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Abstract: Conventional methods of sewage sludge disposal are often limited by their environmental
impact and economic demands. Pyrolysis has been studied as a viable method for sewage sludge
disposal and transformation into usable products. Pyrolytic products may have various uses, and
their complex characteristics shall be described to assess their potential for safe utilization. Here,
we studied slow pyrolysis of stabilized sewage sludge in a fixed bed reactor at 400–800 ◦C to
describe the composition of the pyrolysis gas and the condensate fraction. We found that condensate
elemental composition was practically independent of pyrolysis temperature. On the other hand,
the composition of the pyrolysis gas was strongly temperature-dependent regarding both the share
of major components (H2, CO, CO2, CH4) and C2–C6 hydrocarbons speciation (which as a sum
attributed to 7–9 vol. % of the gas). The increase in pyrolysis temperature also resulted in increasing
the N2 content of the gas, whereas the sulfur containing gas compounds were substantially diluted in
the increasing gas volume.

Keywords: sewage sludge; pyrolysis; gas composition; mass balance; energy balance

1. Introduction

Population growth and increasing urban life rate [1] demand extended implementation of
wastewater treatment, inevitably resulting in increasing production of waste–sewage sludge. Most
of the impurities from wastewater are concentrated in the sludge, which makes it a potentially
hazardous material; therefore, safe and reasonable disposal must be applied. Sewage sludge is typically
disposed of using incineration [2], agriculture application (as soil fertilizer or part of the compost)
and landfilling [3]; however, economic and rigorous environmental requirements limit these methods
considerably. Alternatively, pyrolysis of sewage sludge has been proposed to be able to overcome the
burdens of conventional sludge disposal management [4–7].

Pyrolysis of sewage sludge results in three different products (solid, liquid and gas fractions)
which may be utilized variably. Solid residue—sludge-char—can be simply burnt or disposed of, on
the other hand, its utilization as an adsorbent [8] or soil improver/fertilizer [3,9] seems to be a better
option according to the circular economy principle. Pyrolytic oil (condensate liquid product) and
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pyrolytic gas can be utilized as fuels or raw materials for (petro-)chemical production [10]. However,
since pyrolysis is an endothermic process requiring a considerable amount of energy, the use of oil and
gas as fuels for the pyrolysis process is the most practical method because they usually contain over
50% of energy from the feed sludge [4,11].

The majority of the gas from sewage sludge pyrolysis comprises of CO2, H2, CO and CH4 and
the effect of pyrolysis temperature on these gases is often reported in the literature [4,7,12–14]. H2

and CO (most abundant flammable species in the gas) content usually increases with the increase
in pyrolysis temperature. CO2 content usually decreases and the CH4 content tends to first increase
and then decrease with the rise in temperature. However, specific behaviors of these compounds are
strongly dependent on the reactor arrangement and other operational parameters [5,7,12]. On the
other hand, the content of nitrogen and sulfur containing species in the pyrolytic gas and condensate is
only marginally described in the literature [4,15]. Moreover, light hydrocarbons are usually reported
summarily as C2—Cx or CxHy group [7,14,16] and more detailed analysis of their compound species
is scarce.

This paper aims to describe the influence of pyrolysis temperature in the range 400–800 ◦C
on the complex composition of the sewage sludge pyrolysis gas and the elemental composition of
the condensate. The main focus was to describe the release and potential transformation of light
hydrocarbons species (C2—C6), the release of nitrogen from the sludge and sulfur speciation in the gas.
The study was complemented by the condensate analysis to describe the mass and energy balance of
the sewage sludge pyrolysis process.

2. Materials and Methods

2.1. Sewage Sludge

Stabilized sewage sludge was obtained from a municipal wastewater treatment plant (capacity
ca. 500,000 population equivalent). The sludge was stabilized by mesophilic anaerobic digestion
(residence time ca. 22 days at constant 35 ◦C) followed by centrifuge dewatering and drying at ≈ 100
◦C for over 3 h. The size fraction between 0.5 and 2 mm was used for the experiments. During the
summer time, the samples of the sludge (ca. 10 L) were collected on daily basis for a period of one
month. Consequently, the mixed sample was quartered and representative samples were prepared for
the analyses. The analysis of the sludge properties was done in four repetitions. The fundamental
properties of the sludge are displayed in Table 1. The physical and chemical properties indicate that
the sludge is the typical representative of anaerobically stabilized sewage sludge, preferably the ash to
volatiles ratio ca. 1:1.

Table 1. Physical and chemical properties of sewage sludge.

W 1 A 2 V 2 C 2 H 2 N 2 S 2 HHV 2

wt. % wt. % MJ/kg

9.77 ± 0.15 43.3 ± 0.22 49.2 ± 1.03 28.8 ± 0.14 4.20 ± 0.04 4.22 ± 0.03 1.10 ± 0.03 12.7 ± 0.21
1—average value from all experiments 2—in dry matter; W—water (moisture) content, A—Ash content, V—Volatiles
content, HHV—Higher Heating Value.

2.2. Pyrolysis Experiments

Approximately 100 g of the sludge was pyrolyzed in a quartz fixed-bed reactor (outer diameter 35
mm, length of the reactor 450 mm) at 400, 500, 600, 700, and 800 ◦C. The pyrolysis experiment began by
placing the reactor (no. 2 in Figure 1) into a hot furnace (1) preheated to the intended temperature of
pyrolysis. A thermocouple (type K) was placed on the inner wall of the oven. The temperature was
automatically regulated, and the initial drop (caused by inserting the cold reactor) was compensated
within 15 min, after which the desired temperature was constant until the end of the experiment (2 h).
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Figure 1. Scheme of the pyrolysis apparatus: 1—oven, 2—quartz reactor, 3—5 ice-water-cooled
impingers, 6—porous filter, 7—Tedlar bag.

Primary pyrolytic products (condensable vapors and permanent gases diluted by the carrier
gas—helium) flowed through insulated tubing into three ice-bath-cooled impingers (3–5) to collect
condensable vapors, then through a porous filter (6). Finally, permanent gases were collected into
Tedlar bags (7). The line for sampling vapors and gases was connected by Teflon tubes.

Helium was supplied continuously to the bottom of the reactor at a constant flow rate of 150
mL/min thirty minutes before the placement of the reactor to the oven, within the experiment, and
during the cooling of the reactor after the experiment. Helium was used to extract the primary pyrolysis
products (gas and condensates) from the reactor without any (chemical) interactions with the products
of the pyrolysis and to make balances more accurate, as we observed less accuracy using the nitrogen
in prior experiments, which may be a result of sewage sludge being rich in nitrogen and mainly
influencing the gas composition and gas mass.

2.3. Yields of Products

Mass (weight) yields of pyrolytic products were calculated according to the following equation

Yi =
mi
ms
× 100 (1)

where Yi is the yield of the product in wt. %, mi is the weight of the product in grams, and ms is the
weight of the feedstock sludge (including moisture) in grams. The weight of the feedstock sludge
was obtained by measuring the weight of the reactor filled with the sludge before the experiment and
subtracting the weight of the reactor itself.

The weight of the sludge-char was obtained by measuring the weight of the reactor after the
experiment and cooling down the reactor to room temperature, and by subtracting the weight of the
reactor itself measured before filling the reactor with the sludge before the experiment. The weight
of the condensable vapors was obtained by measuring the weights of the impingers and connecting
tubes after the experiment and subtracting the weight of these parts themselves measured before the
experiment. The condensate in the first impinger was left still for 24 h, then the water phase was
separated by syringe and weighed to obtain the weight of the water liquid fraction. The difference
between the weight of condensable vapors and the weight of water liquid fraction is considered to be
the weight of the organic condensate fraction. The inaccuracy in measuring the weights of the separate
liquid fractions is considered to be insignificant.

The weight and heating value of pyrolysis gas was calculated based on the gas composition and
volume in Tedlar bags referenced to 0 ◦C, 101 kPa, and subtracting the helium volume.
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2.3.1. Gas Composition

The gas for analysis of major components was ejected from Tedlar bags by gas-tight syringe and it
was injected to gas chromatograph HP 6890 equipped with two analytical channels. The first channel
(capillary column, Supelco Al2O3/KCl 50 m × 530 µm × 4 µm; flame-ionization detector) was used for
the analysis of hydrocarbons C1—C7. The second channel (packed pre-column, HayeSep Q 0.9 m × 3.2
mm, 80/100 mesh; capillary column 1, HP PLOT Q 30 m × 530 µm × 40 µm; capillary column 2, HP
Plot Molsieves 5 A 30 m × 530 µm × 50 µm; thermal conductivity detector) was used for permanent
gases analysis. Carrier gas (He) flows, oven temperature program (70 ◦C (hold 7 min)→ 90 ◦C (rate
10 ◦C/min)→ 200 ◦C (rate 20 ◦C/min, hold 7 min)) and valve switching times were experimentally
set to optimal values which perform a complete gas analysis in less than 20 minutes. The system is
capable of analysis of hydrogen, oxygen (it was not possible to separate oxygen from argon at the given
conditions, therefore their sum is expressed as oxygen), nitrogen, carbon dioxide, carbon monoxide,
methane, ethane, ethene, acetylene, propane, propene, propyne, butanes, pentanes, hexanes, C4 cyclic
and/or unsaturated forms, 1,3-butadiene, 1-buten-3-yne, cyclopentadiene, benzene, toluene.

Gas chromatograph Agilent 7890 A with selective chemiluminescence detector Agilent 355 SCD
was used to analyze the concentration of sulfur containing compounds in the gas. The detector employs
dual plasma burner, chemiluminescence reaction cell and photomultiplier tube, and ozone generator.
The capillary column DB-1 by J&W (30 m × 320 µm × 1 µm) was connected to injector heated to 200
◦C. Carrier gas (nitrogen) flow was constant at 1.4 mL/min and the pressures of air and hydrogen
in the burner were set to 320 kPa (56 mL/min) and 190 kPa (36 mL/min), respectively. Thermostat
temperature program was 35 ◦C (hold 2 min)→ 120 ◦C (rate 20 ◦C/min, hold 2 min).

Contents of components were determined by the method of external standard according to
Equation (2) and normalization to reference conditions (0 ◦C, 101 kPa) according to Equation (3).
Content of helium in Tedlar bag was subsequently calculated according to Equation (4). Most of
the oxygen was measured due to sampling complications and the leaking of air in, therefore the gas
composition was corrected to zero oxygen concentration according to Equations (5) and (6)

ϕi = ϕST,i ×
AVZ,i

AST,i
(2)

ϕi,N = 100×
ϕi∑n
1 ϕi

(3)

ϕHe,N = 100−
n∑
1

ϕi (4)

ϕ∗i,N = 100×
ϕi,N

100−
(ϕO2,N

0,21

) (5)

ϕ∗N2,N = 100×
ϕN2,N − 0, 79·

(ϕO2,N
0,21

)
100−

(ϕO2,N
0,21

) (6)

where:
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ϕi
Component content in the gas
sample;

(%)

ϕST,i
Component content in the
standard gas;

(%)

AVZ,i
Area of the component in the gas
sample;

AST,i
Area of the component in the
standard gas;

ϕi,N
Component content in normalized
gas sample;

(%)

ϕHe,N Helium content in normalized gas; (%)

ϕ∗i,N
Component content in normalized
gas free of He after correction;

(%)

ϕi,N
Component content in normalized
gas free of He before correction;

(%)

ϕO2,N Oxygen content in normalized gas; (%)

ϕ∗N2,N
Nitrogen content in normalized
gas free of He after correction;

(%)

ϕN2,N
Nitrogen content in normalized
gas free of He before correction.

(%)

2.3.2. Gas Volume

A defined amount of gas collected to Tedlar bags was used for off-line analysis of gas composition
prior to the measurement of gas volume. That amount was added to the total amount of remaining
gas in the bag. The volume of gas in Tedlar bag was measured by a simple apparatus consisting of a
sampling hose connected to a diaphragm pump. The hose connected the outgas of the pump to the
entry of laboratory wet-type drum meter. After connecting all the parts of the apparatus, the gas was
pumped from the bag to the drum meter and the volume was normalized to reference 0 ◦C, 101 kPa
and subtracting the helium (carrier gas) according to Equations (7) and (8)

VN =
TN × (p− k× pH2O) ×V

T × pN
(7)

Vp
N =

VN × (100−ϕHe,n)

100
(8)

where:

VN
Normalized gas volume in Tedlar
bag;

(dm3)

TN Reference temperature; (273.15 K)

p
Barometric pressure in the
environment of measurement;

(kPa)

k
Correction factor for the drum
meter – 1 (experimentally
estimated);

(-)

pH2O
Water vapor pressure at the gas
meter temperature;

(kPa)

V
Gas volume at the conditions of
measurement (T, p);

(dm3)

T
Gas temperature during
measurement;

(K)

pN Reference pressure; (101 kPa)

Vp
N

Normalized volume (TN, pN) of
gas free of helium;

(dm3)

ϕHe,N Helium content in normalized gas. (%)
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2.4. Proximate and Ultimate Analyses, Heating Values

The moisture content (W) of the sludge was determined according to the Czech/European standard
ČSN EN 15,414–3, the ash content (A) of the sludge was determined according to the standard ČSN
EN 15,403 and the volatile content (V) was determined according to ČSN EN 15,402.

The ultimate analysis of the sludge and condensates (both water and organic fraction) was
performed in a Flash EA 1112 device in the CHNS/O configuration, where the content of C, H, N, S
was measured by an analysis of the gaseous products from combustion by oxygen (CO2, H2O, N2 and
SO2) using a thermal conductivity detector. Besides, the total sulfur content was determined according
to the Czech/International standard ČSN ISO 351.

Higher heating value (HHV) of the sludge and condensates were determined according to ČSN
EN 15,400 utilizing the calorimeter IKA C 200 (IKA-Werke GmbH & Co).

3. Results and Discussion

3.1. Mass and Energy Balance

Mass and energy balances are principal characteristics that provide an overview of the process
quality and process products distribution. As expected, the increase in pyrolysis temperature resulted
in a decrease in the sludge-char yield (Figure 2a) due to the release of more thermally stable matter.
Consequently, the release of volatile matter resulted in an increase in the mass (Figure 2a) and energy
(Figure 2b) yield of the pyrolysis gas. The yield of organic condensate fraction increased up to 600
◦C, then it decreased. The water condensate fraction yield was relatively constant. As a result,
when pyrolysis was performed at ≥ 500 ◦C, ≥ 50 % of the energy of the sludge was recovered in the
condensate and gas, which may be used to cover a substantial part of the pyrolysis energy demand. The
increase in the pyrolysis temperature up to 500 ◦C most notably influences the sludge-char yield as the
relatively great portion of labile organic fraction is released. Compared to other biomass materials, the
sludge-char yield is greater due to high ash content of the sludge which forms most of the sludge-char;
68–81 wt. % after pyrolysis at 400–800 ◦C. A further increase over 600 ◦C most notably influences
the pyrolysis gas energy yield (Figure 2b), which is computed from its composition and mass yield.
Similar results and trends were also found in the literature for the fixed bed [17] and continuous [4,5]
sewage sludge pyrolysis processes.
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3.2. Gas Composition

The complex composition of pyrolysis gases, their production volumes and heating values are
displayed in Table 2. The main sludge pyrolysis gas components are CO2, CO, H2, and CH4 with their
sum being almost 90 vol. %. The rest of the pyrolysis gases are composed of hydrocarbons, nitrogen,
and other minor compounds.

Table 2. Production, composition, and heating values of pyrolysis gases from sewage sludge pyrolysis.
Main gaseous compounds were measured with 1% relative error, while trace components were
measured with 4% relative error.

Pyrolysis Temperature ◦C 400 500 600 700 800

Gas Production m3/tsludge 42.3 55.7 82.3 119 149

Gas Composition (vol. %)

CO2 62.3 49.5 38.1 29.1 23.6
H2 10.0 20.6 25.3 26.5 27.9
CO 8.24 8.59 12.6 18.4 24.5
CH4 7.81 11.2 12.7 12.2 10.7
N2 0.0930 0.0424 1.62 3.61 5.00

ethane 2.14 2.33 2.09 1.87 1.46
ethylene 1.13 1.34 1.52 2.53 2.59
acetylene <0.01 <0.01 <0.01 0.0328 0.0535
propane 1.38 1.15 0.953 0.682 0.490
propene 1.18 1.23 1.31 1.80 1.57
propyne 0.147 0.108 0.111 0.096 0.067
butanes 0.574 0.411 0.194 0.204 0.147

pentanes 0.180 0.171 0.131 0.0742 0.0506
hexanes 0.0722 0.0502 0.0417 0.0246 0.0155
C4 (=) 1.20 0.975 0.922 0.900 0.697

buta-1,3-diene 0.0406 0.0597 0.111 0.267 0.262
but-1-ene-3-yne 0.0469 0.0484 0.0674 0.0320 0.0232
cyklopentadiene 0.0936 0.0643 0.114 0.174 0.136

benzene 0.221 0.118 0.0854 0.142 0.0391
toluene 0.528 0.236 0.237 0.185 0.0223

others (FID) 2.70 1.81 1.86 1.21 0.73

HHV (MJ/m3) 17.0 17.8 19.1 20.1 18.2

The carbon dioxide content decreased sharply when the pyrolysis temperature rose from 400 to
800 ◦C. On the other hand, the contents of carbon monoxide and hydrogen increased significantly
with the increase in temperature within this range. Methane increased first and decreased slightly at
temperatures over 600 ◦C. These findings are, to a large extent, in agreement with the other literature
results [4,5,7,13,18].

Tomasi Morgano et al. [4] consider CO2 in the gas as a primary pyrolytic product [19] and CO
as a product of cracking reactions of oxygenated compounds, whereas Fan et al. [13] attribute the
formation of both CO and CO2 to the decomposition of oxygenated groups, such as decarboxylation
and decarbonylation reactions. Both pathways are probably responsible for the presence of CO2.
Moreover, the presence of CO2 results in a steeper increase in the CO content at temperatures above
600 ◦C due to the Boudouard reaction [16,20] which may as well be partially catalyzed by the ash
components of sludge-chars formed during pyrolysis.

The hydrogen content of the gas increased sharply when the process temperature increased from
400 to 600 ◦C and then the increase continued slightly up to 800 ◦C. Sun et al. [18] found that the
hydrogen content even decreased when pyrolysis temperature exceeded 600 ◦C, which is mainly
attributed to the inhibitory effect of the reverse water–gas shift reaction when hydrogen reacts with
carbon dioxide, and carbon monoxide and steam are formed.

Apart from the major gas components, other hydrocarbons are present in pyrolysis gases with
their sum being up to 9 vol. % of the pyrolysis gas. It is clear (see Table 2) that the content of the
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saturated hydrocarbons such as ethane, propane, butanes, pentanes and hexanes decreased with
increasing pyrolysis temperature. On the other hand, we may observe the increase in the content
of unsaturated hydrocarbons, preferably having double covalent bonds between adjacent carbon
atoms, such as ethylene, propene, buta-1,3-diene. That suggests ongoing elimination reactions where
hydrogen atoms are released to form hydrogen or water molecules. Nevertheless, their direct release
from the sludge organic matter, which is very complex compared to conventional biomass sources, at
higher temperatures, cannot be ruled out. It must as well be noted that there was a significant decline
in the content of hydrocarbons (methane—C6) when pyrolysis temperature increased from 700 to 800
◦C, which is responsible for the decline in the heating value of the pyrolysis gas.

In addition to the above-mentioned gas compounds, a remarkable amount of nitrogen was
analyzed in the pyrolysis gases when the process temperature exceeded 500 ◦C, and its content
increased with further increases in the temperature. The primary gaseous nitrogen species present in
the devolatilized pyrolysis gas are NH3 (ammonia) and HCN (hydrogen cyanide) [21,22], however,
some small amount of molecular nitrogen (N2) is present in the gas as well [23]. The increasing content
of N2 is most likely the result of the enhanced decomposition of NH3 (and HCN) at higher temperatures
catalyzed by metal oxides [24] present in the ash of the sludge, and of the enhanced conversion of NH3

and HCN by oxygen-mediated pathways at high temperatures [23].
Sulfur is the other element of concern in the gas, mainly due to its oxidation to SO2 during the

combustion process. The main sulfur species analyzed in the gas were H2S (hydrogen sulfide), COS
(carbonyl sulfide) and CH3SH (methanethiol) (Table 3). Despite a slight increase in their content at a
pyrolysis temperature of 600 ◦C, we may conclude that their content in the gas generally decreases when
the pyrolysis temperature increases. Combined with the sulfur content in other pyrolysis products, we
observed that the sulfur balance and distribution among pyrolysis products (Figure 3) is relatively
independent of any pyrolysis temperature above 500 ◦C [25]. Therefore, the decreasing sulfur content
is the result of its dilution in the increased gas volume as the S-species are mostly released from the
sludge to the gas phase up to pyrolysis temperatures of 400–500 ◦C [26,27]. Zhang et al. [26] observed
an increase in S conversion to the gas phase during conventional demineralized sludge pyrolysis.
However, when using CaO as the conditioner, the increase was only minimal. Therefore, the nature of
the sludge (high ash and alkali metals content) must be considered, since the presence of alkali metals
may help to preserve S in the sludge-char, preventing S release into gaseous phase and its oxidation
into SO2 when burning the gas and condensate [28,29].

Table 3. Sulfur-containing compounds of pyrolysis gas depending on pyrolysis temperature, Adapted
from Moško et al. [25].

Pyrolysis Temperature (◦C)
400 500 600 700 800

S Containing Gases (gS/m3)

H2S 6.85 4.32 5.30 2.49 2.11
COS 1.89 1.14 1.24 0.761 0.654

MeSH 6.65 3.68 4.19 1.79 1.56
CS2 0.277 0.190 0.146 0.0919 0.0717

others 2.57 1.20 1.03 0.570 0.289
sum 18.2 10.5 11.9 5.70 4.69
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Figure 3. Sulfur distribution amongst sludge pyrolysis products (*—determined by difference), Adapted
from Moško et al. [25].

3.3. Condensate Composition

The vast majority of condensate (liquid pyrolysis product) was collected in the first impinger,
and only that part was used for further analysis. The condensate was divided into two immiscible
parts: the organic fraction (oil) and an inorganic fraction (water fraction containing some hydrosoluble
compounds responsible for its partial HHV (Figure 2b)) which were analyzed individually after
their separation.

Bio-oils from the sludge pyrolysis have been widely analyzed to obtain their overall composition
and other properties [5,12,13,18,30,31]. Monoaromatics, steroids and aliphatic, oxygenated and
nitrogenated compounds [13] contained in bio-oil can be divided into three groups according to their
molecular weight: light, medium, and high [12]. The increase in pyrolysis temperature and heating rate
then results in a higher content of light compounds due to more intense cracking of compounds with
higher molecular weight. We studied the elemental composition and heating value of both fractions of
condensate (Tables 4 and 5) which is relevant in case of the combustion to obtain energy for pyrolysis is
the primary end-point of the condensate. There was an initial change in the composition of condensate
when the pyrolysis temperature increased from 400 to 500 ◦C, resulting from the decomposition of
sludge organic matter, followed by steeper sludge-char yield decrease. In contrast, a further increase in
the temperature had an insignificant effect on the elemental composition of the condensate and its
heating value, as the sludge organic matter was converted to gas rather than condensate, followed by
decrease in condensate yield as the higher temperature promotes decomposition of primary pyrolysis
products resulting in the “non-changing” composition, as neither diluting nor concentrating occur.
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Table 4. Ultimate analysis and heating value of the organic condensate fractions.

Pyrolysis
Temperature C H N S O * HHV

◦C wt. % MJ/kg

400 66.9 10.3 6.48 1.23 15.1 32.0
500 71.2 9.86 7.23 0.694 11.0 34.7
600 71.4 9.85 7.08 0.629 11.1 34.8
700 71.9 9.35 7.74 0.804 10.2 34.7
800 71.7 9.21 7.48 1.10 10.5 34.9

* by difference O = 100-C-H-N-S.

Table 5. Ultimate analysis and heating value of water condensate fractions.

Pyrolysis
Temperature C H N S O * HHV

◦C wt. % MJ/kg

400 8.27 9.70 4.44 0.161 77.4 1.7
500 9.9 9.68 5.16 0.239 75.0 2.7
600 10.0 9.30 5.48 0.227 75.0 1.9
700 9.3 9.48 5.43 0.293 75.5 2.3
800 9.7 9.44 5.71 0.283 74.9 3.0

* by difference O = 100-C-H-N-S.

4. Conclusions

Pyrolysis is a promising way to treat sewage sludge with the advantages of a significant reduction
of the mass and volume of the sludge and producing solid residue (sludge-char) that may be used in
agriculture to promote soil properties or for water and air cleaning processes. Gas and condensate
(oil and water) are also produced, which may be energetically used to provide the heat for the sludge
drying and/or pyrolysis process itself. We studied the effect of the pyrolysis temperature on the
composition of pyrolytic gas and the composition of condensate, which is important with regards
to the design of the burner and the flue gas cleaning system. Increasing the pyrolysis temperature
resulted in an increase in CO, H2 and N2 content of the gas and in a decrease in the CO2 and sulfur
containing compounds content of the gas. The hydrocarbons (excluding methane) content of the gas
was in the range of 7.6–9.0 vol. %. Regarding the energy bound in the sludge, it was observed that
pyrolysis at ≥500 ◦C resulted in the transformation of 50 and more % of the energy into pyrolytic gas
and condensate, which may offer an advantage in providing sufficient heat for the sludge drying
and/or pyrolysis. With regards to the energy utilization of the sludge pyrolysis system with the aim of
producing safe sludge-char, operating the pyrolysis of sewage sludge at 600–700 ◦C is proposed.
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