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Abstract: Parameters associated with electrical equivalent models of the photovoltaic (PV) system play
a significant role in the performance enhancement of the PV system. However, the accurate estimation
of these parameters signifies a challenging task due to the higher computational complexities and
non-linear characteristics of the PV modules/panels. Hence, an effective, dynamic, and efficient
optimization technique is required to estimate the parameters associated with PV models. This paper
proposes a double exponential function-based dynamic inertia weight (DEDIW) strategy for the
optimal parameter estimation of the PV cell and module that maintains an appropriate balance
between the exploitation and exploration phases to mitigate the premature convergence problem of
conventional particle swarm optimization (PSO). The proposed approach (DEDIWPSO) is validated for
three test systems; (1) RTC France solar cell, (2) Photo-watt (PWP 201) PV module, and (3) a practical
test system (JKM330P-72, 310 W polycrystalline PV module) which involve data collected under
real environmental conditions for both single- and double-diode models. Results illustrate that the
parameters obtained from proposed technique are better than those from the conventional PSO and
various other techniques presented in the literature. Additionally, a comparison of the statistical
results reveals that the proposed methodology is highly accurate, reliable, and efficient.

Keywords: parameter estimation; particle swarm optimization; premature convergence; solar cell

1. Introduction

Environmental concerns, inflating fossil fuel prices and the depletion of conventional energy
resources, compel researchers to retain their efforts towards sustainable, reliable, and economical
sources for electric power generation. In this aspect, renewable energy sources (RES) like biomass,
solar, hydro, and wind are gaining the interest of researchers [1,2]. Among these RES, solar energy is a
widely and freely available energy source, which can be easily captured directly through a photovoltaic
(PV) system [3,4]. Some factors which emphasize the importance of solar energy are listed below:

• Less operational cost (as no fuel is consumed) [5];
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• Low maintenance (as it requires no lubrication as well as no dynamic part or machinery is
involved) [6];

• Very little or no greenhouse gas emission results in reduced air pollution [7].

A PV cell is a basic unit of a PV system, and various cells are combined in series and parallel
configuration to form a PV module for generating electric power of a required level [8]. The accurate
electrical and mathematical modeling of PV cells/modules is a hot research topic nowadays, as it helps
to understand the non-linear behavior of a PV system under certain atmospheric conditions, such as
a partial shading condition or an abrupt change in temperature and irradiance levels [9]. The most
common approach to accurately model PV cells and module behavior is to utilize electrical equivalent
models. Single and double-diode models are widely opted and utilized by various researchers for
PV cell/module modeling [10–12]. The single-diode model presented in Figure 1 has five associated
parameters; IP, IdS, a, RSe and RP. The I–V characteristic defined by the Shockley diode equation is as
follows in Equation (1) [13]:

I = IP − IdS

[
exp

(
q(V + IRSe)

akT

)
− 1

]
−
(V + IRSe)

RP
(1)

where, IP, IdS, a, RSe, RP are the photon current, diode saturation current, diode ideality factor, series
resistance and the parallel resistance, respectively. These five parameters must be estimated for the
modeling of single-diode solar cells and modules, while q, k, T represent the electron charge, Boltzmann
constant, and temperature in Kelvin, respectively.
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The second most utilized PV model is a double-diode model, presented in Figure 2. The I–V
characteristics of the double-diode model are depicted in Equation (2) [14]:

I = IP − IdS1

[
exp

(
q(V + IRSe)

a1kT

)
− 1

]
− IdS2

[
exp

(
q(V + IRSe)

a2kT

)
− 1

]
−
(V + IRSe)

RP
(2)

where, IdS1 , IdS2 are the saturation currents of diode 1 and 2; a1, a2 are the ideality factors of diode 1
and 2, respectively. The seven associated parameters IP, IdS1 , IdS2 , a1, a2, RSe, RP of the double-diode
model must be estimated efficiently to accurately calculate the current from the double-diode cell or
module [15]. The double-diode model is more complex but offers more accuracy than a single-diode
model [16]. Five parameters for the single and seven parameters for the double-diode model must be
estimated in such a way that the obtained model accurately emulates the I–V characteristics of the
original model, such that the difference in the calculated and originally measured currents for the PV
cell/module should be minimal [17]. Therefore, this problem emerged as an optimization problem and
is termed as the “parameter estimation of solar cells and modules”.
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To solve this optimization problem, various methodologies have been utilized by researchers,
which can be categorized into two broad term categories. Analytical approaches involve the formulation
of functions based on the information obtained from the datasheet [18,19] and metaheuristic techniques
which estimate PV parameters by converting them into an optimization problem. Analytical approaches
require complex computational efforts and are not suitable for large or complex systems [20]. However,
metaheuristic approaches are artificially intelligent population-based techniques that aim to find a
global best solution for any optimization problem [1,21] by updating the population in an iterative
process and are mostly utilized for estimating the PV parameters of cells and modules [22].

In [23], a biogeography-based heterogeneous cuckoo search algorithm (BHCS) has been proposed,
which combines the biogeography and cuckoo search algorithm. Two test systems, the RTC France
solar cell and the STM6-40/36 module, were utilized for the validation of results. Data from [24] were
utilized for the parameter estimation of the PV cell and module, while the root mean square error
(RMSE) was considered as an objective function as defined in Equation (3) [25]:

RMSE =

√∑M
i=1 (Ii,m − Ii,cal)

2

M
(3)

where, Ii,m represents the measured current of the solar model obtained from [24] , Ii,cal represents the
calculated current and M is the number of I–V pairs.

In [26], the artificial bee colony has been utilized for the parameter estimation of single- and
double-diode RTC France solar cell considering varying temperature levels. A modified variant of
artificial bee colony (ABC) has been proposed in [27] for the parameter estimation of the single- and
double-diode cell models. The RTC France solar cell with a 57 mm diameter was utilized for the
validation of the proposed approach, and the obtained results were compared with various other
algorithms. In [28], a differential evaluation (DE) algorithm was utilized for the parameter estimation
of solar cells, including thin-film, multi-crystalline, and mono-crystalline cells. A penalty function was
introduced for constraint handling. An improved variant of DE was proposed in [29] for the parameter
estimation of the RTC France solar cell. An adoptive cross-over rate, a mutation strategy, and an
adaptive scaling factor were introduced to improve the search ability of the conventional DE algorithm.
In [30], the cuckoo search (CS) algorithm was utilized for the parameter estimation of the RTC France
solar cell, which represents high accuracy under various operating conditions. In [31], a cat swarm
optimization (CSO) has been presented for the parameter estimation of single- and double-diode cells
and modules. The RTC France solar cell and PWP201 Photo-watt module have been considered for the
validation of results.

Despite all the merits of metaheuristic approaches, they offer some limitations, such as the particle
swarm optimization (PSO) which suffers from premature convergence problem, which implies that
while searching for the global best solution, it can be easily trapped in local solution, hence providing
non-optimal results. To solve this problem, the researchers proposed different improved variants
of PSO. In [32], a chaotic inertia weight PSO (CIWPSO) has been implemented for the parameter
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extraction of single- and double-diode solar cells. In this variant, the inertia weight follows a chaotic
map logic to find an optimal solution while avoiding premature convergence. In [33], time-varying
acceleration coefficient PSO (TVACPSO) was proposed for the parameter estimation of single- and
double-diode solar cells and modules. In this proposed variant, the personal acceleration coefficient
was decreased, and the social acceleration coefficient was increased during the iterative process. In [34],
enhanced leader PSO (ELPSO) was proposed for the parameter estimation of single- and double-diode
models. In this variant, the leader particle was enhanced by utilizing a five-staged mutation strategy.
The results were compared with other available techniques. In [35], another improved variant named
guaranteed convergence PSO (GCPSO) was implemented for the parameter estimation of PV cells and
modules. In this variant, the success and failure rate along with a scale factor were proposed, which
guarantee the convergence of the algorithm towards an optimum solution.

The comprehensive evaluation of literature depicts that a lot of work has been presented in [21–24]
to cope with the premature convergence problem of conventional PSO. However, the studies [21–23]
have not proven the strength of the proposed approaches on a real-time practical system, that undergoes
variation in irradiance and temperature levels, hence increasing the computational burden. There is
thus a need to present a dynamic strategy that can effectively deal with the issues of conventional
PSO in real-time scenarios. This paper proposes a double exponential dynamic inertia weight PSO
(DEDIWPSO) for the parameter estimation of single- and double-diode cells and modules. This inertia
weight strategy was inspired by decreasing the rate of an exponential function. The fast growing nature
of the exponential function improves the speed of convergence by maintaining a balance between the
global and local search. The notable contributions of this paper are mentioned below:

• A dynamic and efficient strategy—DEDIWPSO—was proposed to solve the premature convergence
problem of conventional PSO, hence providing optimal, efficient, and accurate solutions for the
parameter estimation problem;

• A Newton–Raphson method (NRM)-based computational intelligent (CI) approach was
implemented to accurately estimate the current for each set of optimal parameters;

• Three case studies, (1) the RTC France solar cell, (2) the PWP201 Photo-watt module, and a practical
test system JKM330P-72 (310 W) polycrystalline module under real environmental conditions
were considered for the validation of the proposed approach;

• The obtained optimal results and statistical analysis were compared with other techniques available
in the literature to present the effectiveness of the proposed approach.

The remainder of this paper is arranged as follows: Section 2 formulates the PV parameter
estimation as an optimization problem, Section 3 presents the proposed methodology to solve this
optimization problem, Section 4 discusses the obtained results from the proposed technique, and finally
Section 5 concludes the whole paper.

2. Problem Formulation

This section presents the parameter estimation problem as an optimization problem for single- and
double-diode models. For the accurate estimation of PV parameters, it is aimed to obtain the set of
parameters that show the minimum difference between the measured and calculated data, which
results in the minimum value of objective function.

2.1. Single-Diode Model

Data obtained from [24] consist of 26 pairs of I–V (I j,V j) data and for each pair, and the current is
calculated by solving the nonlinear equation in Equation (4) given below:

I = IP − IdS

exp

q
(
V j + IRSe

)
akT

− 1

−
(
V j + IRSe

)
RP

(4)
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Solving Equation (4) for f (I) = 0 gives Equation (5).

f (I) = IP − IdS

exp

q
(
V j + IRSe

)
akT

− 1

−
(
V j + IRSe

)
RP

− 1 = 0 (5)

Equation (5) is then solved by the Newton–Raphson method (NRM), as represented in Figure 3,
where, s1, s2 illustrate f (I) and its derivative, respectively, Ii,cal represents the calculated current
obtained by solving Equation (5) for the I–V data. The difference between Ii,m and Ii,cal is then obtained
by considering RMSE as an objective function (OF):

min(OF, RMSE) =

√∑M
i=1 (Ii,m − Ii,cal)

2

M
(6)
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The aim of the proposed methodology was to minimize an objective function by extracting the
optimal parameters that are bound between the upper and lower limits. The value of these limits for
the PV module is presented as follows:

IP ∈ [0, 1.2]A, IdS ∈
[
10−12, 10−5

]
A, a ∈ [0.5, 2.5], RSe ∈ [0.001, 2], RP ∈ [0.001, 5000]

Similarly, the value of the upper and lower limits for the solar cell is given as below:

IP ∈ [0, 1]A, IdS ∈
[
10−12, 10−5

]
A, a ∈ [0.5, 2.5], RSe ∈ [0.001, 0.5], RP ∈ [0.001, 100]
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Bounds for the JKM330P-72 (310 W) polycrystalline module are given as

IP ∈ [0, 10]A, IdS ∈
[
10−12, 10−5

]
A, a ∈ [0.5, 2.5], RSe ∈ [0.001, 2], RP ∈ [0.001, 5000]

2.2. Double-Diode model

For a double-diode model, the data obtained from [24] consist of 26 pairs of I–V (I j,V j) data and
for each pair, the current is calculated by solving nonlinear Equations (7) and (8) as given below:

I = IP − IdS1

[
exp

(
q(V + IRSe)

a1kT

)
− 1

]
− IdS2

[
exp

(
q(V + IRSe)

a2kT

)
− 1

]
−
(V + IRSe)

RP
(7)

Solving (7) for f (I) = 0 gives (8):

f (I) = I = IP − IdS1

[
exp

(
q(V + IRSe)

a1kT

)
− 1

]
− IdS2

[
exp

(
q(V + IRSe)

a2kT

)
− 1

]
−
(V + IRSe)

RP
− 1 = 0 (8)

Equation (8) is then solved by NRM, as represented in Figure 4, where, s1, s2 illustrate f (I) and its
derivative, respectively. Ii,cal represents the calculated current obtained by solving (8) for the I–V data.
To model the PV cell as a double-diode model, the parameter ranges are presented as follows:

IP ∈ [0, 1]A, IdS1 ∈

[
10−12, 10−5

]
A, IdS2 ∈

[
10−12, 10−5

]
A, a1 ∈ [0.5, 2.5], a2 ∈ [0.5, 2.5]RP ∈ [0.001, 100], RSe ∈ [0.001, 0.5]
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Similarly, the upper and lower parameter limits for the PV module are given as below:

IP ∈ [0, 1.2]A, IdS1 ∈

[
10−12, 10−5

]
A, IdS2 ∈

[
10−12, 10−5

]
A, a1 ∈ [0.5, 2.5], a2 ∈ [0.5, 2.5]RSe ∈ [0.001, 2]RP ∈ [0.001, 5000]
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Bounds for the JKM330P-72 (310 W) polycrystalline double-diode module are given as

IP ∈ [0, 10]A, IdS1 ∈

[
10−12, 10−5

]
A, IdS2 ∈

[
10−12, 10−5

]
A, a1 ∈ [0.5, 2.5], a2 ∈ [0.5, 2.5]RSe ∈ [0.001, 2]RP ∈ [0.001, 5000]

3. Proposed Methodology

Particle swarm optimization (PSO) is a population-based metaheuristic technique inspired by the
swarming behavior of birds and fishes they present while moving from one place to another in search
of food. A population consists of N number of particles, and these individuals (particles) explore
search space to find a globally optimum solution. Equation (9) presents the position of the jth particle
in the multidimensional search space:

χ j1 + χ j2, . . . . . . χdj, . . . . . . χ jm (9)

where m represents the number of decision variables (dimensions). At first, the N number of particles
were initialized randomly in a confined search space. Then, the personal best (kbest) and global best(

‘gbest

)
are calculated and updated by evaluating the objective function. Personal best position of a

particle is considered as kbest and the best value among all particles is considered as ‘gbest. The position
and velocity of each particle are updated in every iteration using the following Equations (10) and (11):

ν j(it + 1) = ων j(it) + c1r1
(

kbest j − χ j
)
+ c2r2

(
‘gbest − χ j

)
(10)

χ j(it + 1) = χ j(it) + ν j(it + 1) (11)

where ν j, χ j represent the velocity and position of the jth particle, respectively. c1, c2 are the personal
and social acceleration coefficients, respectively. ω is the inertia weight coefficient and r1, r2 are random
numbers between 0 and 1. After updating ν j and χ j, the personal best (kbest) and global best

(
‘gbest

)
are

updated, and this procedure continues until the stopping criteria is achieved.
PSO is simple and widely utilized by researchers for solving various optimization problems [36]

but like other metaheuristic techniques, it has a tendency to become stuck in local minima due to
the “stagnation of particles” that leads to non-optimal solutions and the premature convergence
problem. To improve the search capability of PSO, many variants have been proposed in which
different strategies have been employed to tune its controlling parameters. Inertia weight (ω) is an
important parameter of PSO, responsible for an appropriate tradeoff between the global and local
search. An efficient mechanism of inertia weight can solve the premature convergence problem of
conventional PSO [37]. This study presents double exponential function-based dynamic inertia weight
PSO (DEDIWPSO), intended to improve the search capability of conventional PSO by solving the
premature convergence problem. DEDIW is inspired by the rapid growing nature of the exponential
function and incorporate the “Gompertzian function” which is a dying double exponential function as
Equations (12) and (13) below:

ω(it + 1) = y(exp− exp(−Ri)) (12)

Ri =
(maxit− it

maxit

)
(13)

where y = 1 and Ri is the performance index, which is calculated for each particle at every iteration.
This dynamic inertia weight decreases with increasing iterations. At first, ω is set to 0.8 [37] then
calculated using Equations (12) and (13). In early iterations, the particles are away from the global
best solution, and the proposed strategy provides a greater rate of exploration so that the particles can
explore more search space to find the best optimum solution. Later, a relatively smaller value of ω
is provided to guarantee precision in the exploration phase. The fast-growing nature of exponential
function improves the speed of convergence, and hence provides optimal, efficient, and accurate
solutions for the parameter estimation problem. The flow chart of the proposed methodology is
presented in Figure 5.
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4. Results and Discussions

Optimal parameters obtained using DEDIWPSO for the Photo-watt module (PWP201), RTC
France silicon solar cell and a practical PV system are presented in this section. The I–V data for the
first two test systems were taken from [24], and have been utilized by various researchers [38–41].
Inertia weight was initially set at 0.8, and then exponentially decreased following Equation (12). The
stopping criteria of the proposed framework was the maximum number of iterations, which was set at
10,000 with a population size of 100. The results obtained by DEDIWPSO were validated by comparing
it with various other techniques available in the literature. The results for 30 independent runs have
been obtained to check the optimality and reliability of the proposed approach.

4.1. Results for Solar Cell

This section presents the results for a 57 mm-diameter RTC France solar cell, which was utilized
for PV parameter estimation. The data consist of 26 I–V points obtained from [24] at 33 ◦C temperature
and under a 1000 W/m2 irradiance level.

4.1.1. Single-Diode Cell

The best obtained parameters of the single-diode cell for 30 independent runs using DEDIWPSO are
presented in Table 1. While Table 2 depicts a comparison of the mean, minimum and maximum values
of RMSE with GCPSO, TVAPSO, ELPSO, constant PSO (CPSO), basic flower pollination algorithm
(BFPA), improved teaching learning-based optimization (GOTLBO), comparative learning-based PSO
(CLPSO), cuckoo search (CS), ABC, improved sine cosine algorithm (ISCA), teaching learning-based
ABC algorithm (TLABC) and teaching learning based optimization (TLBO). The value of the RMSE is
very sensitive as it highly depends on the obtained parameters. Hence, its value up to six decimal
digits is presented in this paper. The mean value of the RMSE obtained from the proposed technique
for 30 independent runs is 7.730062× 10−4 with minimum and maximum values of 7.730062× 10−4

and 7.730062× 10−4, respectively.
The computational cost is also presented in Table 1, which presents the number of iterations and

computational time required by the proposed technique to attain the optimal parameters. The calculated
and measured values of currents with voltages are presented in Table 3. The results show that the
proposed technique is more efficient and accurate than the approaches available in the literature.
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The individual absolute error (IAE) was calculated for each I–V pair, which indicates how close the
calculated current is to the measured current. The IAE can be calculated as follows:

IAE =
∣∣∣ Ii,m − Ii,cal

∣∣∣ (14)

Table 1. Results for the single-diode cell.

Obtained RMSE and Parameters Computational Cost

Best Parameters RMSE Iteration Time (s)

IP(A) 0.76078 Maximum 7.730062× 10−4 Maximum 9163 Maximum 109
IdS(µA) 3.10685× 10−1 Minimum 7.730062× 10−4 Minimum 2356 Minimum 76

a 1.47559 Mean 7.730062× 10−4 Mean 8829 Mean 93
RSe 0.03654 Std 5.18668× 10−15

RP 52.8898

Table 2. Comparsion of the obtained RMSE for the single-diode cell.

Algorithm Maximum Minimum Mean Std

DEDIWPSO 7.730062× 10−4 7.730062× 10−4 7.730062× 10−4 5.18668× 10−15

GCPSO [35] 7.730063× 10−4 7.730063× 10−4 7.730063× 10−4 4.405583× 10−11

TVACPSO [33] 7.7301× 10−4 7.7301× 10−4 7.7301× 10−4 5.5805× 10−10

ELPSO [34] 7.7455× 10−4 7.7301× 10−4 7.7314× 10−4 3.4508× 10−7

CPSO [31] 9.2832× 10−4 7.7301× 10−4 7.7847× 10−4 2.8344× 10−5

TLABC [42] 1.03970× 10−3 9.86022× 10−4 9.98523× 10−4 1.86022× 10−5

BFPA [43] 1.943194× 10−3 9.860219× 10−4 1.133753× 10−3 2.419249× 10−4

TLBO [44] 1.23579× 10−3 9.87332× 10−4 1.04761× 10−3 6.58940× 10−5

ABC [26] 1.41740× 10−3 9.88148× 10−4 1.12125× 10−3 1.19818× 10−4

CLPSO [45] 1.39910× 10−3 1.01347× 10−3 1.09114× 10−3 5.68626× 10−5

GOTLBO [46] 2.3454× 10−3 1.34432× 10−3 1.02903× 10−3 2.3454× 10−3

CS [30] 6.09130× 10− 2 2.01185× 10−3 7.60819× 10−3 1.10512× 10−2

Figure 6 presents the I–V curve of the calculated and measured data, which shows that the
calculated data closely follow the measured data. Moreover, the obtained parameters were utilized to
compute the output power for each given data set and were plotted as P–V curve in Figure 7.
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Table 3. I–V values and relative individual absolute error (IAE) for the single-diode cell.

Sr. Number Voltage Measured I Calculated I IAE

1 −0.2057 0.764 0.764149 0.000149
2 −0.1291 0.762 0.762702 0.000702
3 −0.0588 0.7605 0.761374 0.000874
4 0.0057 0.7605 0.760155 0.000345
5 0.0646 0.76 0.759039 0.000961
6 0.1185 0.759 0.758011 0.000989
7 0.1678 0.757 0.757046 4.57× 10−5

8 0.2132 0.757 0.756085 0.000915
9 0.2545 0.7555 0.755022 0.000478
10 0.2924 0.754 0.753597 0.000403
11 0.3269 0.7505 0.751327 0.000827
12 0.3585 0.7465 0.747305 0.000805
13 0.3873 0.7385 0.740085 0.001585
14 0.4137 0.728 0.727426 0.000574
15 0.4373 0.7065 0.707026 0.000526
16 0.459 0.6755 0.6754 9.97× 10−5

17 0.4784 0.632 0.630998 0.001002
18 0.496 0.573 0.572175 0.000825
19 0.5119 0.499 0.499539 0.000539
20 0.5265 0.413 0.413485 0.000485
21 0.5398 0.3165 0.317162 0.000662
22 0.5521 0.212 0.212017 1.67× 10−5

23 0.5633 0.1035 0.102637 0.000863
24 0.5736 −0.01 −0.0093 0.000702
25 0.5833 −0.123 −0.12436 0.001361
26 0.59 −0.21 −0.2091 0.000898
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4.1.2. Double-Diode Cell

The obtained results of the double-diode cells for 30 independent runs using DEDIWPSO are
presented in Table 4. However, the comparison between the mean, minimum and maximum values of
the RMSE with GCPSO, TVAPSO, ELPSO, CPSO, BFPA, GOTLBO, CLPSO, CS, ABC, ISCA, TLABC,
and TLBO is depicted in Table 5. The mean value of the RMSE obtained from the proposed technique
for 30 independent runs is 7.187462× 10−4 with the minimum and maximum values of 7.182306× 10−4

and 7.318100 × 10−4, respectively. The standard deviation of RMSE for 30 runs is 2.486129 × 10−6,
and its comparison with other techniques reveals that the proposed technique is efficient.
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Table 4. Results for the double-diode cell.

Obtained RMSE and Parameters COMPUTATIONAL COST

Best Parameters RMSE Iteration Time (s)

IP(A) 0.76082 Maximum 7.318100× 10−4 Maximum 10,000 Maximum 201
IdS1

(µA) 1.35233×10−4 Minimum 7.182306× 10−4 Minimum 9998 Minimum 197
a1 1.402796 Mean 7.187462× 10−4 Mean 9999 Mean 199

IdS2
(µA) 8.011757 Std 2.486129× 10−6

a2 2.499999
RSe 0.037955
RP 60.93531

Table 5. Comparsion of the obtained RMSE for the double-diode cell.

Algorithm Maximum Minimum Mean Std

DEDIWPSO 7.318100× 10−4 7.182306× 10−4 7.187462× 10−4 2.486129× 10−6

GCPSO [35] 7.41714× 10−4 7.182745× 10−4 7.30138× 10−4 5.371820× 10−6

ELPSO [34] 7.8476× 10−4 7.424× 10−4 7.5904× 10−4 9.4291× 10−6

TVACPSO [33] 7.8476× 10−4 7.4365× 10−4 7.5883× 10−4 1.1044× 10−5

CPSO [31] 0.001220 7.4444× 10−4 7.90204× 10−4 1.0145× 10−5

ISCA [47] 9.86863× 10−4 9.8342× 10−4 9.83800× 10−4 1.65397× 10−6

BFPA [43] 1.934336× 10−3 9.835164× 10−4 1.13798× 10−3 2.440882× 10−4

ABC [26] 1.28482× 10−3 9.89560× 10−4 1.05765× 10−3 6.18669× 10−5

TLABC [42] 1.50482× 10−3 9.84145× 10−4 1.05553× 10−3 1.55034× 10−4

TLBO [44] 1.52057× 10−3 1.00692× 10−3 1.15977× 10−3 1.86022× 10−5

CLPSO [45] 1.39910× 10−3 1.01243× 10−3 1.09482× 10−3 5.62326× 10−4

GOTLBO [46] 4.43212× 10−3 1.20232× 10−3 1.03530× 10−3 1.02312× 10−4

CS [30] 4.37199× 10−2 2.44398× 10−3 7.90243× 10−3 8.06719× 10−3

The computational cost is also presented in Table 4, which presents a number of iterations and
computational time required by the proposed technique to attain the optimal parameters. The obtained
results reveal that the computational cost is larger for the double-diode model, which justifies the higher
complexity of the double-diode model in comparison with the single-diode model. The calculated
current values with the reference I–V data for double-diode cell are presented in Table 6 along with
their IAE.

Figure 8 presents the I–V curve of the calculated and measured data, which shows that the
calculated data closely follow the measured data. Moreover, the obtained parameters were utilized to
compute the output power for each given data set and were plotted as the P–V curve in Figure 9. The
convergence curve of the proposed algorithm for the double-diode cell is presented in Figure 10.Energies 2020, 13, x FOR PEER REVIEW 12 of 26 
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Table 6. I–V values and the relative IAE for the double-diode cell.

Sr. Number Voltage Measured I Calculated I IAE

1 −0.2057 0.764 0.763737 0.000263
2 −0.1291 0.762 0.762479 0.000479
3 −0.0588 0.7605 0.761323 0.000823
4 0.0057 0.7605 0.760257 0.000243
5 0.0646 0.76 0.75927 0.00073
6 0.1185 0.759 0.758339 0.000661
7 0.1678 0.757 0.757427 0.000427
8 0.2132 0.757 0.756462 0.000538
9 0.2545 0.7555 0.755323 0.000177

10 0.2924 0.754 0.753746 0.000254
11 0.3269 0.7505 0.751267 0.000767
12 0.3585 0.7465 0.747022 0.000522
13 0.3873 0.7385 0.739636 0.001136
14 0.4137 0.728 0.726941 0.001059
15 0.4373 0.7065 0.706665 0.000165
16 0.459 0.6755 0.675291 0.000209
17 0.4784 0.632 0.631156 0.000844
18 0.496 0.573 0.572502 0.000498
19 0.5119 0.499 0.499872 0.000872
20 0.5265 0.413 0.413675 0.000675
21 0.5398 0.3165 0.317138 0.000638
22 0.5521 0.212 0.211801 0.000199
23 0.5633 0.1035 0.102334 0.001166
24 0.5736 −0.01 −0.00953 0.000467
25 0.5833 −0.123 −0.12435 0.001345
26 0.59 −0.21 −0.20878 0.001218
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4.2. Results for PV Module

The experimental data for the Photo-watt PWP201 module were obtained from [24], which contain
26 pairs of I–V data. The selected module consists of 36 numbers of polycrystalline silicon cells in
series, and its operation was assumed at 45 ◦C temperature and under a 1000 W/m2 irradiance level.

4.2.1. Single-Diode Module

Results of the single-diode module obtained for 30 independent runs using DEDIWPSO are
presented in Table 7. The obtained results in terms of best parameters, optimal RMSE with standard
deviation, and computational cost are also presented in Table 7. On the other hand, in Table 8, the
comparison of the obtained results with GCPSO, TVAPSO, CPSO, BFPA, TLABC, GWO, and TLBO in
terms of the best, worst, and mean values of RMSE is depicted. The best value of RMSE obtained for
30 runs is 2.039992× 10−3 with the mean and maximum values of 2.039992× 10−3 and 2.039992× 10−3,
respectively. The comparison of the statistical results of the proposed methodology with other
available techniques indicates that the purposed methodology shows the optimal solution and
better performance.

Table 7. Results for the single-diode module.

Obtained RMSE and Parameters Computational Cost

Best Parameters RMSE Iteration Time (s)

IP(A) 1.03235 Maximum 2.039992× 10−3 Maximum 9466 Maximum 110
IdS(µA) 2.49999 Minimum 2.039992× 10−3 Minimum 3546 Minimum 65

a 1.31659 Mean 2.039992× 10−3 Mean 7059 Mean 95
RSe 1.24054 Std 2.995289× 10−15

RP 748.323

Table 8. Comparsion of the obtained RMSE for the single-diode module.

Algorithm Maximum Minimum Mean Std

DEDIWPSO 2.039992× 10−3 2.039992× 10−3 2.039992× 10−3 2.995289× 10−15

GCPSO [35] 2.046536× 10−3 2.046535× 10−3 2.046535× 10−3 1.105194× 10−10

TVACPSO [33] 2.0537× 10−3 2.0530× 10−3 2.0530× 10−3 1.3400× 10−3

CPSO [31] 2.0576× 10−3 2.0530× 10−3 2.0531× 10−3 8.6188× 10−7

GWO [25] 6.9661× 10−3 2.1903× 10−3 3.9111× 10− 3 1.2608× 10−3

BFPA [43] 2.742508× 10−3 2.425075× 10−3 1.370372× 10−3 5.034340× 10−2

TLABC [42] 2.44584× 10−3 2.42507× 10−3 2.42647× 10−3 3.99568× 10−6

TLBO [44] 2.54750× 10−3 2.42509× 10−3 2.43827× 10−3 2.43361× 10−5

The I–V curve of the calculated and measured currents for the given voltages is plotted in Figure 11.
This figure depicts that the calculated current is in proximity to measure the current. The P–V curve
shown in Figure 12 was drawn utilizing the calculated currents and given voltages. Table 9 presents
the I–V data of the measured and calculated values with IAE.

4.2.2. Double-Diode module

Results of the single-diode module obtained for 30 independent runs using the proposed
framework are presented in Table 10. The obtained results in terms of best parameters, optimal
RMSE with standard deviation and computational cost are also presented in Table 10. On the other
hand, Table 11 shows the comparison of RMSE in terms of the maximum, minimum and mean value
with GCPSO, TVAPSO, CPSO and GWO. The mean value of the RMSE obtained by the proposed
technique for 30 runs is 2.039992× 10−3 with the maximum and minimum values of 2.039992× 10−3

and 2.039992× 10−3, respectively. The comparison of the statistical analysis indicates that the purpose
methodology presents an optimal solution and better performance than other algorithms.
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Table 10. Results for the double-diode module.

Obtained RMSE and Parameters Computational Cost

Best Parameters RMSE Iteration Time (s)

IP(A) 1.032357 Maximum 2.039992× 10−3 Maximum 10,000 Maximum 199
IdS1

(µA) 1.000× 10−6 Minimum 2.039992× 10−3 Minimum 4605 Minimum 78
a1 1.317132 Mean 2.039992× 10−3 Mean 8593 Mean 83

IdS2
(µA) 2.50 Std 2.05687× 10−15

a2 2.499999
RSe 1.240547
RP 748.3235

Table 11. Comparsion of the obtained RMSE for the double-diode module.

Algorithm Maximum Minimum Mean Std

DEDIWPSO 2.039992× 10−3 2.039992× 10−3 2.039992× 10−3 2.05687× 10−15

GCPSO [35] 2.046536× 10−3 2.046535× 10−3 2.046535× 10−3 1.673103× 10−10

GWO [25] 5.1250× 10−3 2.2138× 10−3 3.5558× 10−3 1.0786× 10−3

TVACPSO [33] 2.1125× 10−3 2.0530× 10−3 2.0583× 10−3 1.3101× 10−7

CPSO [31] 2.1002× 10−3 2.0530× 10−3 2.0644× 10−3 1.3423× 10−3

The obtained results also reveal that the computational cost is larger for the double-diode model,
which can be justified as the double-diode model is more complex than the single-diode model. The I–V
curve for the calculated and measured currents for given voltages is plotted in Figure 13. This figure
reveals that the calculated current closely follows the measured data. The P–V curve depicted in
Figure 14 was drawn utilizing the calculated currents and given voltages. The I–V data of the measured
and calculated values with their respective IAE are given in Table 12. The convergence curve of the
proposed algorithm for the double-diode module is presented in Figure 15.
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4.3. Results for Practical Test System

To evaluate the performance of the proposed approach under real and varying environmental
conditions (irradiation and temperature levels), the data obtained from the JKM330P-72, 310 W
polycrystalline PV module were utilized for the parameter estimation of the single- and double-diode
modules. The JKM330P PV module consists of 72 series of connected polycrystalline cells, having
characteristic point values at the maximum power point (MPP), the voltage at MPP (Vmpp) = 37.0 V,
current at MPP (Impp) = 8.38 A, the short circuit current (ISC) = 8.96 A and the open circuit voltage
(VOC) = 45.9 V. The data were obtained for five different irradiation and temperature levels of
1000 W/m2 at 47 ◦C, 800 W/m2 at 44 ◦C, 600 W/m2 at 42 ◦C, 400 W/m2 at 36 ◦C, 200 W/m2 at 27 ◦C.

4.3.1. Single-Diode Module

Results for the single-diode JKM330P-72, 310 W polycrystalline PV module were obtained for
30 independent runs, but only the parameters extracted from the best run are presented in Table 13.
On the other hand, the mean, minimum and maximum RMSE, standard deviation and the computational
cost, which includes the total number of iterations and time required to converge for each experimental
I–V data set, are given in Table 14. The minimum difference between the measured current and the
calculated current obtained from the best extracted parameters for the different temperature and
irradiance levels can be seen in Figure 16. Moreover, the power computed using the optimal obtained
parameters for different experimental levels with respective voltages is shown in Figure 17. Table 15
presents the I–V data of the measured and calculated values with their IAE.

Table 13. Obtained parameters for the single-diode JKM330P-72, 310 W polycrystalline PV module.

Best
Parameters

1000 W/m2

at 47 ◦C
800 W/m2

at 44 ◦C
600 W/m2

at 42 ◦C
400 W/m2

at 36 ◦C
200 W/m2

at 27 ◦C

IP(A) 9.882387 8.193303 5.897388 3.693211 1.955859
IdS(µA) 2.636305× 10−1 3.788971 1.285490 6.578293× 10−1 9.999999

a 1.290927 1.515014 1.377876 1.150867 1.689369
RSe 0.241926 0.142890 0.315671 0.788494 0.302527
RP 467.5155 89.44717 217.6296 159.4358 177.7895

RMSE 0.043113 0.054986 0.022270 0.035303 0.018150
Std 6.3128× 10−17 4.8127× 10−10 2.2069× 10−13 7.2621× 10−15 1.62× 10−14

Table 14. Statistical results for the single-diode JKM330P-72, 310 W polycrystalline PV module.

Experimental
Curves

RMSE Iteration Time (s)
Max Min Mean Max Min Mean Max Min Mean

1000 W/m2 at 47 ◦C 0.043113 0.043113 0.043113 9901 1030 7291 110 98 100
800 W/m2 at 44 ◦C 0.054986 0.054986 0.054986 10,000 2199 8437 171 137 140
600 W/m2 at 42 ◦C 0.022270 0.022270 0.022270 10,000 2018 9120 187 103 146
400 W/m2 at 36 ◦C 0.035303 0.035303 0.035303 8990 943 6345 116 98 99
200 W/m2 at 27 ◦C 0.018045 0.018045 0.018045 9989 850 5231 130 85 90

4.3.2. Double-Diode model

Results for the double-diode JKM330P-72, 310 W polycrystalline PV module were obtained for
30 independent runs, but only the parameters extracted from the best run are presented in Table 16.
On the other hand, the mean, minimum and maximum RMSE, standard deviation, and computational
cost, which includes the total number of iterations and time required to converge for each experimental
I–V data set, are given in Table 17. From the obtained results, it can be observed that the computational
cost and variation in the RMSE for the double-diode model were greater compared to the single-diode
model. Minimum difference between the measured current and the calculated current obtained from
the best extracted parameters for the different temperature and irradiance levels can be seen in Figure 18.
Table 18 presents the I–V data of the measured and the calculated values for the 1000 W/m2 and



Energies 2020, 13, 4037 18 of 25

47 ◦C curve with their corresponding IAE. Moreover, the power computed using the optimal obtained
parameters for the different experimental levels, and each voltage value, are shown in Figure 19.
Convergence curve of the proposed algorithm for the double-diode module at 1000 W/m2 and 47 ◦C is
presented in Figure 20.
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Table 15. I–V values and the relative IAE for the single-diode JKM330P-72, 310 W polycrystalline
PV module.

Sr. Number Voltage Measured I Calculated I IAE

1 0 9.82804 9.873348 0.045308
2 1.775741 9.829438 9.870487 0.041048
3 2.996557 9.86563 9.868516 0.002886
4 4.661311 9.866937 9.86582 0.001117
5 6.548038 9.868426 9.862749 0.005677
6 9.100658 9.870432 9.858545 0.011887
7 10.54341 9.871567 9.856127 0.01544
8 11.5423 9.872357 9.854426 0.017932
9 13.09608 9.873583 9.851714 0.021869
10 15.75972 9.875681 9.846759 0.028922
11 16.98047 9.876643 9.844271 0.032372
12 18.86718 9.878122 9.839958 0.038164
13 20.53193 9.844211 9.835384 0.008827
14 21.6418 9.845082 9.83169 0.013392
15 23.63949 9.846663 9.822868 0.023794
16 25.85922 9.777958 9.807041 0.029084
17 27.52397 9.744036 9.787061 0.043025
18 29.74362 9.675341 9.738099 0.062759
19 30.96446 9.641074 9.691175 0.0501
20 32.07423 9.606717 9.627424 0.020707
21 35.51472 9.25717 9.161358 0.095812
22 37.84543 8.378353 8.339642 0.038712
23 40.17605 6.583672 6.6936 0.109928
24 42.06276 4.542054 4.512557 0.029497
25 43.61653 2.147913 2.092031 0.055882
26 44.7264 0 0.035605 0.035605

Table 16. Obtained parameters for the double-diode JKM330P-72, 310 W polycrystalline PV module.

Best
Parameters

1000 W/m2

at 47 ◦C
800 W/m2

at 44 ◦C
600 W/m2

at 42 ◦C
400 W/m2

at 36 ◦C
200 W/m2

at 27 ◦C

IP(A) 9.878221 5.897388 5.897388 3.692697 1.954250
IdS1

(µA) 3.721615× 10−2 1.285489 1.285488 9.999999 8.691569
a1 1.168923 1.377876 1.377876 2.499999 2.093038

IdS2
(µA) 9.99796 1.1879× 10−6 1.000× 10−6 5.1105× 10−2 9.999999
a2 1.913882 1.377570 2.4999931 1.135372 1.683647

RSe 1.168923 0.315671 0.3156716 0.796159 0.259395
RP 610.505844 217.6297 217.62956 161.5022 182.6477

RMSE 0.042377 0.043298 0.022270 0.035292 0.018041
Std 9.255079× 10−5 4.810× 10−10 2.2069× 10−13 7.2637× 10−15 1.61898× 10−14

Table 17. Statistical results for the double-diode JKM330P-72, 310 W polycrystalline PV module.

Experimental
Curves

RMSE Iteration Time (s)

Max Min Mean Max Min Mean Max Min Mean

1000 W/m2 at 47 ◦C 0.042419 0.042377 0.04310 10,000 2098 7912 132 100 101
800 W/m2 at 44 ◦C 0.043299 0.043298 0.04329 10,000 2254 9185 189 144 145
600 W/m2 at 42 ◦C 0.022270 0.022270 0.022270 10,000 3287 9657 190 133 155
400 W/m2 at 36 ◦C 0.035292 0.035292 0.035292 10,000 1489 6991 176 101 110
200 W/m2 at 27 ◦C 0.018041 0.018041 0.018041 10,000 1991 6173 143 99 120
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Figure 18. I–V curves of the measured and the calculated currents for the double-diode practical system
at different irradiance and temperature levels.

Table 18. I–V values and the relative IAE for the double-diode JKM330P-72, 310 W polycrystalline
PV module.

Sr. Number Voltage Measured I Calculated I IAE

1 0 9.82804 9.877276 0.049236
2 1.775741 9.829438 9.873479 0.044041
3 2.996557 9.86563 9.870868 0.005238
4 4.661311 9.866937 9.867307 0.00037
5 6.548038 9.868426 9.863269 0.005157
6 9.100658 9.870432 9.857797 0.012635
7 10.54341 9.871567 9.854696 0.016871
8 11.5423 9.872357 9.852541 0.019817
9 13.09608 9.873583 9.849169 0.024414
10 15.75972 9.875681 9.843275 0.032405
11 16.98047 9.876643 9.840478 0.036166
12 18.86718 9.878122 9.835905 0.042217
13 20.53193 9.844211 9.831401 0.012809
14 21.6418 9.845082 9.827958 0.017124
15 23.63949 9.846663 9.8201 0.026563
16 25.85922 9.777958 9.80625 0.028293
17 27.52397 9.744036 9.788374 0.044338
18 29.74362 9.675341 9.742626 0.067285
19 30.96446 9.641074 9.697229 0.056155
20 32.07423 9.606717 9.634318 0.027602
21 35.51472 9.25717 9.164077 0.093093
22 37.84543 8.378353 8.335111 0.043242
23 40.17605 6.583672 6.689338 0.105666
24 42.06276 4.542054 4.516072 0.025982
25 43.61653 2.147913 2.096856 0.051057
26 44.7264 0 0.031569 0.031569
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Figure 19. P–V curves for the double-diode practical system at different irradiance and
temperature levels.
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Figure 20. Convergence curve for the double-diode JKM330P-72, 310 W polycrystalline PV module.

4.4. Comparison of Results

The comparison of the obtained results from the proposed approach for the three different cases is
discussed in this sub-section for both the single- and double-diode models. Firstly, in the case of the
RTC France solar cell, the double-diode model shows higher efficiency than the single-diode model in
terms of RMSE, which is 7.730062× 10− 4 for the single and 7.187462× 10− 4 for the double-diode
cell. Secondly, for the Photowatt-PWP201 PV module, the minimum value of RMSE remains the
same for both the single- and double-PV modules, which is 2.039992 × 10 − 3 and finally, for the
JKM330P-72, 310 W polycrystalline PV module, the double-diode model shows greater efficiency
than the single-diode model for all the I–V curves data, except for the 600 W/m2, 42 ◦C I–V curve,
which represents same value of RMSE (0.022270) for both models. The obtained results show that the
double-diode model requires a larger number of iterations and computational time than the single-diode
model. The standard deviation of each case study also indicates the complexity of the double-diode
model. Considering these observations, it can be concluded that for the Photowatt-PWP201 PV module,
the single-diode model is preferred as the RMSE for both models is the same, but the computational
cost is greater for the double-diode model. For the RTC France solar cell, the double-diode model is
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preferred as it provides a smaller value of RMSE compared to the single-diode model. Finally, for the
JKM330P-72, 310 W polycrystalline PV module, the double-diode model is also preferable because it
provides optimal results, even at a lower irradiance level. Tables 2 and 5 present the comparison of the
obtained RMSE with the previously available techniques for single- and double-diode cells, and it
can be observed from these tables that the minimum RMSE available in the literature for single- and
double-diode cells is 7.730063 × 10−4 and 7.182745 × 10−4, respectively while the obtained RMSE
for the single- and double-diode cell is 7.730062 × 10−4 and 7.182306 × 10−4, respectively. Similarly,
the minimum RMSE in the case of the single- and double-diode module is 2.046536 × 10−3 and
2.046535× 10−3, respectively, while the obtained RMSE for both the single- and double-diode module
is 2.039992× 10−3. Tables 2, 5, 8 and 11 provide the comparative statistical results of both the single-
and double-diode models for the first two cases. The analysis of the referred tables reveals that the
proposed approach shows a stable performance while providing the minimum RMSE. Similarly, for the
JKM330P-72, 310 W polycrystalline PV module, Tables 14 and 17 show the minimum, maximum
and mean values of RMSE, the computational time and iterations for five different irradiance and
temperature levels for the single- and double-diode models, respectively. The comparison of the
results with other techniques depicts that the proposed technique provides effective and efficient PV
parameters, while providing a minimum value of RMSE.

5. Conclusions

In this paper, the PV parameter estimation problem was addressed by using an improved variant
of PSO. A double exponential dynamic inertia weight strategy was implemented to solve the premature
convergence problem of the conventional PSO. This variant increases the speed of convergence
by increasing the search capabilities of particles and provides an appropriate balance between the
exploration and exploitation phases. Three different systems are utilized to validate the performance
of the proposed approach, including the RTC France solar cell, het Photo-watt PWP201 module,
and a JKM330P-72, 310 W polycrystalline PV module. Five different temperature and irradiance
levels were also considered to model the behavior of a PV system under varying environmental
conditions. The RMSE was considered as an objective function, and the proposed methodology
provides an optimal value of RMSE with accurately estimated PV parameters. The proposed technique
shows the maximum improvement of 61.577% and 64.86% for the single- and double-diode RTC
France solar cells, respectively, from the compared technique. Similarly, for the Photo-watt PWP201
module, the maximum improvement was reported as 15.87% for both the single- and double-diode
modules. Regarding the experimental results and their statistical analysis, the following conclusions
can be attained.

• Convergence curve indicates that the DEDIWPSO has a fast speed of convergence;
• Comparison with other techniques reveals that the results obtained from the proposed approach

are highly accurate and deserve sincere attention;
• Experimental results of the third case study show that the proposed approach is also highly

accurate and reliable for estimating the parameters of a PV system, working under real
environmental conditions;

• Standard deviation for each successful run reveals that DEDIWPSO upholds the stable capability
of reaching an optimal global solution;

• Obtained results reveal that the single-diode model requires less computational cost but provides
less accurate results, whereas the double-diode model is more complex because of its greater
number of parameters, but it provides optimal results even at a low irradiance level;

• Results show that the proposed variant of PSO is a potential tool for solving PV parameter
estimation and other optimization problems, while avoiding premature convergence.
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Nomenclature

a Diode ideality factor
a1 Ideality factor of diode 1
a2 Ideality factor of diode 2
c1 Personel acceleration coefficient
c2 Social acceleration coefficient
q Electron charge
‘gbest Particle global best position
Ii,cal Calculated current
Ii,m Measured current
IP Photon current
IdS Diode saturation current
IdS1 Saturation current of diode 1
IdS2 Saturation current of diode 2
k Boltzman constant
M Number of I–V pairs
kbest Particle personel best position
Ri Performance index
Rse Series resistance
Rp Parrallel resistance
r1, r2 Random numbers
T Temperature in Kelvin
ν j Particle velocity
w Inertia weight
χ j Particle position
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