A Two-Way Neutronics/Thermal-Hydraulics Coupling Analysis Method for Fusion Blankets and Its Application to CFETR
Abstract
:1. Introduction
2. Coupling Method and Blankets Models
2.1. The Two-Way N/TH Coupling Method
2.2. HCSB Blanket Model
2.3. WCCB Blanket Model
3. Results
3.1. The N/TH Coupling Calculation of HCSB Blanket
3.1.1. The Sensitivity Analyses of Temperature
3.1.2. The N/TH Coupling Results
3.2. The N/TH Coupling Calculation of WCCB Blanket
3.2.1. The Sensitivity Analyses of Temperature
3.2.2. The N/TH Coupling Results
4. Conclusions
- Thermal scattering data in the S (α, β) table should be considered in the N/TH coupling calculation of the CFETR blanket.
- Increasing the temperature of beryllium could enhance the tritium breeding ratio (TBR), because the thermal scattering cross sections are large at high temperature.
- In the HCSB blanket, the two-way N/TH coupling effect will decrease the TBR by 0.11%, and increase the maximum temperature in BZ by 1 °C. The N/TH coupling effect could be ignored in the HCSB blanket.
- The TBR and nuclear heat deposition are sensitive to the temperature of water, because the density change induced by the temperature change will significantly impact the absorption and moderation capability.
- In the WCCB blanket, the two-way N/TH coupling effect is more significant. It will enhance the TBR by 4.45%, and increase the maximum temperature of the blanket by 29 °C.
- The relative change of the power density in steel is the largest among all materials in the coupling calculation. However, it will not affect the temperature distribution because the heat deposition could be removed effectively by the neighboring coolant.
- In general, the CFETR blankets are not so sensitive to the N/TH coupling effect. After only one iteration, the two-way N/TH coupling calculation is convergent. But from the viewpoints of accurate blanket design and safety analysis, it is still valuable to perform the two-way N/TH coupling calculation in fusion water-cooled blankets.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wan, Y. Design and strategy for the Chinese fusion engineering test reactor (CFETR). In Proceedings of the SOFE, San Francisco, CA, USA, 10–14 June 2013. [Google Scholar]
- Kim, Y.; Hong, B.G.; Kim, C.H. A neutronic investigation of He-cooled liquid Li-breeder blankets for fusion power reactor. Fusion Eng. Des. 2005, 75, 1067–1070. [Google Scholar] [CrossRef]
- Zhang, G.; Wu, H.; Cao, L.; Zheng, Y.; Li, Y.; Liu, Z. Study on the three-dimensional heterogeneous calculation of ITER test blanket module with deterministic method. Fusion Eng. Des. 2013, 88, 413–420. [Google Scholar] [CrossRef]
- Pereslavtsev, P.; Fischer, U.; Hernandez, F.; Lu, L. Neutronic analysis for the optimization of the advanced HCPB Breeder blanket design for DEMO. Fusion Eng. Des. 2017, 124, 910–914. [Google Scholar] [CrossRef] [Green Version]
- Palermo, I.; Fernandez, I.; Rapisarda, D.; Ibarra, A. Neutronic analyses of the preliminary design of a DCLL blanket for the EUROfusion DEMO power plant. Fusion Eng. Des. 2016, 109–111, 13–19. [Google Scholar] [CrossRef]
- Cho, S.; Ahn, M.Y.; Lee, C.W.; Kim, J.H.; Woo, M.H.; Park, J.S.; Im, K.; Lee, Y.; Park, Y.H.; Lee, D.W. Neutronic assessment of HCCR breeding blanket for DEMO. Fusion Eng. Des. 2019, 146, 1338–1342. [Google Scholar] [CrossRef]
- Li, Z.; Feng, K.; Zhao, Z.; Zhao, F.; Feng, Y.; Xu, K. Neutronics study on HCCB blanket for CFETR. Fusion Eng. Des. 2017, 124, 1273–1276. [Google Scholar] [CrossRef]
- Jaboulay, J.C.; Aiello, G.; Aubert, J.; Morin, A.; Troisne, M. Nuclear analysis of the HCLL blanket for the European DEMO. Fusion Eng. Des. 2017, 124, 896–900. [Google Scholar] [CrossRef]
- Moro, F.; Colangeli, A.; Del Nevo, A.; Flammini, D.; Mariano, G.; Martelli, E.; Mozzillo, R.; Noce, S.; Villari, R. Nuclear analysis of the Water cooled lithium lead DEMO reactor. Fusion Eng. Des. 2020, 160, 111833. [Google Scholar] [CrossRef]
- Kim, G.W.; Lee, J.H.; Cho, H.K.; Park, G.C.; Im, K. Development of thermal-hydraulic analysis methodology for multiple modules of water-cooled breeder blanket in fusion DEMO reactor. Fusion Eng. Des. 2016, 103, 98–109. [Google Scholar] [CrossRef]
- Di Maio, P.A.; Dell’Orco, G.; Furmanek, A.; Garitte, S.; Merola, M.; Mitteau, R.; Raffray, R.; Spagnuolo, G.A.; Vallone, E. Numerical simulation of the transient thermal-hydraulic behavior of the ITER blanket cooling system under the draining operational procedure. Fusion Eng. Des. 2015, 98–99, 1664–1667. [Google Scholar] [CrossRef]
- Li, M.; Chen, H.; Wang, S.; Liu, Q.; Zhou, G.; Ye, M. Optimization of coolant flow distribution for CFETR helium cooled solid breeder blanket. Fusion Eng. Des. 2015, 98–99, 1829–1832. [Google Scholar] [CrossRef]
- Jiang, K.; Ma, X.; Cheng, X.; Lin, S.; Huang, K.; Liu, S. Thermal-hydraulic analysis on the whole module of water cooled ceramic breeder blanket for CFETR. Fusion Eng. Des. 2016, 112, 81–88. [Google Scholar] [CrossRef]
- Martelli, E.; Caruso, G.; Giannetti, F.; Del Nevo, A. Thermo-hydraulic analysis of EU DEMO WCLL breeding blanket. Fusion Eng. Des. 2018, 130, 48–55. [Google Scholar] [CrossRef]
- Utoh, H.; Tobita, K.; Someya, Y.; Sato, S.; Seki, Y.; Takase, H. Development of a two-dimensional nuclear-thermal-coupled analysis code for conceptual blanket design of fusion reactors. Fusion Eng. Des. 2011, 86, 2378–2381. [Google Scholar] [CrossRef]
- Spagnuolo, G.A.; Chiovaro, P.; Di Maio, P.A.; Favetti, R. A multi-physics integrated approach to breeding blanket modelling and design. Fusion Eng. Des. 2019, 143, 35–40. [Google Scholar] [CrossRef]
- Jiang, K.; Ding, W.; Zhang, X.; Li, J.; Ma, X.; Huang, K.; Luo, Y.; Liu, S. Development of neutronic-thermal hydraulic-mechanic-coupled platform for WCCB blanket design for CFETR. Fusion Eng. Des. 2018, 137, 312–324. [Google Scholar] [CrossRef]
- Cui, S.; Zhang, D.; Lian, Q.; Tian, W.; Cheng, J.; Su, G.H.; Qiu, S. Development of a neutronics/thermal-hydraulic coupling optimization code and its application on the CFETR HCSB blanket. Fusion Eng. Des. 2017, 122, 140–153. [Google Scholar] [CrossRef]
- Cui, S.; Zhang, D.; Tian, W.; Su, G.; Qiu, S. Numerical research on the coupling optimization design rule of the CFETR HCSB blanket using NTCOC code. Fusion Eng. Des. 2018, 127, 234–248. [Google Scholar] [CrossRef]
- Jiang, K.; Zhang, X.; Li, J.; Ma, X.; Liu, S. Using one hybrid 3D-1D-3D approach for the conceptual design of WCCB blanket for CFETR. Fusion Eng. Des. 2017, 114, 57–71. [Google Scholar] [CrossRef]
- Conlin, J.L.; Ji, W.; Lee, J.C.; Martin, W.R. Pseudo Material Construct for Coupled Neutronic-Thermal-Hydraulic Analysis of VHTGR. Trans. Am. Nucl. Soc. 2015, 92, 225–227. [Google Scholar]
- Clarno, K.T.; Palmtag, S.; Davidson, G.G.; Salko, R.K.; Evans, T.M.; Turner, J.A.; Belcourt, K.; Hooper, R.; Schmidt, R. Coupled Neutronics Thermal-Hydraulic Solution of a Full-Core PWR Using VERA-CS. In Proceedings of the PHYSOR 2014, Kyoto, Japan, 28 September–3 October 2014. [Google Scholar]
- Kochunas, B.; Jabaay, D.; Collins, B.; Downar, T.J. Coupled thermal-hydraulics and neutronics calculations with COBRA-TF and MPACT. In Proceedings of the American Nuclear Society 2014 Annual Meeting, Reno, NV, USA, 15–19 June 2014. [Google Scholar]
- Guo, J.; Liu, S.; Shang, X.; Huang, S.; Wang, K. Coupled neutronics/thermal-hydraulics analysis of a full PWR core using RMC and CTF. Ann. Nucl. Energy 2017, 109, 327–336. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, B.; Zhang, M.; Zhou, X.; Cao, L. An internal parallel coupling method based on NECP-X and CTF and analysis of the impact of thermal-hydraulic model to the high-fidelity calculation. Ann. Nucl. Energy 2020, 146, 107645. [Google Scholar] [CrossRef]
- Holtkamp, N.; The ITER Project Team. An overview of the ITER project. Fusion Eng. Des. 2007, 82, 427–434. [Google Scholar] [CrossRef]
- Chen, H.; Li, M.; Lv, Z.; Zhou, G.; Liu, Q.; Wang, S.; Wang, X.; Zheng, J.; Ye, M. Conceptual design and analysis of the helium cooled solid breeder blanket for CFETR. Fusion Eng. Des. 2015, 96–97, 89–94. [Google Scholar] [CrossRef]
- Arbeiter, F.; Gordeev, S.; Heinzel, V.; Slobodtchouk, V. Analysis of turbulence models for thermohydraulic calculations of helium cooled fusion reactor components. Fusion Eng. Des. 2006, 81, 1555–1560. [Google Scholar] [CrossRef]
- Gordeev, S.; Arbeiter, F. Validation study of turbulence models for thermal-hydraulic simulation of helium cooled DONES high flux test module. Fusion Eng. Des. 2020, 159, 111881. [Google Scholar] [CrossRef]
- Lv, Z.; Chen, H.; Chen, C.; Li, M.; Zhou, G. Preliminary neutronics design and analysis of helium cooled solid breeder blanket for CFETR. Fusion Eng. Des. 2015, 95, 79–83. [Google Scholar] [CrossRef]
- Liu, S.; Ma, X.; Jiang, K.; Cheng, X.; Huang, K.; Neilsion, H.; Titus, P. Conceptual design of the water cooled ceramic breeder blanket for CFETR based on pressurized water cooled reactor technology. Fusion Eng. Des. 2017, 124, 865–870. [Google Scholar] [CrossRef]
- Wang, W.H.; Li, J.L.; Liu, S.L.; Pei, X.; Huang, Q.Y.; FDS Team. Three-dimensional dual-flow fields analysis of the DFLL TBM for ITER. Fusion Eng. Des. 2012, 87, 989–994. [Google Scholar] [CrossRef]
Items | Parameters |
---|---|
Blanket size | Poloidal height: 960 mm; toroidal width: 1448–1606 mm; radial thickness: 800 mm |
Tungsten armor | 2 mm |
FW | Thickness: 28 mm; channel: U-shaped, cross section: 15 mm × 15 mm, pitch: 20 mm |
BU | Pebble bed: radial thickness: 20/15/180/30/200/45/40 mm; poloidal height: 106 mm CPs: U-shaped, thickness 5 mm Channel: cross section 6.1 mm × 2.6 mm, pitch: 10.1 mm |
Cap | Thickness: 28 mm; channel: W-shaped, cross section: 6.5 mm × 4 mm, pitch: 14.5 mm |
SP | Thickness: 8 mm; channel: W-shaped, cross section: 6.5 mm × 4 mm, pitch: 14.5 mm |
BP | Thickness: 35/10/10/10/40 mm |
Parts | Material |
---|---|
Structure material | Reduced activation ferritic/martensitic (RAFM) steel |
Tritium breeder | Lithium ceramic of Li4SiO4 with the 6Li enrichment to be 90% in form of pebbles with a packing factor of 62% |
Neutron multiplier | Beryllium pebbles with a packing factor of 80% |
Coolant | Helium gas with a pressure of 8 MPa |
Purge gas | Helium gas with a pressure of 0.12 MPa |
Parts | Inlet Temperature (°C) | Average Velocity (m/s) | Pressure Drop (kPa) |
---|---|---|---|
FW | 300 | 18.3 | 7.5 |
CP1 | 435 | 44.1 | 86.4 |
CP2 | 435 | 44.5 | 87.0 |
CP3 | 435 | 43.8 | 87.3 |
CP4 | 435 | 43.1 | 86.4 |
CP5 | 435 | 43.8 | 87.6 |
CP6 | 435 | 43.9 | 88.5 |
Variations | Grid #1 | Grid #2 | Grid #3 |
---|---|---|---|
Element counts | 161,194 | 477,527 | 954,127 |
Coolant density at FW outlet (kg/m3) | 6.299106 | 6.295557 | 6.295696 |
Coolant density at CP1 outlet (kg/m3) | 5.339649 | 5.338095 | 5.338031 |
Coolant density at CP2 outlet (kg/m3) | 5.182181 | 5.181435 | 5.181607 |
Coolant density at CP3 outlet (kg/m3) | 5.217227 | 5.216613 | 5.216785 |
Coolant density at CP4 outlet (kg/m3) | 5.327579 | 5.327155 | 5.325293 |
Coolant density at CP5 outlet (kg/m3) | 5.426092 | 5.425874 | 5.425687 |
Coolant density at CP6 outlet (kg/m3) | 5.463196 | 5.463004 | 5.463052 |
Maximum temperature (°C) | 859.3649 | 859.1595 | 859.1474 |
Items | Parameters |
---|---|
Blanket size | Poloidal height: 1199 mm; toroidal width: 950 mm; radial thickness: 802 mm |
Tungsten armor | 2 mm |
FW | Thickness: 20 mm; channel: U-shaped, cross section 8 mm × 8 mm, pitch 22 mm |
BU | Radial thickness: 53/30/77/30/139/327 mm CPs: thickness: 11 mm, Channels: cross section 5 mm × 5 mm, pitch 15 mm |
Items | Material Components |
---|---|
Structural materials | RAFM steel |
Breeder | 14.4% Li2TiO3, 65.6% Be12Ti, 20% Helium |
Neutron multiplier | 80% Beryllium, 20% helium |
Back plate | 20% light water, 80% RAFM steel |
Coolant | 100% light water of 15.5 MPa |
Variations | Grid #1 | Grid #2 | Grid #3 |
---|---|---|---|
Element counts | 106,180 | 687,436 | 1,661,151 |
Coolant density at outlet (kg/m3) | 687.5223 | 687.4366 | 687.7029 |
Maximum temperature (°C) | 965.0614 | 964.6455 | 965.3698 |
Items | 20 °C | 327 °C | 627 °C | 927 °C |
---|---|---|---|---|
TBR at different beryllium temperature | 1.576541 | 1.575489 | 1.574678 | 1.575460 |
TBR at different Li4SiO4 temperature | 1.576954 | 1.576950 | 1.576945 | |
Total nuclear heat deposition at different beryllium temperature (eV) | 18.988849 | 18.964842 | 18.972012 | 18.964625 |
Total nuclear heat deposition at different Li4SiO4 temperature (eV) | 18.972121 | 18.961930 | 18.971926 |
Items | 20 °C | 327 °C | 627 °C | 927 °C |
---|---|---|---|---|
TBR at different beryllium temperature | 1.577718 | 1.590735 | 1.596369 | 1.602417 |
TBR at different Li4SiO4 temperature | 1.578197 | 1.578201 | 1.578195 | |
Total nuclear heat deposition of different beryllium temperature (eV) | 18.963606 | 18.933757 | 18.913840 | 18.908857 |
Total nuclear heat deposition of different Li4SiO4 temperature (eV) | 18.968743 | 18.968764 | 18.968599 |
Items | Iteration #0 | Iteration #1 (Value and Relative Difference) | Iteration #2 (Value & Relative Difference) |
---|---|---|---|
Local TBR in BZ1 | 0.771213 ± 0.05% | 0.767531 ± 0.05% (−0.4774%) | 0.767529 ± 0.05% (−0.0002%) |
Local TBR in BZ2 | 0.648153 ± 0.06% | 0.648876 ± 0.06% (0.1115%) | 0.648872 ± 0.06% (−0.0006%) |
Local TBR in BZ3 | 0.158352 ± 0.13% | 0.159586 ± 0.13% (0.7791%) | 0.159586 ± 0.13% (0.0001%) |
Total TBR | 1.577718 ± 0.06% | 1.575993 ± 0.06% (−0.1094%) | 1.575987 ± 0.06% (−0.0004%) |
Items | 20 °C | 327 °C | 627 °C | 927 °C |
---|---|---|---|---|
TBR at different beryllium temperature | 1.451630 | 1.451849 | 1.452164 | 1.445660 |
TBR at different breeder temperature | 1.457769 | 1.457794 | 1.457555 | |
TBR at different coolant temperature | 1.531576 | / | / | |
Total nuclear heat deposition at different beryllium temperature (eV) | 19.453868 | 19.450326 | 19.449406 | 19.400373 |
Total nuclear heat deposition at different breeder temperature (eV) | 19.481066 | 19.481712 | 19.481288 | |
Total nuclear heat deposition at different coolant temperature (eV) | 19.466556 | / | / |
Items | Iteration #0 (Value) | Iteration #1 (Value and Relative Difference) | Iteration #2 (Value and Relative Difference) |
---|---|---|---|
Local TBR in BZ1 | 0.587849 ± 0.06% | 0.597635 ± 0.06% (1.6647%) | 0.597600 ± 0.06% (−0.0006%) |
Local TBR in BZ2 | 0.515862 ± 0.07% | 0.539266 ± 0.07% (4.5369%) | 0.538988 ± 0.07% (−0.0516%) |
Local TBR in BZ3 | 0.270865 ± 0.10% | 0.294728 ± 0.10% (8.8099%) | 0.293750 ± 0.10% (−0.3318%) |
Local TBR in BZ4 | 0.077054 ± 0.20% | 0.086122 ± 0.19% (11.7684%) | 0.085868 ± 0.19% (−0.2949%) |
Total TBR | 1.451630 ± 0.08% | 1.517741 ± 0.08% (4.5355%) | 1.516206 ± 0.08% (−0.1011%) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, T.; Cao, L.; He, Q.; Wu, H.; Shen, W. A Two-Way Neutronics/Thermal-Hydraulics Coupling Analysis Method for Fusion Blankets and Its Application to CFETR. Energies 2020, 13, 4070. https://doi.org/10.3390/en13164070
Dai T, Cao L, He Q, Wu H, Shen W. A Two-Way Neutronics/Thermal-Hydraulics Coupling Analysis Method for Fusion Blankets and Its Application to CFETR. Energies. 2020; 13(16):4070. https://doi.org/10.3390/en13164070
Chicago/Turabian StyleDai, Tao, Liangzhi Cao, Qingming He, Hongchun Wu, and Wei Shen. 2020. "A Two-Way Neutronics/Thermal-Hydraulics Coupling Analysis Method for Fusion Blankets and Its Application to CFETR" Energies 13, no. 16: 4070. https://doi.org/10.3390/en13164070
APA StyleDai, T., Cao, L., He, Q., Wu, H., & Shen, W. (2020). A Two-Way Neutronics/Thermal-Hydraulics Coupling Analysis Method for Fusion Blankets and Its Application to CFETR. Energies, 13(16), 4070. https://doi.org/10.3390/en13164070