Economic Issues in Deep Low-Carbon Energy Systems
Abstract
:1. Introduction
Plan and Objectives of the Paper
2. Challenges for the Transition
2.1. Free Markets Cannot Work with 100% RES
2.2. Limits to (Green) Growth
2.3. Land and Other REs Requirements
2.4. Availability of Critical Raw Materials
2.5. Intermittency and Other Technical Barriers
2.6. Transportation, Land, and the Speed of Transition
3. Assessment of Proposed Solutions
3.1. Free Markets Cannot Work Under Oligopoly Power
3.2. Limits to Green Growth
3.3. Limits to RE
3.4. Resource Depletion
3.5. Storage and Intermittency Smoothing
3.6. Proposed Solutions
4. Discussion and Further Questions
4.1. The Nuclear Energy Debate
4.2. The Stranded Assets Issue
4.3. Optimization of RMs Design
4.4. Discussion
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BAU | Business as usual |
CAES | Compressed Air Energy Storage |
DSM | Demand Side Management |
EJ | Exajoule |
EROI | Energy Return on Investment |
EU | European Union |
EV | electric vehicle |
GDP | Gross Domestic Product |
GHG | Greenhouse gas |
HDI | Human development index |
ha | hectare |
IAM | integrated assessment models |
IEA | International Energy Association |
IPCC | Intergovernmental Panel on Climate Change |
IRENA | International Renewable Energy Association |
LCE, LCOE | Levelized cost of energy |
LR | Learning Rate |
NPV | Net Present Value |
ODM | Optimal Depletion Models |
OECD | Organisation for Economic Co-operation and Development |
PHS | Pumped Hydro Storage |
PtG | power to gas |
PV | Photovoltaics |
R&D | Research and development |
RE | Renewable energy |
RES | Renewable Energy system |
RM | Roadmap |
SA | Stranded Assets |
UN | United Nations |
USD | United States Dollar |
WB | World Bank |
WED | World Energy Demand |
WGDP | World Gross Domestic Product |
WWP | World Wind Power |
Appendix A. Empirical Resource Depletion Models
Appendix B. World Population Projections
Appendix B.1. Statistical Models
Appendix B.2. Dynamic Equilibrium
Appendix B.3. Randomness and Risk
Appendix B.4. Simulation Results
2050 World Population Projections (Billions) | |||
---|---|---|---|
I | II | III | |
mean | 13.4 | 12.6 | 13.2 |
ProB (20%) | 17.2 | 14.3 | 16.8 |
ProB (10%) | 20.6 | 15.4 | 19.6 |
ProB (5%) | 23.9 | 16.3 | 22.4 |
mean 20% | 22.3 | 15.7 | 20.8 |
mean 10% | 25.3 | 16.5 | 23.8 |
mean 5% | 28.3 | 17.8 | 26.1 |
Appendix B.5. Discussion
References
- IPCC. Global Warming of 1.5 °C. Available online: http://www.ipcc.ch/pdf/special-reports/sr15/sr15_spm_final.pdf (accessed on 30 June 2020).
- OECD/IEA. Perspectives for the Energy Transition-Investment Needs for a Low Carbon System, Chapter. 2. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2017/Mar/Perspectives_for_the_Energy_Transition_2017.pdf (accessed on 9 August 2020).
- IEA. Sustainable Recovery. World Energy Outlook Special Report (in Collaboration with the IMF). Available online: https://www.iea.org/reports/sustainable-recovery (accessed on 30 June 2020).
- Irena. Global Renewables Outlook: Energy Transformation 2050. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Apr/IRENA_Global_Renewables_Outlook_2020.pdf (accessed on 9 August 2020).
- Irena. Perspectives for the Energy Transition-Investment Needs for a Low Carbon System, Chapter. 4. Available online: http://www.irena.org/DocumentDownloads/Publications/Perspectives_for_the_Energy_Transition_2017.pdf (accessed on 30 June 2020).
- Jacobson, M.Z.; Delucchi, M.A.; Bauer, Z.A.F.; Goodman, S.C.; Chapman, W.E.; Cameron, M.A.; Bozonnat, C.; Chobadi, L.; Clonts, H.A.; Enevoldsen, P.; et al. 100% Clean and Renewable Wind, Water, and Sunlight All-Sector Energy Roadmaps for 139 Countries of the World. Joule 2017, 1, 108–121. [Google Scholar] [CrossRef] [Green Version]
- Teske, S. Achieving the Paris Climate Agreements Goals; Springer Open: Cham, Switzerland, 2019; ISBN 978-3-030-05842-5. Available online: https://link.springer.com/book/10.1007%2F978-3-030-05843-2 (accessed on 30 June 2020).
- Ram, M.; Bogdanov, D.; Aghahosseini, A.; Gulagi, A.; Oyewo, A.S.; Child, M.; Caldera, U.; Sadovskaia, K.; Farfan, J.; Barbosa, L.S.N.S.; et al. Global Energy System Based On 100% Renewable Energy-Power Sector. Available online: http://energywatchgroup.org/wp-content/uploads/EWG_LUT_100RE_All_Sectors_Global_Report_2019.pdf (accessed on 30 June 2020).
- Allen, P.; Bottoms, I. Raising Ambition: Zero Carbon Scenarios from Across the Globe; Centre for Alternative Technology: CAT Publications: Powys, UK, 2016; Available online: https://www.researchgate.net/publication/327665889_Raising_Ambition_Zero_Carbon_Scenarios_from_across_the_Globe (accessed on 30 June 2020).
- Heard, B.P.; Brook, B.W.; Wigley, T.M.L.; Bradshaw, C.J.A. Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems. Renew. Sustain. Energy Rev. 2017, 76, 1122–1133. [Google Scholar] [CrossRef]
- Diesendorf, M.; Elliston, B. The feasibility of 100% renewable electricity systems: A response to critics. Renew. Sustain. Energy Rev. 2018, 93, 318–330. [Google Scholar] [CrossRef]
- Brown, T.W.; Bischof-Niemz, T.; Blok, K.; Breyer, C.; Lund, H.; Mathiesen, B. Response to ‘Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems. Renew. Sustain. Energy Rev. 2018, 92, 834–847. [Google Scholar] [CrossRef]
- Mauleón, I. Photovoltaic learning rate estimation: Issues and implications. Renew. Sustain. Energy Rev. 2016, 65, 507–524. [Google Scholar] [CrossRef]
- Mauleón, I. Photovoltaic and Wind Cost Decrease Estimation: Implications for Investment Analysis. Energy 2017, 137, 1054–1065. [Google Scholar] [CrossRef]
- Gimon, E.; O’boyle, M. The Coal Cost Crossover: Economic Viability of Existing Coal Compared to New Local Wind and Solar Resources; Vibrant Clean Energy: San Francisco, CA, USA, 2019; Available online: https://energyinnovation.org/wp-content/uploads/2019/03/Coal-Cost-Crossover_Energy-Innovation_VCE_FINAL.pdf (accessed on 30 June 2020).
- Bigerna, S.; Bollino, C. Optimal Price Design in the Wholesale Electricity Market. Energy J. 2016, 37, 51–68. [Google Scholar] [CrossRef]
- Blazquez, J.; Fuentes-Bracamontes, R.; Bollino, C.; Nezamuddina, N. The Renewable Energy policy Paradox. Renew. Sustain. Energy Rev. 2018, 82, 1–5. [Google Scholar] [CrossRef]
- Praktiknjo, A.; Erdmann, G. Renewable Electricity and Backup Capacities: An (Un-) Resolvable Problem? Energy J. 2016, 37, 89–106. [Google Scholar] [CrossRef]
- Henriot, A.; Glachant, J.M. Melting-pots and salad bowls: The current debate on electricity market design for integration of intermittent RES. Util. Policy 2013, 27, 57–64. [Google Scholar] [CrossRef]
- Hobbs, B.F.; Inon, J.G.; Stoft, S.E. Capacity markets: Review and a dynamic assessment of demand-curve approaches. In Proceedings of the IEEE power and energy society general meeting, San Francisco, CA, USA, 12–16 June 2005; pp. 2792–2800. [Google Scholar]
- Newbery, D.; Pollitt, M.; Ritz, R.; Strielkowski, W. Market design for a high-renewables European electricity system. Renew. Sustain. Energy Rev. 2018, 91, 695–707. [Google Scholar] [CrossRef] [Green Version]
- Meadows, D.; Meadows, D.; Randers, J.; Behrens, W. The Limits to Growth, a Report for the Club of Rome’s Project on the Predicament of Mankind; Universe books: New York, NY, USA, 1972. [Google Scholar]
- de Castro, C.; Mediavilla, M.; Miguel, L.J.; Frechoso, F. Global wind power potential: Physical and technological limits. Energy Policy 2011, 39, 6677–6682. [Google Scholar] [CrossRef]
- de Castro, C.; Carpintero, Ó.; Frechoso, F.; Mediavilla, M.; de Miguel, L.J. A top-down approach to assess physical and ecological limits of biofuels. Energy 2014, 64, 506–512. [Google Scholar] [CrossRef]
- Capellán-Pérez, I.; Castro, C.; Arto, I. Assessing vulnerabilities and limits in the transition to renewable energies: Land requirements under 100% solar energy scenarios. Renew. Sustain. Energy Rev. 2017, 77, 760–782. [Google Scholar] [CrossRef] [Green Version]
- de Castro, C.; Mediavilla, M.; Miguel, L.J.; Frechoso, F. Global solar electric potential: A review of their technical and sustainable limits. Renew. Sustain. Energy Rev. 2013, 28, 824–835. [Google Scholar] [CrossRef]
- Valero, A.; Calvo, G.; Ortega, A. Material bottlenecks in the future development of green technologies. Renew. Sustain. Energy Rev. 2018, 93, 178–200. [Google Scholar] [CrossRef]
- Calvo, G.; Valero, A.; Valero, A. Assessing maximum production peak and resource availability of non-fuel mineral resources: Analyzing the influence of extractable global resources. Resour. Conserv. Recycl. 2017, 125, 208–217. [Google Scholar] [CrossRef]
- Gilbert, R.; Perl, A. Transport Revolutions: Moving People and Freight without Oil; New Society Publishers: Vancouver, BC, Canada, 2010. [Google Scholar]
- García-Olivares, A.; Solé, J.; Osychenko, O. Transportation in a 100% Renewable Energy system. Energy Convers. Manag. 2018, 158, 266–285. [Google Scholar] [CrossRef]
- Smil, V. Energy Transitions: Global and National Perspectives, 2nd ed.; Praeger: Santa Barbara, CA, USA, 2017. [Google Scholar]
- Gianfreda, A.; Parisio, L.; Pelagatti, M. The Impact of RES in the Italian Day-Ahead and Balancing Markets. Energy J. 2016, 37, 161–184. [Google Scholar] [CrossRef] [Green Version]
- Rivard, B.; Yatchew, A. Integration of Renewables into the Ontario Electricity System. Energy J. 2016, 37, 221–242. [Google Scholar] [CrossRef]
- Hirth, L.; Ueckerdt, F.; Edenhofer, O. Integration costs revisited–an economic framework for wind and solar variability. Renew. Energy 2015, 74, 925–939. [Google Scholar] [CrossRef]
- Joskow, P.L. Capacity payments in imperfect electricity payments: Need and design. Util. Policy 2008, 16, 159–170. [Google Scholar] [CrossRef]
- Bigerna, S.; Bollino, C.; Polinori, P. Renewable Energy and Market Power in the Italian Electricity Market. Energy J. 2016, 37, 123–144. [Google Scholar] [CrossRef]
- Vandezande, L.; Meeus, L.; Belmans, R.; Saguan, M.; Glachant, J.M. Well-functioning balancing markets: A prerequisite for wind power integration. Energy Policy 2010, 38, 3146–3154. [Google Scholar] [CrossRef] [Green Version]
- Trainer, T. Can renewables meet total Australian energy demand: A “disaggregated” approach. Energy Policy 2017, 109, 539–544. [Google Scholar] [CrossRef]
- Trainer, T. Some problems in storing renewable energy. Energy Policy 2017, 110, 386–393. [Google Scholar] [CrossRef]
- Safarzyńskaa, K.; van den Bergh, J.C.J.M. Financial stability at risk due to investing rapidly in renewable energy. Energy Policy 2017, 108, 12–20. [Google Scholar] [CrossRef]
- Harjanne, A.; Korhonen, J.M. Abandoning the concept of renewable energy. Energy Policy 2019, 127, 330–340. [Google Scholar] [CrossRef] [Green Version]
- Barney, G. The Global/2000 Report to the President: Entering the Twenty-First Century. Available online: https://www.cartercenter.org/resources/pdfs/pdf-archive/global2000reporttothepresident--enteringthe21stcentury-01011991.pdf (accessed on 30 June 2020).
- Meadows, D.; Randers, J.R.; Meadows, D. Limits to Growth: The 30 Year Update; Earthscan: London, UK, 2005. [Google Scholar]
- Jackson, T. Prosperity without Growth: Economics for a Finite Planet; Earthscan: London, UK, 2011. [Google Scholar]
- White, E.; Kramer, G.J. The Changing Meaning of Energy Return on Investment and the Implications for the Prospects of Post-fossil Civilization. One Earth 2019, 1, 416–422. [Google Scholar] [CrossRef]
- Mediavilla, M.; de Castro, C.; Capellán, I.; Miguel, L.J.; Arto, I.; Frechoso, F. The transition towards renewable energies: Physical limits and temporal conditions. Energy Policy 2013, 52, 297–311. [Google Scholar] [CrossRef]
- Naill, R.F. Managing the discovery life cycle of a finite resource: A case study in U.S. natural gas. Master’s Thesis, 1972. Available online: https://dspace.mit.edu/handle/1721.1/37491 (accessed on 9 August 2020).
- Hall, C.A.S.; Lambert, J.G.; Balogh, S.B. EROI of different fuels and the implications for society. Energy Policy 2014, 64, 141–152. [Google Scholar] [CrossRef] [Green Version]
- Johansson, B. Security aspects of future Renewable Energy systems: A short overview. Energy 2013, 61, 598–605. [Google Scholar] [CrossRef] [Green Version]
- Ayres, E. US oil outlook: How coal fits in. Coal Age 1953, v58 n.8, 70–73. [Google Scholar]
- Hubbert, M.K. Nuclear Energy and the Fossil Fuels. Available online: http://www.hubbertpeak.com/hubbert/1956/1956.pdf (accessed on 30 June 2020).
- Chapman, I. The end of peak oil? Why this topic is still relevant despite recent denials. Energy Policy 2014, 64, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Kallis, G.; Kostakis, V.; Lange, S.; Muraca, B.; Paulson, S.; Schmelzer, M. Research On Degrowth. Annu. Rev. Environ. Resour. 2018, 43, 1–26. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Study on the Review of the List of Critical Raw Materials. Available online: https://op.europa.eu/en/publication-detail/-/publication/08fdab5f-9766-11e7-b92d-01aa75ed71a1 (accessed on 30 June 2020).
- European Commission. Report on critical raw materials for the EU. Report of the Ad hoc working group on defining critical raw materials 2014. Available online: https://ec.europa.eu/growth/tools-databases/eip-raw-materials/en/system/files/ged/79%20report-b_en.pdf (accessed on 30 June 2020).
- Arrobas, D.L.P.; Hund, K.L.; Mccormick, M.S.; Ningthoujam, J.; Drexhage, J.R. The Growing Role of Minerals and Metals for a Low Carbon Future; World Bank Publications: Washington, DC, USA, 2017. [Google Scholar]
- van Schaik, A.; Reuter, M.A. The use of fuzzy rule models to link automotive design to recycling rate calculation. Miner. Eng. 2007, 20, 875–890. [Google Scholar] [CrossRef]
- Powell, D. Sparing the rare earths: Potential shortages of useful metals inspire scientists to seek alternatives for magnet technologies. Sci. News 2011, 180, 18–21. [Google Scholar] [CrossRef]
- La Monica, M. DOE Opens Innovation Hub for Critical Materials. MIT Technology Review 2013. Available online: http://www.technologyreview.com/view/509996/doe-opens-innovation-hub-for-criticalmaterials/ (accessed on 30 June 2020).
- Franziska, C.; Heuberger, F.; Mac Dowell, N. Real-World Challenges with a Rapid Transition to 100% Renewable Power Systems. Joule 2018, 2, 367–370. [Google Scholar] [CrossRef] [Green Version]
- Collins, S.; Deane, P.; O’Gallacho, B.; Pfenninger, S.; Staffell, I. Impacts of Inter-annual Wind and Solar Variations on the European Power System. Joule 2018, 2, 2076–2090. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, O.; Hawkes, A.; Gambhir, A.; Staffell, I. The future cost of electrical energy storage based on experience rates. Nat. Energy 2017, 2, 17110. [Google Scholar] [CrossRef]
- Kittner, N.; Lill, F.; Kammen, D. Energy storage deployment and innovation for the clean energy transition. Nat. Energy 2017, 2, 17125. [Google Scholar] [CrossRef]
- Finn, P.; Fitzpatrick, C.; Connolly, D.; Leahy, M.; Relihan, L. Facilitation of renewable electricity using price based appliance control in Ireland’s electricity market. Energy 2011, 36, 2952–2960. [Google Scholar] [CrossRef]
- Kondziella, H.; Bruckner, T.H. Flexibility requirements of Renewable Energy based electricity systems—A review of research results and methodologies. Renew. Sustain. Energy Rev. 2016, 53, 10–22. [Google Scholar] [CrossRef]
- Blanco, H.; Faaij, A. A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage. Renew. Sustain. Energy Rev. 2018, 81, 1049–1086. [Google Scholar] [CrossRef]
- Stiglitz, J. People Power and Profits; Norton & Company: New York, NY, USA, 2019. [Google Scholar]
- Influence Map. Available online: https://influencemap.org/report/How-Big-Oil-Continues-to-Oppose-the-Paris-Agreement-38212275958aa21196dae3b76220bddc (accessed on 30 June 2020).
- Stigler, G.J. The Theory of Economic Regulation. Bell J. Econ. Manag. Sci. 1971, 2, 3–21. [Google Scholar] [CrossRef]
- Brunekreeft, G.; Buchmann, M.; Meyer, R. The Rise of Third Parties and the Fall of Incumbents Driven by Large-Scale Integration of Renewable Energies: The Case of Germany. Energy J. 2016, 37, 243–262. [Google Scholar] [CrossRef] [Green Version]
- Moore, S. Half-Truths and Consequences: The Legacy of Global 2000; The Heritage Foundation: Washington, DC, USA; Available online: https://www.heritage.org/global-politics/report/half-truths-and-consequences-the-legacy-global-2000 (accessed on 30 June 2020).
- Rees, M. Can We All Move to Mars? Available online: https://www.theguardian.com/science/video/2019/feb/21/can-we-all-move-to-mars-prof-martin-rees-on-space-exploration-video (accessed on 30 June 2020).
- Tainter, J. The Collapse of Complex Societies; Cambridge University Press: Cambridge, UK, 1988. [Google Scholar]
- Al-Khalili, J. Aliens may not exist—But that’s good news for our survival. The Guardian. 27 June 2018. Available online: https://www.theguardian.com/commentisfree/2018/jun/27/aliens-exist-survival-universe-jim-alkhalili (accessed on 9 August 2020).
- Turner, G. A comparison of The Limits to Growth with 30 years of reality. Glob. Environ. Chang. 2008, 18, 397–411. [Google Scholar] [CrossRef]
- IPBES. The Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on Pollinators, Pollination and Food Production; Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services: Bonn, Germany, 2016; Available online: https://ipbes.net/system/tdf/downloads/pdf/2017_pollination_full_report_book_v12_pages.pdf?file=1&type=node&id=15247 (accessed on 30 June 2020). [CrossRef]
- United Nations. Report of the Plenary of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Available online: https://ipbes.net/sites/default/files/ipbes_7_10_add.1_en_1.pdf (accessed on 30 June 2020).
- Smith, K.F.; Goldberg, M.; Rosenthal, S.; Carlson, L.; Chen, J.; Chen, C.; Ramachandran, S. Global rise in human infectious disease outbreaks. J. R. Soc. Interface 2014, 11, 20140950. [Google Scholar] [CrossRef]
- Garret, L. The Coming Plague: Newly Emerging Diseases in a World Out of Balance; Farrar, Starus and Giroux: New York, NY, USA, 1994. [Google Scholar]
- Jackson, T.; Robin, W. Limits Revisited—A review of the limits to growth debate. A report to the All-Party Parliamentary Group on Limits to Growth; Centre for Understanding Sustainable Prosperity, University of Surrey: Guildford, UK, 2016; Available online: http://limits2growth.org.uk/revisited/ (accessed on 9 August 2020). [CrossRef]
- Searchinger, T.; Waite, R.; Hanson, C.; Ranganathan, J. Creating A Sustainable Food Future; World Resources Institute: Washington, DC, USA, 2019; ISBN 978-1-56973-953-6. Available online: https://wrr-food.wri.org/sites/default/files/2019-07/WRR_Food_Full_Report_0.pdf (accessed on 30 June 2020).
- Hildingsson, R.; Striple, J.; Jordan, A. Governing Renewable Energy in the EU: Confronting a governance dilemma. Eur. Polit. Sci. 2012, 11, 18–30. [Google Scholar] [CrossRef]
- Unlocking the Inclusive Growth Story of the 21st Century: Accelerating Climate Action in Urgent Times. Available online: https://newclimateeconomy.report/2018/wp-content/uploads/sites/6/2018/09/NCE_2018_FULL-REPORT.pdf (accessed on 30 June 2020).
- Schili, W.; Zerrahn, A. Long-run power storage requirements for high shares of renewables: Results and sensitivities. Renew. Sustain. Energy Rev. 2018, 83, 156–171. [Google Scholar] [CrossRef]
- Miller, L.; Gans, F.; Kleidon, A. Estimating maximum global land surface wind power extractability and associated climatic consequences. Earth Syst. Dyn. 2010, 1, 169–189. [Google Scholar] [CrossRef] [Green Version]
- Global Wind Energy Outlook. GWEC 2008. Available online: https://www.wind-energy-the-facts.org/index-77.html (accessed on 30 June 2020).
- Archer, C.; Jacobson, M. Evaluation of global wind power. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; McElroy, M.; Kiviluoma, J. Global potential for wind-generated electricity. Proc. Natl. Acad. Sci. USA 2009, 106, 10933–10938. Available online: https://www.pnas.org/content/pnas/106/27/10933.full.pdf (accessed on 30 June 2020). [CrossRef] [PubMed] [Green Version]
- Marvel, K.; Kravitz, B.; Caldeira, K. Geophysical limits to global wind power. Nature Clim. Chang. 2012, 3, 118–121. [Google Scholar] [CrossRef]
- Jacobson, M.; Archer, C. Saturation Wind Power Potential and Its Implications for Wind Energy. Available online: www.pnas.org/cgi/doi/10.1073/pnas.1208993109 (accessed on 30 June 2020).
- Ruiz, P.; Nijsa, W.; Tarvydasa, D.; Sgobbia, A.; Zuckera, A.; Pillib, R.; Jonssonb, R.; Camiab, A.; Thielb, C.; Hoyer-Klickc, C. Enspreso: An open, EU-28 wide, transparent and coherent database of wind, solar and biomass energy potentials. Energy Strategy Rev. 2019, 26, 100379. [Google Scholar] [CrossRef]
- Wang, W.; Huang, R.X. Wind energy input to surface waves. J. Phys. Oceanogr. 2004, 34, 1276–1280. [Google Scholar] [CrossRef] [Green Version]
- Prognos, A.G. Comparing the Cost of Low-Carbon Technologies: What is the Cheapest Option? Available online: https://www.prognos.com/fileadmin/pdf/publikationsdatenbank/140417_Prognos_Agora_Analysis_Decarbonisationtechnologies_EN.pdf (accessed on 30 June 2020).
- Olivetti, E.; Ceder, G.; Gaustad, G.; Fu, X. Lithium-Ion Battery Supply Chain Considerations: Analysis of Potential Bottlenecks in Critical Metals. Joule 2017, 1, 229–243. [Google Scholar] [CrossRef] [Green Version]
- Alves, P.; Blagoeva, D.; Pavel, C.; Arvanitidis, N. Cobalt: Demand-Supply Balances in the Transition to Electric Mobility. EUR 29381 EN.; Publications Office of the European Union: Luxembourg, 2018; ISBN 978-92-79-94311-9. Available online: https://publications.jrc.ec.europa.eu/repository/bitstream/JRC112285/jrc112285_cobalt.pdf (accessed on 30 June 2020). [CrossRef]
- Fauna & Flora International. An Assessment of the Risks and Impacts of Seabed Mining on Marine Ecosystems; FFI: Cambridge, UK, 2020; Available online: www.fauna-flora.org (accessed on 30 June 2020).
- Overland, I. The geopolitics of renewable energy: Debunking four emerging myths. Energy Res. Soc. Sci. 2019, 49, 36–40. [Google Scholar] [CrossRef]
- Agaton, C.B.; Collera, A.A.; Guno, C.S. Socio-Economic and Environmental Analyses of Sustainable Public Transport in the Philippines. Sustainability 2020, 12, 720. [Google Scholar] [CrossRef]
- Grijalva, E.; López, J. Analysis of the Reduction of CO2 Emissions in Urban Environments by Replacing Conventional City Buses by Electric Bus Fleets: Spain Case Study. Energies 2019, 12, 525. [Google Scholar] [CrossRef] [Green Version]
- de Vries, A. Bitcoin’s Growing Energy Problem. Joule 2018, 2, 801–809. [Google Scholar] [CrossRef] [Green Version]
- World Economic Forum. The Future Availability of Natural Resources. A New Paradigm for Global Resource Availability; World Economic Forum: Cologny, Switzerland, 2014; Available online: http://www3.weforum.org/docs/WEF_FutureAvailabilityNaturalResources_Report_2014.pdf (accessed on 30 June 2020).
- UNEP; Schandl, H.; Fischer-Kowalski, M.; West, J. Global Material Flows and Resource Productivity. An Assessment Study of the UNEP International Resource Panel; United Nations Environment Programme (UNEP): Paris, France, 2016; Available online: https://www.resourcepanel.org/reports/global-material-flows-and-resource-productivity-database-link (accessed on 30 June 2020).
- Dittrich, M.; Giljum, S.; Lutter, S.; Polzin, C. Green Economies around the World? Implications of Resource Use for Development and the Environment; Sustainable Europe Research Institute: Viena, Austria, 2012; Available online: https://www.boell.de/sites/default/files/201207_green_economies_around_the_world.pdf (accessed on 30 June 2020).
- Bond, K. Myths of the Energy Transition: The Intermittency of Renewables Prevents an Energy Transition; Carbon Tracker Initiative: London, UK, 2018; Available online: https://www.carbontracker.org/reports/myths-of-the-transition-intermittency/ (accessed on 30 June 2020).
- Trainer, T. Can Europe run on renewable energy? A negative case. Energy Policy 2013, 63, 845–850. [Google Scholar] [CrossRef]
- Wolak, F. Level versus Variability Trade-offs in Wind and Solar Generation Investments: The Case of California. Energy J. 2016, 37, 185–220. [Google Scholar] [CrossRef] [Green Version]
- Burke, P.; Abayasekara, A. The Price Elasticity of Electricity Demand in the United States: A Three-Dimensional Analysis. Energy J. 2018, 39, 123–145. [Google Scholar] [CrossRef] [Green Version]
- Jessoe, K.; Rapson, D. Knowledge Is (Less) Power: Experimental Evidence from Residential Energy Use. Am. Econ. Rev. 2014, 104, 1417–1438. [Google Scholar] [CrossRef] [Green Version]
- Creutzig, F.; Fernandez, B.; Haber, H.; Khosla, R.; Mulugetta, Y.; Seto, K.C. Beyond Technology: Demand-Side Solutions for Climate Change Mitigation. Annu. Rev. Environ. Resour. 2016, 41, 173–198. [Google Scholar] [CrossRef] [Green Version]
- Ummels, B.C.; Pelgrum, E.; Kling, W.L. Integration of large-scale windpower and use of energy storage in the Netherlands’ electricity supply. IET Renew. Power Gener. 2008, 2, 34. [Google Scholar] [CrossRef] [Green Version]
- Barbour, E.; Wilson, I.G.; Radcliffe, J.; Ding, Y.; Li, Y. A review of pumped hydro energy storage development in significant international electricity markets. Renew. Sustain. Energy Rev. 2016, 61, 421–432. [Google Scholar] [CrossRef] [Green Version]
- Mahlia, T.M.I.; Saktisahdan, T.J.; Jannifa, A.; Hasan, M.H.; Matseelar, H.S.C. A review of available methods and development on energy storage; technology update. Renew. Sustain. Energy Rev. 2014, 33, 532–545. [Google Scholar] [CrossRef]
- Gallo, A.B.; Simões-Moreira, J.R.; Costa, H.K.M.; Santos, M.M.; Moutinho dos Santos, E. Energy storage in the energy transition context: A technology review. Renew. Sustain. Energy Rev. 2016, 65, 800–822. [Google Scholar] [CrossRef]
- Sevket-Guneya, M.; Tepeb, Y. Classification and assessment of energy storage systems. Renew. Sustain. Energy Rev. 2017, 75, 1187–1197. [Google Scholar] [CrossRef]
- Radu, M. How Peugeot-Citroen’shybrid Air System Works: The Car that Runs on Air. Available online: http://www.autoevolution.com/news/how-peugeot-citroen-s-hybrid-air-system-explained-the-car-that-runs-on-air-57554.html (accessed on 30 June 2020).
- Wasbari, F.; Bakar, R.A.; Gan, L.M.; Tahir, M.M.; Yusof, A.A. A review of compressed-air hybrid technology in vehicle system. Renew. Sustain. Energy Rev. 2017, 67, 935–953. [Google Scholar] [CrossRef] [Green Version]
- Schill, W.P. Residual load, renewable surplus generation and storage requirements. Energy Policy 2014, 73, 65–79. [Google Scholar] [CrossRef] [Green Version]
- Lund, P.D.; Lindgren, J.; Mikkola, J.; Salpakari, J. Review of energy system flexibility measures to enable high levels of variable renewable electricity. Renew. Sustain. Energy Rev. 2015, 45, 785–807. [Google Scholar] [CrossRef] [Green Version]
- Cazzola, P.; Marine, G. Global EV Outlook 2019. Scaling-Up the Transition to Electric Mobility; Energy Technology Policy (ETP) Division of the Directorate of Sustainability, Technology and Outlooks (STO) IEA: Paris, France, 2019; Available online: https://www.iea.org/reports/global-ev-outlook-2019 (accessed on 30 June 2020).
- Malins, C. We Didn’t Start the Fire. The Role of Bioenergy in Decarbonisation Scenarios; Cerulogy: London, UK, 2020; Available online: https://www.transportenvironment.org/sites/te/files/Cerulogy_We-didn%27t-start-the-fire.pdf (accessed on 30 June 2020).
- UITP. Public Transport: Creating Green Jobs and Stimulating Inclusive Growth. Available online: https://www.uitp.org/sites/default/files/cck-focus-papers-files/fp_green_jobs-EN.pdf (accessed on 30 June 2020).
- Mauleón, I. Optimizing Individual Renewable Energies Roadmaps: Criteria, Methods, and End Targets. Appl. Energy 2019, 253, 113556. [Google Scholar] [CrossRef]
- Fischer-Kowalski, M.; Hausknost, D. (Eds.) Large Scale Societal Transitions in the Past; Alpen-Adria Universitaet: Viena, Austria, 2014; Available online: https://www.aau.at/wp-content/uploads/2016/11/working-paper-152-web.pdf (accessed on 30 June 2020).
- Berners-Lee, M.; Kennelly, C.; Watson, R.; Hewitt, C.N. Current Global Food Production Is Sufficient to Meet Human Nutritional Needs in 2050 Provided There Is Radical Societal Adaptation. Elem. Sci. Anthr. 2018, 6, 52. [Google Scholar] [CrossRef]
- Sovacool, B.; Gilbert, A.; Nugent, D. Risk, innovation, electricity infrastructure and construction cost overruns: Testing six hypotheses. Energy 2014, 74, 906–917. [Google Scholar] [CrossRef]
- Grubler, A. The costs of the French nuclear scale-up: A case of negative learning by doing. Energy Policy 2010, 38, 5174–5188. [Google Scholar] [CrossRef]
- Hansen, K.; Breyer, C.; Lund, H. Status and perspectives on 100% Renewable Energy systems. Energy 2019, 175, 471–480. [Google Scholar] [CrossRef]
- Matsuo, Y.; Endo, S.; Nagatomi, Y.; Shibata, Y.; Komiyama, R.; Fujii, Y. Investigating the economics of the power sector under high penetration of variable renewable energies. Appli. Energy 2020, 267, 113956. [Google Scholar] [CrossRef]
- Jenkins, J.; Ponciroli, R.; Zhou, Z.; Vilim, R.; Gand, F.; Sisternes, F.; Botterud, A. The benefits of nuclear flexibility in power system operations with renewable energy. Appl. Energy 2018, 222, 872–884. [Google Scholar] [CrossRef]
- Zappa, W.; Junginger, M.; van den Broek, M. Is a 100% renewable European power system feasible by 2050? Appl. Energy 2019, 233–234, 1027–1050. [Google Scholar] [CrossRef]
- Carbon Tracker. Decline and Fall: The Size and Vulnerability of the Fossil Fuel System. London, UK, 2020. Available online: https://carbontracker.org/reports/decline-and-fall/ (accessed on 30 June 2020).
- Roser, M. Future Population Growth. Available online: https://ourworldindata.org/future-population-growth (accessed on 30 June 2020).
- Isacs, L.; Finnveden, G.; Dahllof, L.; Håkansson, C.; Petersson, L.; Steen, B.; Swanströmc, L.; Wikströme, A. Choosing a monetary value of greenhouse gases in assessment tools: A comprehensive review. J. Clean. Prod. 2016, 127, 37–48. [Google Scholar] [CrossRef] [Green Version]
- Stiglitz, J.; Stern, N. Report of the High-Level Commission on Carbon Prices; Carbon Pricing Leadership Coalition (World Bank): Wshington, DC, USA, 2017; Available online: https://static1.squarespace.com/static/54ff9c5ce4b0a53decccfb4c/t/59b7f2409f8dce5316811916/1505227332748/CarbonPricing_FullReport.pdf (accessed on 30 June 2020).
- Sassea, J.; Trutnevyte, E. Distributional trade-offs between regionally equitable and cost-efficient allocation of renewable electricity generation. Appl. Energy 2019, 254, 113724. [Google Scholar] [CrossRef]
- Patricia, A.D.; Konstantinos, K.; Hrvoje, M.; Zoi, K.; Edesio, M.B.; Ruth, S.; Veronika, C.; Thomas, T.; Cristina, V.H.; Roberto, L.A.; et al. EU Coal Regions: Opportunities and Challenges Ahead; Publications Office of the European Union: Luxembourg, 2018; Available online: https://ec.europa.eu/jrc/en/publication/eur-scientific-and-technical-research-reports/eu-coal-regions-opportunities-and-challenges-ahead (accessed on 30 June 2020). [CrossRef]
- Cullen, J.; Allwood, J.; Borgstein, E. Reducing fEnergy Demand: What Are the Practical Limits? Environ. Sci. Technol. 2011, 45, 1711–1718. [Google Scholar] [CrossRef]
- Hook, A.; Court, V.; Sovacool, B.; Sorrell, S. A systematic review of the energy and climate impacts of teleworking. Environ. Res. Lett. 2020, (in press). [Google Scholar] [CrossRef] [Green Version]
- Jacobson, M.; Delucchi, M.; Cameron, M.; Mathiesen, B. Matching demand with supply at low cost in 139 countries among 20 world regions with 100% intermittent wind, water, and sunlight (WWS) for all purposes. Renew. Energy 2018, 123, 236–248. [Google Scholar] [CrossRef]
- De Carolis, J.; Hunter, K.; Sreepathi, S. The case for repeatable analysis with energy economy optimization models. Energy Econ. 2012, 34, 1845–1853. [Google Scholar] [CrossRef]
- Mauleón, I. Assessing PV and wind Roadmaps: Learning rates, risk, and social discounting. Renew. Sustain. Energy Rev. 2019, 100, 71–89. [Google Scholar] [CrossRef]
- Bowles, S. Endogenous preferences: The cultural consequences of markets and other economic institutions. J. Econ. Lit. 1998, 36, 75–111. [Google Scholar]
- Carbon Tracker. How to Waste over Half A Trillion Dollars; Carbon Tracker: London, UK, 2020; Available online: https://carbontracker.org/reports/how-to-waste-over-half-a-trillion-dollars/ (accessed on 30 June 2020).
- Willi, H.; Krausmann, F.; Wiedenhofer, D.; Heinz, M. How Circular Is the Global Economy? An Assessment of Material Flows, Waste Production and Recycling in the EU and the World in 2005. J. Ind. Ecol. 2015. [Google Scholar] [CrossRef]
- Hickel, J. Degrowth: A theory of radical abundance. Real-World Econ. Rev. 2019, 87, 54–68. Available online: http://www.paecon.net/PAEReview/issue87/whole87.pdf (accessed on 30 June 2020).
- Wijkman, A. Commentary on the Degrowth Alternative. Great Transition Initiative. 2015. Available online: http://www.greattransition.org/commentary/anders-wijkman-the-degrowth-alternativegiorgos-kallis (accessed on 30 June 2020).
- Stanton, E.A. The Human Development Index: A History; Political Economy Research Institute WP 127; University of Massachusetts: Amherst, MA, USA, 2007; Available online: https://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1101&context=peri_workingpapers (accessed on 30 June 2020).
- Fleurbaey, M. Beyond GDP: The Quest for a Measure of Social Welfare. J. Econ. Lit. 2009, 47, 1029–1075. [Google Scholar] [CrossRef]
- Persson, T.; Azar, C.; Johansson, D.; Lindgren, K. Major oil exporters may profit rather than lose, in a carbon-constrained world. Energy Policy 2007, 35, 6346–6353. [Google Scholar] [CrossRef]
- Bakdolotov, A.; De Miglio, R.; Akhmetbekov, Y.; Baigarin, K. Techno- economic modelling to strategize energy exports in the Central Asian Caspian region. Heliyon 2017, 3, e00283. [Google Scholar] [CrossRef]
- Johnson, N.L.; Kotz, S.; Balakrishnan, N. Continuous Univariate Distributions; Wiley & sons: New York, NY, USA, 1995; Volume 2. [Google Scholar]
- Brandt, A.R. Testing Hubbert. Energy Policy 2007, 35, 3074–3088. [Google Scholar] [CrossRef]
- Greene, W. Econometric Analysis, 7th ed.; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2011. [Google Scholar]
- Wood, J.H.; Long, G.R.; Morehouse, D.F. Long Term Oil Supply Scenarios: The Future is Neither as Rosy or as Bleak as Some Assert; Energy Information Administration: Washington, DC, USA, 2000; Available online: https://pdfs.semanticscholar.org/0869/948c387a944d03fd67753b7cc779abf3a5db.pdf (accessed on 30 June 2020).
- Slade, M.E. Trends in natural-resource commodity prices: An analysis of the time domain. J. Environ. Econ. Manag. 1982, 9, 122–137. [Google Scholar] [CrossRef]
- Pesaran, M.H. An econometric analysis of exploration and extraction of crude oil in the U.K. continental shelf. Econ. J. 1990, 100, 367–390. [Google Scholar] [CrossRef]
PV Land Requirements | |||
---|---|---|---|
I | II | III | |
1—hª per MW | 1 | 1.5 | 2 |
2—Capacity factor | 0.25 | 0.2 | 0.125 |
3—Storage | - | 20% | 40% |
4—Curtailment | - | 20% | 40% |
5—% of earth’s land 1 | 0.296% | 0.799% | 2.32% |
6—% of desert land 2 | 2.13% | 5.76% | 16.72% |
7—% of desert land 3 | 3.57% | 9.65% | 28.0% |
8—% of desert land 4 | 0.48% | 1.30% | 3.77% |
9—% of earth’s land 5 | 0.42% | 0.605% | 0.82% |
10—% of desert land 6 | 3.02% | 4.35% | 5.92% |
Wind Energy Potential | |||
---|---|---|---|
TWh/year | % WED 2050 | % WWP 2050 | |
(A) Top-down methodology | |||
[23] (2011) | >8760 | >6.74% | 98.7% |
[23] (2011) (corr.) | >70,080 | >53.9% | 790% |
[85] (2010) | 148,920–332,880 | 114.5–256.1% | 1679–3743% |
(B) Bottom-up methodology | |||
(B1) Low estimates | |||
[86] (2008) | 39,000 | 30% | 440% |
(B2) High estimates | |||
[87] (2005) | 627,000 | 482.3% | 7069% |
[88] (2009) | 840,000 | 646.1% | 9470% |
[89] (2012) | 3,504,000 | 2695% | 39,500% |
(C) Saturation wind power potential | |||
[90] (2012) | 350,400 | 269.5% | 3946% |
(D) Conclusion: final acceptable estimates range | |||
70,080–350,400 | 53.9–269.5% | 790–39,500% |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mauleón, I. Economic Issues in Deep Low-Carbon Energy Systems. Energies 2020, 13, 4151. https://doi.org/10.3390/en13164151
Mauleón I. Economic Issues in Deep Low-Carbon Energy Systems. Energies. 2020; 13(16):4151. https://doi.org/10.3390/en13164151
Chicago/Turabian StyleMauleón, Ignacio. 2020. "Economic Issues in Deep Low-Carbon Energy Systems" Energies 13, no. 16: 4151. https://doi.org/10.3390/en13164151
APA StyleMauleón, I. (2020). Economic Issues in Deep Low-Carbon Energy Systems. Energies, 13(16), 4151. https://doi.org/10.3390/en13164151