.7, five broad bands of a low intensity correspond to
the stable tetragonal t phase [37,38] confirming the XRD data. A band at around 465 cm−1 due to the
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F2g Raman active mode is a characteristic of CeO2 cubic fluorite-like structure [14,22,37]. The bands at
~ 300–308 cm−1 and ~ 610 cm−1 are usually observed in the spectra of CeO2-ZrO2 oxides with the t’ or
t” metastable phases [22,37]. The band near 600–610 cm−1 is associated with structure defects (oxygen
vacancies) arising due to the substitution of Zr4+ into the ceria lattice. A weak band in the region of
300–315 cm−1 could be related to the displacement of the oxygen atoms from their ideal positions in
the fluorite lattice [14,37]. Taking into account the axial ratio c/a’ ≈ 1 calculated from the XRD data,
well-defined symmetric band at 466 cm−1, and two broad bands of a low intensity at ~ 300–308 cm−1

and ~ 610 cm−1 observed in the spectra of Ce0.5Zr0.5 and Ce0.7Zr0.3, the t” tetragonal phase should be
considered as the main phase for both these samples. In contrast to Ce-Zr supports, the Raman spectra
of Ni-CexZr1−x-op catalysts with Ce occupancy ≥ 0.5 give evidence of a larger tetragonality of anion
sublattice. Therefore, the t’ phase rather than the t” one prevails.
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Figure 3. Raman spectra of CexZr1−x O2 supports and Ni-CexZr1−x-op catalysts: 1—Ce0.3Zr0.7,
2—Ce0.5Zr0.5, 3—Ni-Ce0.5Zr0.5-op, 4—Ni-Ce0.7Zr0.3-op, and 5—Ce0.7Zr0.3.

3.3. TEM Analysis

TEM images of CexZr1−xO2 supports show large spherical aggregates with the diameter from
20 to 100 nm comprised of stacked nanodomains, with the typical sizes of 10–15 nm (Figure 4) that
agree with the XRD data (Table 2). It could be suggested that such morphology promotes formation
of mesopores, which we observe by the N2 adsorption method. The distribution of elements in
aggregates of the CexZr1−xO2 samples was analyzed by STEM-EDX (Figures 5 and 6). According to
these data, the distribution of Ce and Zr along the particles is relatively uniform for Ce0.3Zr0.7, while,
in the case of Ce0.5Zr0.5 and Ce0.7Zr0.3, the concentration of Ce in the surface and subsurface layers
obviously increases.

The morphology of Ni–CexZr1−xO2 catalysts is similar to the supports except for higher density
of aggregates agglomerated into chains (Figure 4c). HRTEM-EDX and HAADF-STEM-EDX were used
to study the influence of the preparation method on the distribution of elements in the fresh catalysts.
The TEM images of Ni-Ce0.3Zr0.7 and Ni-Ce0.7Zr0.3 catalysts prepared by the one-pot method and by
impregnation are presented in Figure 7 and in Supplementary Materials Figures S1–S3. In the case
of impregnated catalysts, NiO particles (20–30 nm size) epitaxially bounded with the surface of the
support (Figure 7a) as well as separate NiO particles (50–150 nm size) with (111) and (200) planes
are clearly resolved (Figure 7c, Figure S1). The elemental mapping of Ni-Ce0.5Zr0.5im demonstrates
non-uniform distribution of Ni (Figure 8) that is typical for other impregnated catalysts.

For the one-pot catalysts, the TEM images of NiO particles are fuzzy, and they do not enable to
measure the NiO interplanar spacing (Figure 7b,d, Figure S2 and S3). However, EDX data evidencing
the presence of Ni and the dark spots visible on the images obtained in the phase contrast mode
allow us to suppose that NiO species are decorated by CexZr1−xO2 particles. The elemental mapping
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for Ni-Ce0.7Zr0.3op catalyst shows a high NiO dispersion and uniform distribution of Ni within the
catalyst particles (Figure 9) that could be due to a strong interaction with the support and formation
of Ni-Ce-Zr-O solid solution [6,13,39,40]. Moreover, the line scanning along Ni-Ce0.7Zr0.3op particles
showing the decrease of Ni concentration in the surface layers confirms the decoration of NiO species
(Figure 6d).
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3.4. XPS Analysis

The Zr3d and Ce3d core-level spectra for all the catalysts are typical for CexZr1−xO2 oxides
(Figures S4, S5). The Ni2p3/2 spectra of the fresh catalysts prepared by impregnation show the main
peak at 854 eV and peaks of shake-up satellites at 856.0 and 860.9 eV (Figure 10). These satellites
caused by the multielectron processes [41] are typical for Ni2+ compounds, such as NiO, Ni(OH)2,
NiSiO3, etc. [42–44], while being absent for Ni0 and Ni3+ compounds [42]. The intensive satellite at
856.0 eV observed only in the spectra of NiO [44] evidences that in the case of impregnated catalysts
nickel is mainly located in the NiO structure. In the spectra of the fresh catalysts prepared by the
one-pot method, the main peak at 855.1–855.5 eV and the peak of shake-up satellite at 861.2–861.5 eV
are observed (Figure 10). Such spectra are characteristic of Ni2+ in the state, which is different from
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that in NiO (Ni*). According to the literature, the peak at 855.5 eV could arise because of the strong
interaction between NiOx species and the support [45] or the formation of Ni-Ce-Zr-O solid solution
due to diffusion of Ni2+ cations into the fluorite lattice [46].
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Figure 10. Ni2p3/2 spectra for the fresh (a) and reduced (b) catalysts prepared by impregnation and
one-pot method.

The spectra of reduced catalysts, except for Ni-Ce0.7Zr0.3im, are similar to ones of the fresh
catalysts that could be a result of metallic Ni oxidation during its transfer through the air. The spectrum
of Ni-Ce0.7Zr0.3im is complex evidencing the presence of both Ni2+ states: NiO and Ni* with the ratio
of 80/20, respectively. The surface concentrations of elements calculated for Ni-containing samples
using the XPS spectra are presented in Table 3. The surface of both fresh Ni-Ce0.3Zr0.7 catalysts is
enriched with Zr (Ce/Zr < 0.43), while for Ni-Ce0.7Zr0.3 samples the Ce/Zr ratio show the surface
enrichment with Ce (Ce/Zr > 2.33). Higher [Ni]/[Ce]+[Zr] ratios were obtained for the impregnated
catalysts in comparison with those for the one-pot ones (0.19 against 0.06–0.1) that shows decoration of
NiO particles in accordance with TEM data. After the ex-situ reduction, the decrease in the surface Ni
content and the Ce/Zr ratio is observed for Ni-Ce0.7Zr0.3im catalyst.

Table 3. Surface characteristics of NiCeZrO catalysts.

Catalyst Ce/Zr [Ni]/([Ce]+[Zr]) C(NiO)/C(Ni*)

Ni-Ce0.3Zr0.7im 0.33 0.19 100/0
Ni-Ce0.3Zr0.7im reduced 0.37 0.21 100/0

Ni-Ce0.3Zr0.7op 0.22 0.06 0/100
Ni-Ce0.3Zr0.7op reduced 0.27 0.05 0/100

Ni-Ce0.7Zr0.3im 2.7 0.19 100/0
Ni-Ce0.7Zr0.3im reduced 1.9 0.15 80/20

Ni-Ce0.7Zr0.3op 3.4 0.10 0/100

3.5. H2-TPR Analysis

H2-TPR profiles and the values of hydrogen consumption for CexZr1−xO2 samples are presented
in Figure 11 and Table 4. The H2-TPR curves of supports showing the intensive asymmetric peak below
~ 700 ◦C and the high-temperature broad profile are typical for CexZr1−xO2 solid solutions prepared by
different routes [3,4,47–51]. The low-temperature peak is usually assigned to the removal of the surface
oxygen either regular (main peak) or defect one (a shoulder), while the high-temperature hydrogen
consumption is related to reduction of bulk oxygen [3,47–51]. At increasing Ce content in the solid



Energies 2020, 13, 3728 12 of 20

solution, the position of the main peak is shifted to lower temperature showing the increase in oxygen
reactivity. A high temperature peak in Ce0.7Zr0.3 profile could be related to the reduction of the cubic
phase with a composition close to CeO2 contained in this sample according to the XRD data (Table 2).
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Figure 11. Temperature-programmed reduction (TPR) curves of Ce-Zr oxides: (a) Ce0.3Zr0.7; (b)
Ce0.5Zr0.5; (c) Ce0.7Zr0.3.

Table 4. H2 consumption during TPR calculated by asymmetric Gauss decomposition method (AGDM).

Sample H2 Consumption (mmol·g−1)

100–300 ◦C 300–700 ◦C 100–700 ◦C 100–900 ◦C CeO2-ZrO2
1

Ce0.3Zr0.7 0 0.93 0.93 1.07
Ce0.5Zr0.5 0 0.94 0.94 1.40
Ce0.7Zr0.3 0 0.70 0.70 1.40

Ni-Ce0.3Zr0.7im 0.08 1.59 1.67 1.83 0.98
Ni-Ce0.5Zr0.5im 0.08 1.46 1.75 2.04 1.19
Ni-Ce0.7Zr0.3im 0.25 1.41 1.66 2.22 1.37
Ni-Ce0.3Zr0.7op 0.24 1.59 1.83 2.09 1.24
Ni-Ce0.5Zr0.5op 0.68 1.23 1.9 2.38 1.53
Ni-Ce0.7Zr0.3op 0.64 0.97 1.7 2.17 1.32

1 Total H2 (100–900 ◦C) – 0.85 mmol·g−1 (NiO).

To analyze the TPR data, Asymmetric Gauss Decomposition method (AGDM) has been applied
(Figure 11,Figure 12, Table 4). The calculated value of the total hydrogen consumption increases with
the increase in Ce content but is not straightforwardly related to it: Ce0.3Zr0.7 < Ce0.5Zr0.5 = Ce0.7Zr0.3.
The larger share of hydrogen consumed in the high-temperature region for Ce0.7Zr0.3 is due to the
presence of a cubic phase with the composition close to CeO2 (Table 2).

The H2-TPR spectra of Ni-CexZr1−x catalysts prepared both by impregnation and one-pot methods
are presented in Figure 12. In general, the reduction of all the catalysts starts at a lower temperature, as
compared with the pure supports due to hydrogen spillover from Ni species facilitating reduction of
CeO2-ZrO2 solid solution [3–6,13]. The H2-TPR curves of the catalysts shift to lower temperatures at
increasing Ce content similarly to the pure supports. The spectra of impregnated catalysts show a
broad peak with a double maximum in the region of 314–435 ◦C (Figure 12). Besides, the shoulder at
460 ◦C and a broad peak at 820 ◦C are observed in the spectrum of Ni-Ce0.7Zr0.3im.

The spectra of one-pot catalysts differ from that of impregnated ones. For all one-pot samples,
the first clearly marked narrow peak is shifted to lower temperature and the rather resolved peak
with the maxima at ~ 500 ◦C appears (Figure 12). Further, AGDM analysis has been done to describe
H2-TPR spectra of the catalysts (Figure 12, Table 4). All the peaks were grouped into three zones
for more clear interpretation of TPR data [6,39]. Each zone is related to the predominant reduction
of different species. The peaks at temperatures below 300 ◦C can be assigned to reduction of the
surface oxygen species located on clusters of Ni and Ce cations [6,39,52,53], hydrogen consumed at
300–700 ◦C is related to the co-reduction of CexZr1−xO2 near-surface layers, and NiO particles having
different dispersion and degree of interaction with the support [5,6,39,53]. The reduction of the support
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bulk occurs at the temperatures higher than 700 ◦C. In all cases, the sum of hydrogen consumed
below 700 ◦C exceeds the value required for complete reduction of Ni2+ contained in the catalysts
(0.85 mmol/gcat) (Table 4). In the region of 100–700 ◦C, the hydrogen consumption evaluated for the
one-pot catalysts only slightly exceeds that obtained for the impregnated ones, but the distribution
between deconvoluted peaks is various for different series. Thus, for all one-pot catalysts, the hydrogen
consumption below 300 ◦C is substantially larger. Meanwhile, the deconvoluted peaks corresponding
to hydrogen consumption in the region of 300–700 ◦C are shifted to the higher temperatures (500 ◦C)
as compared with impregnated ones (415–470 ◦C) (Figure 12, Table 4). This indicates more difficult
reduction of Ni2+ in the one-pot catalysts that could be explained by stronger interaction of Ni with
the supports due to a high NiO dispersion and Ni incorporation into the bulk of Ce-Zr-O solution
as XPS data have shown. The correlation between the existence of Ni* state (Figure 10) and more
pronounced low-temperature reduction in the case of one-pot catalysts (Table 4) could be because of
Ce-Zr-O lattice distortion and generation of additional oxygen vacancies, due to Ni incorporation into
the support structure.
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3.6. Catalytic Properties

The time dependence of the CH4 conversion and H2/CO ratio over the impregnated and one-pot
catalysts during MDR conducted at 700 ◦C are presented in Figure 13. In general, both of these
parameters are higher over the impregnated catalysts as compared with the one-pot ones. However,
for all samples, the CH4 conversions are somewhat lower than those of CO2, and the H2/CO ratio is
below 1 (0.8–0.88). The carbon balance is close to 100% in all cases.

All impregnated samples, except for Ni-Ce0.3Zr0.7im (Ce/Zr = 0.43) demonstrating a minor
decrease in CH4 conversion, show a stable catalytic behavior during all testing. In contrast, the activity
of all one-pot samples decreases with time-on-stream by 6–10% depending on the support composition.
Ni-Ce0.5Zr0.5op shows the minimal decrease in the methane conversion as compared with other one-pot
samples (Figure 13b).
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It is known that concurrently with MDR (Equation (1)) such reactions as reverse water gas
shift (RWGS) (Equation (2)), methane decomposition (Equation (3)), and Boudouard reaction or CO
disproportionation (Equation (4)) could occur influencing H2/CO ratio and carbon formation on the
catalyst surface [2,3,7]. Among these processes only RWGS leads to a higher conversion of CO2 as
compared with that of CH4 and also to H2/CO ratio below 1. Therefore, our catalytic data demonstrating
X(CH4) < X(CO2) and H2/CO ratio lying in the range of 0.80–0.88 evidence the contribution of RWGS
process in the overall reaction.

CH4 + CO2→ 2CO + 2H2, ∆H0 = 248 kJ·mol−1 (1)

CO2 + H2→ CO + H2O, ∆H0 = 41 kJ·mol−1 (2)

CH4→ C + 2H2, ∆H0 = 75 kJ·mol−1 (3)

2CO→ C + CO2, ∆H0 = −172 kJ·mol−1 (4)

It is suggested in the literature that MDR over Ni-CexZr1−xO2 occurs through a bifunctional
mechanism when CH4 is activated only on the Ni surface, while CO2 activation proceeds also on
oxygen vacancies at/near the Ni-support interface [2,10]. Thus, a high Ni dispersion as well as high
oxygen mobility of the support enhance the catalytic activity and resistance to coking. In view of this,
a lower activity and stability of the one-pot catalysts with a high dispersion and uniform distribution
of Ni is an unexpected result. This could be due to decoration of Ni by support species resulting in a
low Ni concentration in the surface layers as TEM and XPS data show (Figure 6d, Table 3). The same
effect was observed for 5%Ni/Ce0.6Zr0.4O2 catalyst prepared by impregnation of the mixed oxide,
which was synthesized via co-precipitation in the presence of CTAB as a surfactant [7]. It was supposed
that this catalyst was not active at all for MDR because of the encapsulation of Ni particles by Ce-Zr
oxide particles. In our case, the one-pot catalysts are active in MDR that evidences only a partial Ni
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decoration. Moreover, estimation of the efficient first-order rate constants k for the initial activity of
Ni-Ce0.3Zr0.7 catalysts prepared by both methods (Figure 13a) using well-known integral equation for
the ideal plug-flow reactor (-ln(1 − x) = kτ, where x is the CH4 conversion, τ is the contact time [29,30]
with a due regard for XPS estimation of the surface concentration of Ni (Table 3) and relating k to the
unit of Ni surface revealed that it is equal to 47 s−1m−2

Ni and 83 s−1m−2
Ni for impregnated and one-pot

samples, respectively (the detailed description of the estimation approach is given in Supplementary
Materials). As follows from the comparison with H2 TPR data (Table 4), this specific catalytic activity
related to the unit of nickel surface perfectly correlates with the amount of reactive surface oxygen
removed by H2 at temperatures below 300 ◦C, the most probably associated with small surface clusters
of Ni cations strongly interacting with support.

3.7. TEM Analysis of Used Catalysts

The TEM images of used catalysts are presented in Figure 14 and Figure S1–S3. For impregnated
samples, Ce-Zr-O agglomerates observed in the initial catalysts break into smaller particles (Figure S1b,d).
The well-resolved NiO particles of different size bounded with the support (Figure S1) or detached from
the surface by carbon nanofibers are observed (Figure 14d). Such detachment during reduction by CH4 or
MDR is typical for the catalysts containing NiO particles slightly bounded with the support (Figure 7c).
However, despite incupsulation a part of Ni particles with carbon (Figure S1h), the high MDR activity and
stability of the impregnated catalysts is provided by small Ni particles strongly bound with the support
surface and Ni species localized on the nanofibers, but not surrounded by them (Figure 14d). It was shown
in previous studies [54–56] that the metal particles can keep the contact with reagents being on the top of
filament thus ensuring the activity of the catalyst.

In the case of one-pot catalysts, Ce-Zr-O agglomerates are retained after their using in the reaction
(Figure S2b and S3b). The micrographs of the spent one-pot samples show fuzzy images of Ni(NiO)
particles that is due to the presence of thin well-resolved Ce-Zr-O species on their surface. Only
amorphous carbon can be found on the surface of Ni-Ce0.3Zr0.7op, and no carbon deposition is observed
in TEM images of Ni-Ce0.7Zr0.3op (Figure 14a,b, Figure S2 and S3). The absence of carbon nanotubes
in the one-pot samples having very small Ni particles/surface clusters and a stronger metal–support
interaction can be explained as follows. The oxygen mobility of ceria or Ce-Zr oxides is reported to play
the main role in the elimination of CHx fragments by oxygen species originating from dissociation of
CO2. The CO2 activation proceeds on Ni-support interface or nearby region of support and correlates
with labile oxygen content of these catalysts [10,57]. To facilitate the removal of carbon species from the
metal surface, the metal–support interface must be extended that can be provided by highly dispersed
metal particles.

Thus, the TEM results (Figure 14, Figure S2 and S3) as well as TPO profiles (Figure S6) prove
that the decrease in activity, which one-pot samples demonstrate with TOS, is not related to carbon
accumulation. On the other hand, the migration of reduced ceria moieties onto the surface of Ni
particles is widely known [47,58,59]. Due to the extremely small size of Ni particles in one-pot catalysts
(fuzzy dark spots of 5–10 nm in TEM images), their surface could be easily covered by Ce-Zr-O support
fragments in the conditions of MDR, as Figure 14b and Figure S2 and S3 demonstrate. Therefore,
we suggest that a capping effect of the support is a main reason of one-pot catalysts deactivation.
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4. Conclusions

In the present work, we have realized a solvothermal continuous synthesis of CexZr1−xO2 with
the different Ce/Zr ratio as well as one-pot route for the preparation of Ni-modified Ce-Zr oxides.
The admixtures of Ce- or Zr-enriched phases and the formation of Ce-Zr-O aggregates with Ce-enriched
surface layer were observed for CexZr1−xO2 with Ce/Zr ≥ 1. The Ce-Zr-O phase composition practically
was not influenced by the addition of Ni and synthesis method of the catalysts, while the latter
significantly affected NiO dispersion and its interaction with the support. The XRD and TEM
data have shown that the one-pot synthesis of Ni-Ce-Zr-O catalysts leads to extremely small NiO
nanoparticles/clusters (not observable by XRD), while clearly resolved ones (20–30 nm) are obtained for
the impregnated catalysts. Despite the high dispersion of NiO in the initial one-pot catalysts, accessible
Ni particles were scarce on the catalysts surface as the XPS and TEM-EDX studies revealed. A stronger
metal–support interaction and incorporation of Ni into Ce-Zr-O structure were proposed for one-pot
samples based on TEM-EDX, XPS, and TPR data. In accordance with this, the carbon nanotubes were
not detected in the one-pot catalysts after reaction, but all of them demonstrated a decrease in reagents
conversion during catalytic testing. In contrast, all impregnated samples provided higher activity
and stability in MDR despite the carbon filaments accumulation. A capping effect of support due to
migration of reduced ceria moieties onto the surface of Ni nanoparticles was therefore suggested as a
main reason of one-pot catalysts deactivation in the conditions of MDR.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1073/13/14/3728/s1,
Figure S1: TEM images of Ni-Ce0.7Zr0.3im catalyst before (a,c,e,g,i) and after MDR tests (b,d,f,h,j) at different
magnification. Figure S2: TEM images of Ni-Ce0.7Zr0.3op catalyst before (a,c,e,g) and after MDR tests (b,d,f,h).
Figure S3: TEM images of Ni-Ce0.3Zr0.7op catalyst before (a,c,e,g) and after MDR tests (b,d,f,h). Figure S4:
Zr3d core-level spectra for the fresh catalysts prepared by impregnation and one-pot method, Figure S5: Ce3d
core-level spectra for the fresh catalysts prepared by impregnation and one-pot method. Figure S6: TPO profiles
for Ni-Ce0.3Zr0.7op after MDR. Text describing approaches to estimation of specific rate constants.
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