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Abstract: This paper presents a decentralized informatics, optimization, and control framework to
enable demand response (DR) in small or rural decentralized community power systems, including
geographical islands. The framework consists of a simplified lumped model for electrical demand
forecasting, a scheduling subsystem that optimizes the utility of energy storage assets, and an
active/pro-active control subsystem. The active control strategy provides secondary DR services,
through optimizing a multi-objective cost function formulated using a weight-based routing algorithm.
In this context, the total weight of each edge between any two consecutive nodes is calculated as a
function of thermal comfort, cost (tariff), and the rate at which electricity is consumed over a short
future time horizon. The pro-active control strategy provides primary DR services. Furthermore,
tertiary DR services can be processed to initiate a sequence of operations that enables the continuity
of applied electrical services for the duration of the demand side event. Computer simulations and
a case study using hardware-in-the-loop testing is used to evaluate the optimization and control
module. The main conclusion drawn from this research shows the real-time operation of the proposed
optimization and control scheme, operating on a prototype platform, underpinned by the effectiveness
of the new methods and approach for tackling the optimization problem. This research recommends
deployment of the optimization and control scheme, at scale, for decentralized community energy
management. The paper concludes with a short discussion of business aspects and outlines areas for
future work.

Keywords: decentralized; demand response; optimization; community energy management

1. Introduction

1.1. Context and Motivation

The effectiveness of modern technologies continues to improve energy efficiency. However,
this does not necessarily translate to a fall in energy demand [1]. Reduction in energy consumption
due to technology improvements, somewhat paradoxically, causes energy actors to consume more
energy [2]. There is evidence that ongoing trends in energy consumption exist on both the production
and consumption side [3]. While policy interventions are advancing technology and economic growth,
this is causing environmental stress [4]. Therefore, it is important to improve energy access that is
sustainable to help mitigate the risks associated with one of the most extraordinary growth paths
in modern times. The ever-increasing presence of sustainable energy supply is lessening harmful
emissions from fossil fuel power plants, which contribute to a rise in greenhouse gases [5]. However,
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the intensified uncertainties associated with modern power systems operating close to their stability
boundaries means operators are facing acute challenges when maintaining continuity of supply [6].
Demand response (DR) is an important tool in the energy systems of many developed and industrialized
countries. In a future power system, where the contribution of inertia alone can no longer provide
resilience during sudden changes in frequency, DR provides an effective mechanism to help balance
supply and demand [7].

Traditionally, electricity markets have evolved on the assumption that electric utilities and system
network operators will supply all power demands whenever they occur [8]. However, centralized
generation and distribution through an ageing infrastructure of high voltage distribution networks to
regional system operators are becoming more vulnerable to energy security [9,10]. In 2015, circa 80% of
global energy consumption was generated using fossil fuel [11]. Delivery of low carbon, energy-efficient
solutions have become more prevalent in recent years [12]. The move away from large fossil fuel
power plants operating on a centralized configuration is motivated by greater digitization, the drive
for decarbonization and a need for more customer control in energy management [13]. Therefore,
to achieve carbon reduction goals, an obvious decarbonization strategy is to extend fuel mix diversity
in the electricity sector while displacing the highest polluting power plants [14].

Energy systems are undergoing disruptive change. In the UK, the number of decentralized energy
operations is on the increase [15]. These changes are motivated in part by an increasing political
drive in response to environmental policy priorities. Consequently, this is provoking a shift towards
decentralized energy systems, business models that involve community energy groups and emerging
new regulations simultaneously [16]. Innovations in energy evolution are characterized in part by
industrial strategy and relations to decarbonization [14]. The fall in the cost of renewables has been
significant in the last ten years, which means generating electrical energy from renewables is more
economically viable [17]. Nevertheless, when combined with an increased burden on present-day
centralized services, risks associated with long-term supply security and the drive to be carbon
neutral by 2050 are exposed. While market signals and shifts in government policy are guiding the
energy sector transformation, system operators have developed many control strategies to preserve
equilibrium in grid frequency during periods of peak demand, including DR.

The UK government has set ambitious targets for electric cars and electrification of heating [18].
These bold steps are accelerating the decarbonization of vehicles and encouraging innovation in
electrification technologies, which will further increase the demand for electrical power. The recent
emergence of smart cities and communities helps population clusters to become more efficient and
their energy infrastructures more sustainable [19,20]. By integrating smart technologies, coupled with
a network of sensors and intelligent algorithms, it is often reported that urban smartness is at the
forefront of the sustainability transition [21]. However, the realization of smart cities is dependent on
concerns about data protection, digital health of interconnected communities, and the reliability of
services being addressed [22]. In sustainable development scenarios, a transition towards low carbon
energy will operate on different geographical scales. Increased customer participation and increased
demand require the decentralization of energy supply [23]. Smart (energy) cities should not only
support local needs in terms of energy demands but also feature broader regional or national network
demands. However, while the development of smart grids is necessary to modernize the electricity
market, many of the reported environmental and security benefits are only realized when they are
combined with decentralized energy generation [24]. Besides this, demand for new building stock
continues to accelerate, driven in part by renewed industrialization and economic growth [25].

1.2. Previous Work

Studies have highlighted building energy consumption, and contribution to greenhouse gases is
significant [26]. In the context of smart energy developments, regulatory control of heating, ventilating,
and air conditioning (HVAC) processes in buildings and other thermostatically controlled loads make then
exceptionally suitable candidates for providing energy flexibility to the grid [27]. Many control strategies
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that aim to improve the operation of heating systems have been proposed (e.g., see Reference [28–30]).
The slow thermal dynamics and rather stochastic characteristics of buildings (including occupants) mean
their power consumption can be easily shifted as part of a DR mechanism without causing a significant
short-term impact on space temperatures [31].

Developing energy efficiency in energy systems is perhaps the most sustainable way to reduce
carbon emissions [32]. Providing access to electricity brings many socio-economic benefits. Various
studies have shown how small-scale distributed renewables are changing people’s lives. But many
island energy communities fall behind mainland energy network developments when it comes to
securing affordable and sustainable supplies. Community energy networks that comprise a small
number of distributed renewable electricity generators (DREG) are often more exposed to system
vulnerabilities due to the intermittent nature of their energy production [33]. Still, for population clusters
that are dependent on conventional diesel generators, decentralized developments offer an alternative
sustainable clean energy transition pathway. More recent studies show low carbon smart energy
systems offer interconnected islands new opportunities for energy independence [34,35]. With this in
mind, harvesting energy from natural resources to achieve specific targets of decarbonization can be
realized using smart energy systems combined with efficient control strategies aimed at balancing
energy demand and energy production [36,37].

The energy market is moving from a linear centralized system to a more flexible, sophisticated and
decentralized system. A decentralized approach can deliver electricity in a controlled environment,
providing network operators access to frequency regulation and balancing services [38–40]. Flexibility
in energy generation and utility become more prevalent in small geographical areas. Here, a smart
grid approach provides technology infrastructure opportunities that enable intermittent DREG to
connect with local battery energy storage systems. However, distributed energy installations require
coordination mechanisms, especially when network operators request flexibility in consumer behavior
to secure operation of the power system. In the context of small island communities, optimization
and control of decentralized energy systems may bring economic reward, improve energy security
and open opportunities for the end-users to become more active in energy management [41]. Even so,
one of the main challenges of integrating several intermittent DREG is the power systems ability to
respond to a change in demand. In the absence of robust communication networks, or negative impact
due to latency, the ability to react quickly enough is problematic [42].

In contrast, local direct control DR processes may offer a more reactive approach by redistributing
energy consumption in response to changes in grid frequency measured at source. However, motivations
for decentralization are not universally consistent, and embracing a carbon reduction pathway through
decarbonization initiatives is not always the main priority for instigating change [43]. Therefore,
these schemes must not be to the detriment of the end customers, such as adversely affecting the
thermal comfort of building occupants or loss of essential services [44]. With this in mind, it is important
to note that substituting energy from fossil fuels with suitable sustainable energy sources to meet the
needs and expectations of the community will help improve the quality of human life [45].

The achievement of a decentralized energy system requires the integration of multiple natural
resources, often supplemented by some form of reserve capacity (e.g., electricity storage systems for
providing ancillary services or diesel generators for backup power). Furthermore, if the benefits of low
carbon power systems within a decentralized setting are to be achieved, then energy management
mechanisms must be capable of coordinating and managing a flexible set of services, each characterized
by local resources [46]. Alongside the physical transformations, demand side management becomes
the most important dimension, especially when there is a tendency to empower consumers to generate
electricity [47]. A recent study highlights that prosumers are likely to play a crucial and enabling role
in a decentralized system [48]. Ultimately, efficiency improvements established using optimization and
control algorithms (demand side management) will help lower emissions and supply energy needs.

As a general proposition, the objective for energy planning is to develop a system that satisfies a
dynamic energy forecasting requirement for community energy needs and is consistent with sustainable
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development scenarios. In contrast, the objective of the optimization procedure will be formulated
during the analysis of energy potentials and their geographical location. Such expositions suggest
optimization problems may be categorized as either one-dimensional or multi-dimensional depending
on the predefined objectives [49]. However, in the case of energy efficiency, there is ample evidence that
shows most optimization problems are defined by at least two objectives: time and energy. In practice,
many real-world problems are defined as a process of finding a minimal value of an n-dimensional
function subject to a set of constraints that may or may not be related [50]. The control of power
demand in response to variations in grid frequency is an essential part of the smart grid vision. In the
context of DR, the existing research methods are broadly divided into two types, where one approach
focuses on classical demand response programs, such as direct control, as well as initiatives that aim to
curtail energy consumption during peak times, usually through financial incentives. Furthermore,
robust communication protocols are needed to supervise interaction between network operators.
A recent feasibility study was conducted on the Italian Pelagie Islands proposed a control system
that incorporated DR services [51]. Here, besides cost and usability having been the main features of
the DR solution, a telecommunication infrastructure was fundamental to ensure effective regulatory
control and exchange of information. Islands have often served as test platforms for distributed smart
energy systems [52]. However, most remote communities do not attract this level of energy technology
innovation; therefore, such an architecture is out of reach.

In sum, technology innovation, guided by indicators, such as greenhouse gas emissions, is helping
policymakers understand the energy transition. Decarbonization pathways are transforming ageing
energy (electrical) infrastructures into more flexible decentralized systems. Installation of more remote
small-scale renewables means prosumers are more active in energy management. Studies show thermal
inertia means community buildings have an important role in demand response. However, although
there is a growing amount of research about smart cities, there have been few investigations into the
impacts of similar technology insertions in more remote or islanded communities. To fill this gap,
this work offers a novel optimization and control technique that supports primary and secondary DR
services using pro-active/active control, respectively. Furthermore, the multi-objective optimization
algorithm is formulated to optimize the use of thermostatically controlled loads; in this scenario, this is
space heating in community-level buildings.

1.3. Contribution

The main objective of this paper is to introduce a decentralized, optimization, and control framework
for community energy management. The methodology considers local environmental conditions,
user feedback, and economic impacts at the same time as providing flexible primary and secondary
demand side response. The contributions of this paper include:

• An integrated, flexible real-time optimization and control framework based on a weight-based
routing algorithm, significantly improving efficiency by removing communication network
constraints usually associated with centralized control schemes.

• A detailed computational study considering technical and environmental parameters.
• Applying the proposed optimization and control algorithm using prototype hardware in an

experiment designed to evaluate interaction with real-world data.

1.4. Structure

The remainder of this paper is structured as follows. Section 2 introduces a generic framework
before presenting a detailed description of a real-case study optimization and control framework,
including the computer simulation model and its components. Section 3 discusses the results of
extensive simulation studies. Experimental tests that validate the optimizer application in real-world
conditions are presented in Section 4. Finally, Section 5 summarizes the main conclusions that can be
drawn from the work presented and provides insights into what these suggest for future work.
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2. Optimization and Control Framework Technical Development

2.1. Generic Framework

A generic decentralized, optimization, and control framework can be used as part of an evolving
demand response service; this means both curtailment and generation. This general arrangement
will support primary and secondary DR services through frequency regulation and optimal control
mechanisms, respectively, and tertiary DR events (Figure 1). Here, optimal performance might be
described in terms of energy cost (ec), thermal comfort (tc), and predicted future energy demands
(dv). A multi-objective cost function formulated using a weight-based routing algorithm automatically
regulates the control of heating to create a meaningful energy demand reduction by shifting energy
consumption to out of peak demand periods. Thermostatically controlled loads (TCL) can provide
auxiliary services [53]. In this approach, the proposed scheme offers a pro-active control mechanism
that changes the TCL operating setpoint proportionally to measured grid frequency. Following this
approach avoids synchronization problems that bound the coupling between frequency excursions and
load dynamics that switch when prescribed frequency thresholds are exceeded [40]. An optimization
algorithm that responds to the real thermal needs of the building occupants is proposed. To achieve
this, individual occupants can report their thermal comfort needs using smartphone technology.
The feedback reports are processed, and a consensus determined, which is in turn used to influence
the room temperature.
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Figure 1. A demand response (DR) framework block diagram.

The inclusion of building occupant feedback is crucial. Recent research has illustrated that
engineers tend to assume occupants will not feel small changes in temperature [44]. This oversight
can cause a performance gap between the expected and actual results from technologies intended to
reduce or shift energy consumption in buildings. The inclusion of occupant feedback ensures that this
issue will be avoided in the case of the solution presented in this paper.

This work provides a reference basis for further DR applications in decentralized community-based
environments. It is particularly relevant to microgrids that are isolated from the grid as it offers
potential for reducing the amount of energy storage required to balance the power fluctuation on
those isolated microgrids. Current research has shown that even in the case of a single consumer,
a microgrid option could be more economical than network renovation (e.g., provision of underground
cabling) to increase the grid reliability [54]. Therefore, the ability to reduce the costs further by utilizing
the approach described in this paper could offer real potential for the development of islanded and
semi-islanded microgrids in many contexts.
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2.2. General Description

The proposed decentralized, informatics, optimization, and control simulation model has been
developed to optimize space heating, schedule utility of energy storage assets, and provide pro-active/

active control for primary and secondary DR services. Two groups define the simulation model
data that aims to replicate the trajectory of the physical systems under consideration so that system
configuration parameters can be differentiated from local preferences. Ultimately, the simulation
model is designed to assess our understanding of the optimizer and control components in the context
of decentralized energy management. The applicability of the optimizer and control component is
further demonstrated in hardware-in-the-loop simulation.

The following outline is provided as an overview of the proposed optimization and control strategy.
The approach is based on the idea that when the demand for electricity on the distribution network is
high, then the system attempts to reduce the local rate of energy consumption by reducing the space
heating temperature setpoint. Similarly, during periods of low electricity demand the constraints that
govern the temperature setpoint are relaxed, which, in turn, allows, not mandates, an increase in
energy consumption by increasing the space heating temperature setpoint.

When we add a measured response from occupants that describes their collective relative
thermal comfort, the perception is the rate of energy consumption shifts towards being self-regulatory.
For example, if the demand for electricity increases, the system attempts to reduce the local energy
consumption at a rate that is inversely proportional to the predicted demand. If space remains void
of occupants, this approach is satisfactory and local settings ensure a minimum space temperature
is maintained. However, during periods of occupancy, individuals become eligible participants in
the optimization algorithm. Subsequently, when individuals report they are feeling cold, and their
collective measured response satisfies a set threshold, then the resultant action is to issue a command
that counters the instruction to reduce the space temperature further. Conversely, this self-regulatory
behavior works equally well during periods of low demand. Consider now introducing a third data
type. Incentivizing energy reduction through financial gain aims to reduce or shift energy consumption
during periods of high demand [55].

Including information about the cost of energy into the mix introduces an interesting dynamic to
the optimization and control strategy. Given a time of use tariff that increases at times when demand is
known to peak, the net contribution to the optimizer is to automatically adjust the energy consumption
when the cost of electricity exceeds a user-defined threshold. Furthermore, the system can be configured
to automatically switch to an alternative power source if demand exceeds a set limit or during periods
when the cost of energy makes utilizing an alternative power source more attractive, e.g., energy
storage assets.

The immediate outcome attributed to the interaction between the three data types becomes even
more attractive if their behaviors can be predicted over a finite time horizon. The opportunity to
participate in tertiary DR services by making ready the system in response to a network operator DR
instruction becomes feasible. The proposed control algorithm alters the demand profile trajectory
such that it adds bias to the tri-data mix in a way that promotes a rise in space temperature. The net
effect is to provide optimal space pre-heating in advance of commencing the scheduled DR event.
Furthermore, a switching mechanism denies use of a local energy storage asset for a period leading up
to the DR event. Instead, resources ensure the energy storage asset is set to recharge. Thus, when the
DR event period commences, the system power source automatically switches to the energy storage
asset. Previous interventions ensure the energy storage asset capacity is sufficiently charged to enable
it to remain the primary source for the duration of the event or until the asset can no longer meet the
power demand for continued operation. In this instance, the grid becomes the systems primary power
source, and recharging of the energy storage asset is initiated.

The remainder of the section describes the development of individual systems that contribute
to the optimization and control framework. Real-time computer simulations that aim to model the
behavior of physical systems and the mathematical model of the proposed optimization and control
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algorithms are performed using the MATLAB/Simulink® environment. Level-2 MATLAB System
functions have been used extensively during the design and implementation, providing access to
create custom blocks that support multiple input and output ports. Furthermore, this section describes
how desktop simulations are reconfigured to validate the optimization and control algorithm using
hardware-in-the-loop (HIL) simulation techniques.

The desktop simulation model is shown in Figure 2. In addition to the optimization and control
block, the model is composed of a catalogue of supporting subsystems: energy, building, scheduler,
date-time (dt), and demand event signal (des).
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2.3. Technical Development

The simulation optimizer is constructed in a piecemeal fashion, progressing sequentially by
solving problems centered on three data types: (1) thermal comfort, (2) electricity demand forecast,
and (3) cost (tariff). In brief, during periods when the system is not responding to a tertiary DR activity,
the active control process begins by calculating a predicted or actual value for each data type over a
4-h horizon window at 10 min intervals. Values are mapped onto a multi-dimensional array with a
fixed number of rows (magnitude) and columns (time). A Dijkstra’s algorithm is then used to project
the predicted values over the 4-h horizon window [56,57]. The contribution of each data type is then
combined before k-means clustering (see Reference [58,59]) is applied iteratively at each 10 min interval.
The result yields a new path that follows the optimal temperature setpoint trajectory over the 4-h
horizon window. For demand response applications, a model for building design can be successfully
implemented using a simplified first-order plus dead time model [60]. Time constants of 10 to 30 min
and dead-times between 0 to 5 min are typical [61]. Avoiding complex calculations is achieved by
taking a pragmatic approach when determining model control actions. For example, the proposed
optimizer has been configured to update the control action at a sample time 10 min.

Since the control objective is to minimize the deviations from a temperature setpoint, according
to the system and user-defined rules, at discrete points in time, the optimal cost (shortest path) can
be obtained by formulating a Dynamic Programming algorithm that proceeds backwards in time.
The algorithm takes a sequence of k-means centroid points, where each centroid represents a value
that minimizes the total intra-cluster variance of all objects in each cluster. In simple terms, given a
time horizon of 240 min, this equates to 24 stages, each separated by a 10-min interval. At each stage,
there are 11 objects. A k-means algorithm is applied to find the centroid of the 11 objects, at each stage.
These calculations result in a series of 24 centroids that contribute to formulating the shortest path.

The objects that belong to each cluster are derived from a series of functions that calculate
occupants’ relative thermal comfort cost (tc), rate of energy consumption (demand forecast value)
cost (dv), and energy cost (ec). Given this, a deterministic problem can be formulated in a finite space
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G, which can be equivalently represented by a gridmap of fixed dimension; the problem starts from
a source node κs, where κs = κ0 = G( j,S0), proceeds to κ1 ∈ S1, and progresses to the final node
κt = κn = G( j,Sn). An important characteristic of this activity is highlighted. In solving the shortest
path problem, the source node κs and target node κt are revealed to the optimizer just before the first

transition from S0 → S1 begins. The trajectory of the shortest path from S0
η
→ Sn will follow a series of

weighted edges η that interconnect successive pairs of nodes, i.e., (κ0,κ1), (κ1,κ2), . . . , (κn−1,κn).
In the framework of the fundamental problem, minimizing the cost in a finite state space G can be

translated into mathematical terms:

Jn(i) = min
κ∈Sn+1

[
cn

iκ + Jn+1(κ)
]
, i ∈ Sn, n = 0, 1, 2, . . . , 24, (1)

where the cost of transition at cn
iκ is the centroid in a cluster of objects at stage Sn from node i ∈ Sn to

node κ ∈ Sn+1.
For the problem to have a solution, each object centroid is constructed with k-means++ algorithm.

Here, after initially assigning a random object within a cluster as the first centroid, we compute the
distance from each remaining object. Based on the square of these distances, a new centroid is defined.
The process repeats until k centroids are chosen. We formulate the objects in the following sections.

In addition, when the network operator issues an explicit DR instruction, the optimizer initiates a
pre-programmed control strategy that changes the trajectory of subsequent control actions in a period
leading up to and during the event window. However, it remains useful if the control actions continue
to respond to facility or occupant needs during this mode of operation.

2.4. Optimize and Control Subsystem

The optimize and control subsystem (optimize_control) is a user-defined block written using the
MATLAB S-Function application programming interface (API). The proposed optimization algorithm
calculates the optimal space heating temperature according to the rate at which electricity is consumed
(demand) and cost (tariff). Furthermore, the final temperature value is impacted by the occupants’
thermal responses to the combined thermal effect of the environment and physiological variables that
influence the relative thermal comfort.

Figure 2 shows the Simulink® optimize and control block includes three input signals: (1) room
temperature (temp_room), (2) current date and time (S0_date), and (3) a demand event signal that
indicates the status of a tertiary DR service (des_mode). The block output signals provide: (1) a control
signal (ctrl_action) that will alter the space heating temperature setpoint, (2) the current cost of energy
usage (tou_tariff), and (3) an indication of the tertiary DR event duration (des_duration). The internal
architecture of the optimize and control subsystem is shown in Figure 3.
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The design presented in this article is configured to operate within a custom-built temperature
range between Tmin = 15.5 °C and Tmax = 20.5 °C. Exception handling ensures temperature values
measured outside this range are mapped to either 15.5 °C or 20.5 °C. Default system configuration
parameters set the forecast horizon window to 4 h, a demand response temperature step (Tstep) that
instructs the control action to increase the space temperature by 2 °C over the duration of the forecast
horizon window, and the duration of a demand event to 40 min. Additional system parameters specific
to thermal comfort, electricity demand forecasting and cost (tariff) are described in the corresponding
subsections that follow.

2.4.1. Thermal Comfort

The energy demand of buildings is influenced by the presence and behavioral patterns of
occupants [62]. The thermal comfort element impacts the temperature setpoint by analyzing the
measured room temperature (Troom) and occupants’ feedback collated at a sample time of 10 min.
Weekdays are divided into 7 time intervals τ(n), configured to mirror a typical teaching timetable,
whereas a weekend day consists of only 1 time interval. Changing the weekend day interval pattern
to replicate a weekday is straightforward. By considering occupant presence is inhomogeneous,
for each τ(n) we choose an algorithm for the simulation of occupants to be used as an input for current
occupant level, uk. In practice, not all individuals will report their relative thermal comfort; therefore,
the model automatically creates several feedback reports u f , where u f ≤ uk. An individual’s response
is measured using a unipolar Likert scale [63,64]. The question has a five-scale response: too warm,
warm, okay, cold, too cold; this is scored mathematically using a scale u f ∈ {−2, −1, 0, 1, 2}. In order
to imitate perceived behavior patterns, for each time interval, the following model parameters are
defined: umin = minu f , umax = maxu f and response threshold uth (%). The thermal model weekday
parameters are reported in Table 1.

Table 1. Thermal model parameters.

τ(n) umin umax

1 0 0
2 10 40
3 5 20
4 15 70
5 3 12
6 7 30
7 0 0

For any given weekday time, the thermal comfort model output is calculated by the following
expression:

tcτn = Mo

 uk∑
i=1

u f(i)

, u f ∈ {−2 ,−1, 0, 1, 2}, n = 1, 2, . . . , 7; (2)

with respect to:
τ(1) =u f (3 : 5);

τ(2)(7) =u f (2 : 5);

τ(3)(6) =u f (2 : 4);

τ(4) =u f ;

τ(5) =u f (1 : 3);

(3)

s.t. constraints:
(uku f ) × 100 > uth; (4)

umin ≤ uk ≤ umax. (5)
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For weekend days, we assume u f = 0; hence, the model returns a value tcτ(1) = u f (3).
The variation in τ(n) represents a bias that is configured to reflect a change in outside temperature over
a 24-h period.

It is noted that the seven-time intervals τ(n) are bounded by a start and stop clock time
τ(n)(t1, t2) such that τ(1)(t1, t2) = τ(1)(00 : 00, 2n + 7), τ(n)(2n + 5, 2n + 7); and terminating at
τ(N)(2N + 5, 23 : 59). In practice, if a date and time are specified (e.g., S0_date = Fri, 05-February-2020
07:23:14), then the task to determine if the date-time element occurs on a weekday or weekend day
is straightforward. Given a date-time S0_date, it is possible to formulate an algorithm that returns a
1× 25 array δtc = [tc0, tc1, . . . , tc24], where tcn represents a thermal comfort value over a 4-h period at
10n min. It should be noted that because the optimizer is designed to take into consideration occupants’
feedback in real-time at a sample time of 10 min δ(2 : 25) = tc0 = tcτ(1). However, if during the
4-h horizon window the system identifies a time interval where umax = 0, i.e., there are no planned
occupants, the model starts a pre-programmed sequence that sets the thermal comfort on a downward
trajectory reducing at a rate of 0.5 °C per 10 min interval until a minimum temperature threshold value
Tth

min.is reached. We have by the definition of the 11× 25 nodemap δtc completed the data preparation
of thermal comfort shown in Figure 3. It must be remembered that the thermal comfort model is
prepared for operation within the simulated environment only. In practice, the implementation
proposes occupants’ report thermal comfort to the system using a smartphone app. This concept is
elaborated further in Section 3.

2.4.2. Electricity Demand Forecasting

A data-driven methodology for modeling electricity demand forecasting is proposed [65].
The implication of this novel semi-autonomous simplified lumped model has the potential to offer
decentralized electricity network operators’ knowledge of the more extensive aggregated rate of future
energy consumption. Thus, enabling decentralized energy management systems to proactively reduce
load demand on small island electricity grids or distributed grid-edge systems as part of an evolving
DR service. In this paper, we integrate the electricity demand forecasting model as part of the optimize
and control framework. Initially, analysis of a chronological sequence of 245,424 discrete observations
reveals the composition of the one-dimensional time series is characterized by three seasonal patterns:
weekday, weekend day and month. These findings motivate an effort to reduce the dimensionality
using piecewise aggregated approximation (PAA). Subsequently, calculating a cubic polynomial that
interpolates points of interest yields a 13× 4× 2 multi-dimensional array, which in turn helps restore
the shape of the original demand forecast profile. The polynomial coefficient structure for weekday
and weekend day are listed in the array page 1 and 2, respectively. Given both weekday and weekend
day demand profiles recur every 24 h, it turns out using Equation (6) a normalized demand forecast
value Mi(x) can be tagged to a specific time in any 24-h period.

Mi(x) = ai + bi(x− ilo) + ci(x− ilo)
2 + di(x− ilo)

3, (6)

where i = 0, 1, . . . , n; x ∈ [lo, hi], lo and hi correspond to the minimum and maximum data points
of each PAA 2h segment, respectively, and the cubic polynomial coefficient parameters are ai, bi, ci,
and di. Moreover, we will show how the demand forecasting model can be used to compute a credible
demand forecast value for any given date and time.

There are 12 equidistant segments, which equates to 13 periods (ρ) bounded by minimum and
maximum points lo and hi, i.e., ρn(lo, hi) where the number of periods n = 0, 1, . . . , N. In the first period,
ρ0(lo, hi) = ρ0(0, 4n + 2), after that ρn(4n− 2, 4n + 2); and terminating at ρN(4N − 2, 4N). If we adopt
the convention that makes 13-time intervals τn bounded by a start and stop clock time τn(t1, t2) then
τ0(t1, t2) = τ0(00 : 00, 2n + 1), after that τn(2n− 1, 2n + 1); and terminating at τN(2N − 1, 23 : 59).
Thus, it can be seen, given a date-time S0_date it is possible to formulate an algorithm that returns a
1× 25 array δdv = [dv0, dv1, . . . , dv24] where dvn represents a normalized demand forecast value over a
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4-h period at t = 10n min starting from the specified date-time. This approach works equally well for
both weekdays and weekend days.

The normalized demand forecast value dvn is defined as:

dvn = Nmin +

(
Mi(x) −DVmin

DVmax −DVmin

)
× (Nmax −Nmin), dvn ∈ [1, 11], n = 0, 1, . . . , 24, (7)

where Nmin = min
m∈[n]

N(m,25), Nmax = max
m∈[n]

N(m,25), DVmin = min
i∈[n]

Mi(x), DVmax = max
i∈[n]

Mi(x), noting that a

nodemap N is a m× n two-dimensional array.

2.4.3. Cost (Tariff) Model

A key consideration when taking part in a predefined energy reduction strategy must empower
customers to use energy in the lowest price period accessible, at the same time as offering participation
in DR initiatives. The cost (tariff) model is configured to integrate a typical static time of use (TOU)
tariff [66]. As shown in Figure 4, these tariffs charge cheaper rates when demand is low but increases
for electricity consumption at peak times.
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Figure 4. Model static time of use (TOU) tariff: (a) Weekday; (b) Weekend day.

Given a date-time S0_date, the cost (tariff) model returns a 1× 25 array δec = [ec0, ec1, . . . , ec24]

where ecn represents a normalized cost (tariff) value over a 4-h period at t = 10n min starting from the
specific date-time.

The normalized cost (tariff) value is defined:

ecn = Nmin +

(
EC(n) − ECmin

ECmax − ECmin

)
× (Nmax −Nmin), ecn ∈ [3, 9], n = 0, 1, . . . , 24, (8)

where EC(n) is the cost (tariff) at t = 10n min, Nmin = 3, Nmax = 9, ECmin = 4.99, and ECmax = 24.99.
The scaling factors are set by design to position δec values in the subsequent optimize stage such
that a change in price to either off-peak or peak has maximum influence during the optimization
outcome. Furthermore, it will be shown δec impacts the operation of system assets managed by the
scheduler subsystem.

2.4.4. Optimization

The optimization cycle (Figure 3) starts on receipt of the input signal S0_date. Subsequent cycles
commence at a block sample time of 10 min (600 s). Previously, data preparation for occupants’ thermal
comfort, electricity demand forecast, and cost (tariff) each returned a 1× 25 array δ = [x0, x1, . . . , x24]

where xn represents a normalised data type (tc, dv and ec) value over a 4-h period at t = 10n min
intervals starting from a specific date-time (S0_date). Before each data type array can be processed,
it must be homogenized in a way that makes it accessible to the optimizer. The data is transformed
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into a m × n two-dimensional nodemap N(m, n) such that δ(xn)→ N(12− x, t10n) . Accordingly m
represents a temperature T = [Tmax : −0.5 : Tmin] and n defines 25 stages (Sn | n ∈ {0, 1, . . . , 24} ) each
separated by a 10 min time interval for the duration of the 4-h forecast horizon window, e.g., S0 = t0

and S24 is linked to the 10 min time interval t230 → t240 . The 11× 25 nodemap N is then transformed
to a 31× 72 gridmap G by the following function:

N(δ(xn), n) 7→ G(i, 3n)κs
, G( j, 3n + 1)κt

, n = 1, 2, . . . , 24, (9)

where:
i = 3δ(xn) − ∆, ∆ ∈ {1, 2, 3}; (10)

s.t. constraints:

∆ =


1 if δ(xn+1) > δ(xn);
2 if δ(xn+1) = δ(xn);
3 if δ(xn+1) < δ(xn)

(11)

j =


i + 3 if ∆ = 1;

i if ∆ = 2;
i− 3 if ∆ = 3;

(12)

2 ≤ δ(xn) ≤ 10; (13)

when constraint (13) is not satisfied ∆ = 2.
The temperature from t0 → t10 = TS1 , where Ts1 ∈

{
TS0 , TS0 ± 0.5°C

}
s.t. Tmin < TS0 < Tmax;

however, if TS0 = Tmin, then TS1 ∈

{
TS0 , TS0 + 0.5°C

}
; furthermore, if TS0 = Tmax, then TS1 ∈{

TS0 , TS0 − 0.5°C
}
. Based on this information, this equates to 31 permissible temperature changes

between tn and tn+10. If we continue to record the change in temperature ∆T from Sn → Sn+1

using blocks of three columns for each cycle, then it is clear a gridmap of size 31 × 72 is created.
We refer to the three columns in each block as the source node κs, target node κt, and edge-weight

λη : κs
η
→ κt, respectively.

The Dijkstra’s algorithm computes the shortest path between a specified temperature point given
at S0 and S24. This deterministic problem follows the principle of optimality which suggests if the path
taken transits from one legitimate node to the next minimizes the cost-to-go from tn to tn+10, then the
transition between the collective nodes must be optimal [67]. For the Dijkstra’s algorithm to solve the
shortest path, the 31 × 72 gridmap is first subjected to a series of simple transformations. The first
instruction reshapes the gridmap into a 744 × 3 matrix referred to as the edgelist. Here, following
the same convention to identify columns in the gridmap, the edgelist provides a listed description
of all source nodes κn, legitimate target nodes κn+1 and their respective connecting edge-weights

λη : κn
η
→ κn+1, i.e., its associated cost. A second instruction creates a digraph object that generates an

Edges variable (744× 2 table) based on the number of source and target nodes extracted from the 744× 3
edgelist, and a Nodes variable (275× 1 table). The 275 value represents the total number of nodes (κ275)
in the fixed 11 × 25 nodemap. Finally, an equivalent sparse adjacency matrix representation of the
digraph, which includes the edge-weights, is created. Since the graph object we have constructed
is a directed graph, the sparse adjacency matrix is not symmetric. However, we can overcome this
by converting the sparse adjacency matrix to a full storage matrix. In this instance, the conversion
generates a 275× 275 full storage matrix.

The data type shape is now in a format required by the Dijkstra’s algorithm. Executing the
Dijkstra’s algorithm will compute the optimal cost which is equivalent to the summation of all edge

weights λη : κs
η
→ κt on the shortest path from κs to κt between time t0 and t240.

This process is repeated for each data type. At the end of each transformation the results are
assigned to a specific page of a multi-dimensional array where page 1 (P1) is reserved for data type
comfort, page 2 (P2) demand, and page 3 (P3) cost (tariff). The fourth page (P4) is reserved for
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the final stage in the optimization process, which combines the contributions assigned to P1 to P3.
Here, every third column in the 31× 72 P4 gridmap is allocated a grid centroid value GCP4( j,s) = 1,
where j ∈ {1, 2, . . . , 31} and s ∈ {3, 6, . . . , 72}, and assigned to row index j that is equivalent to
the k-means cluster centroid index that partitions the observations in the corresponding column s
on P1 to P3. Note, for each data type cn

iκ = GCP4( j,s); see Equation (1). The remaining values in
each column are incremented by one until the row index j has reached its boundary limit, i.e., 1 or
31. When the Dijkstra’s algorithm subsequently computes the shortest path between the source
node κs = GCP4( j,1) = 1 and target node κt = GCP4( j,71) where j = GCP4( j,72) = 1, the results yield

the optimal path that transits from S0 → S24 . The control action TS1 = N
(
GCP4( j,2), 2

)
. Simply

stated, the control action is a fixed temperature value that is linked to the 11× 25 nodemap N(m, n)
at row index m = GCP4( j,2), where N(1, n) = 20.5 °C, N(2, n) = 20.0 °C, . . . , N(11, n) = 15.5°C,
where n ∈ {1, 2, . . . , 25}. The relationship between the gridmap and nodemap is highlighted in Figure 3.
The pseudocode describing the operating principle of the optimize and control algorithm is listed in
Appendix A.

2.5. Demand Event Signal Subsystem

The demand event signal subsystem (des_subsystem) simulates actions in response to a network
operator instigated instruction. These signals are sent to individual customers enrolled in a campaign
designed to deliver aggregated tertiary DR. The Simulink® model itself is trivial (Figure 5); however,
the subsequent sequence of events requires further explanation. Firstly, the objective shifts to making
the system ready for a DR event; this includes setting the control action to increase the room temperature
in a measured approach by a pre-set value Tstep(°C) within the 4-h horizon window. Secondly, there is
the objective to ensure the battery energy storage system (BESS) is available with enough charge at the
start of the DR event.
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The period of pre-heating is regulated by altering the demand forecast profile. By default,
Tstep = 2 °C. Therefore, the normalized demand forecast value δdv = [dv0, dv1, . . . , dv24] is recast
to εdv = [dvε0, dvε1 , . . . , dvε24], where εdv(0 : 4) = dv0, εdv(i : j) = εdv(i− 5, j− 5) − 1, where i ∈
{5, 10, . . . , 20}, j ∈ {9, 14, . . . , 24} s.t. dv0 − 1 ≥ 1. This new trajectory increases the last recorded room
temperature by 2 °C at a rate of 0.5 °C every 50 min. At the beginning of each subsequent optimization
cycle, the trajectory leading up to the DR event is maintained, i.e., it advances closer to the plus 2 °C
temperature at each iteration and towards the DR projected start time. However, before εdv reverts to
δdv, the trajectory is modified further, this time by reducing the temperature setpoint 2 °C less than the
temperature recorded immediately before the start of the tertiary DR event. The system reinstates δdv

immediately after the DR event terminates.
The des_mode signal triggers the scheduler subsystem to start charging the BESS. The energy

storage asset will continue to charge until the start of the DR event. The battery will then start to work
from this time, reducing the stored charge of the battery while it continues to provide primary power
to the heating system. The heating system will continue to be supplied from the battery until a state of
charge (SOC) minimum threshold has been reached. The scheduler switches primary power to the
grid and the battery to charge.
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2.6. Energy Subsystem

Decentralized DR frequency regulation, when used in building stock, can regulate short-term
frequency excursions in demanded electrical energy [68]. The contribution of a decentralized frequency
regulator has been analyzed [68]. Results presented suggest that small excursions in measured
temperature from a TCL setpoint value will not compromise indoor comfort temperatures but can
contribute to the restoration of frequency equilibrium during network stress events. In this paper,
we integrate the implied linear power system and frequency regulator as part of the optimize and
control framework. The model (energy_subsystem) shown in Figure 6 replicates a power system
rating of 300 MVA. Initial conditions assume the balance in supply and demand is at equilibrium,
measured frequency is 50 Hz and the steady-state frequency error is zero. The energy subsystem model
parameters are reported in Table 2.
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Table 2. Energy subsystem parameters.

Parameter Description Value

Ki Secondary ALFC integral gain 1.667 × 10−3

R Governor speed regulator 0.05 Hz/pu MW
Tg Governor time constant 0.25 s
Tt Turbine time constant 0.60 s
H Inertia time constant 5 s
D Load damping constant 0.8 s
C1 Constant 10 × 106

∆Pd Continency load 75 MW

2.7. Building Subsystem

The building subsystem model (building_subsystem) (Figure 7) is a simplified thermostatically
controlled (on/off) space heating system with feedback loops which typically maintains the air
temperature at a set level. The model emulates building thermodynamics (building), calculating
variations in temperature based on heat flow, H(t), and heat losses, Hloss(t).

Hloss(t) =
Troom − Tout

Rth
, (14)

∆Theater
∆t

=
1
.

Mc
(H(t) −Hloss(t)). (15)
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A series of embedded lookup tables representative of seasonal variation are used to model outside air
temperature over a 24-h period at a sample rate of 30 min [69]. In practice, the local outdoor temperature
is measured using sensors and input into the system. Energy cost (EC [p/kWh]) is calculated as a function
of time and heat flow and is expressed in following equation:

EC =

∫ tn

t0

(
(Theater − Troom)

.
Mc

)
δec

(
xt(n)

)
, (16)

where
.

M [kg/hr] denotes air mass flow rate through the heater; c specific heat at constant air pressure,
and δec(xtn) [p/kWh] is the energy price at time tn. The building subsystem model parameters are
reported in Table 3.
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Table 3. Building subsystem parameters.

Parameter Value

c 1005.4
Rth 0.0015
C2 3.6 × 103

C3 0.0199
C7 15
C8 1800

2.8. Scheduler Subsystem

The scheduler subsystem primary job is to monitor several signals and direct the operation of an
automatic transfer switch between a grid and an alternative backup source of power. To ensure the
appropriate power source is selected, the scheduler requires knowledge of the current cost (tariff) of
electrical energy, whether a tertiary DR event is in progress including information of the event duration
and BESS state of charge. The Simulink® model of the scheduler subsystem is shown in Figure 8
and includes three input signals and six output signals. The output signals are provided for visual
indication of various signal status. A simplified BESS element (ess_subsystem) simulates a battery SOC
using a first-order transfer function. Locally defined parameters SOC_hi and SOC_lo set maximum
and minimum state of charge values (expressed as a percentage), which determine when the BESS
is declared available for use. In this context, initial values are defined in Section 3. The model also
includes a self-discharge rate (SDR) which reduces the stored charge of the battery naturally over time.
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The BESS availability function is represented by Equation (17), where SOC_lo is a low-level SOC
threshold (locally defined parameter).

FIT =

{
0 if SOC ≤ SOC_lo
1 otherwise

. (17)

Control rules that determine when the primary power source is set to grid or BESS is illustrated in
Figure A1 (Appendix B). The decision variable t_mode is the cost (tariff) threshold and automatically
switches the power source to BESS when the cost (tariff) is high s.t. Equation (17). Furthermore,
when signal des_mode =1 (0 = normal, 1 = tertiary DR event), t_mode = 0, thus preventing a control
action that switches the power source to BESS during the period leading up to the start of the DR
event (nominally 4 h). Signal CDir (change direction) reports if the battery is in charge or discharge
(0 = discharge, 1 = charge); PWR denotes primary power source (0 = grid, 1 = BESS); SOC_EC denotes
cost (tariff) in use, (0 = TOU, 1 = BESS).
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2.9. Date-Time Subsystem

For completeness, the Simulink® model of the date-time subsystem (dt_subsystem) is shown
(Figure 9). Its primary function is to provide a date-time element at a sample time of 10 min. The model
has been configured to run in real-time during experimental evaluation. By default, dt is set to the
current date and time, using format dd-mmm-yyyy hh:mm:ss, with the option to set to any data time
during model analysis. The date-time model parameters are reported in Table 4.
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Table 4. Date time subsystem parameters.

Parameter Value

C5 600
C6 1.157412771135569 × 10−5

dt dd-mmm-yyyy hh:mm:ss

3. Computational Study

In this section, we report the findings from a computational study (desktop simulation). By design,
the computational study validates the functionality of critical services. In contrast, the experimental
evaluation (Section 4) is explicitly directed on proving the interaction of proposed data types within
the optimization subsystem. A simulated tertiary DR event is considered in both scenarios.

The interaction between decision variables and control actions of individual subsystems is complex.
Accordingly, the computational study validates the functionality of the following vital services:

• Thermal comfort model
• Electrical demand forecasting model
• Cost (tariff) model
• Optimizer
• Tertiary DR activity
• Pro-active frequency control

To begin, we evaluate the data input models. Individual charts created using nodemap data,
and corresponding gridmap data validate the optimization and control behavior. In the second
study, the results obtained from a simulated tertiary DR event are discussed. Finally, we monitor the
system behavior during an imbalance between supply and demand. Here, the pro-active frequency
control reacts to a simulated load disturbance causing a frequency excursion from the nominal 50 Hz
steady-state. The model is initialized using the values reported in Table 5.
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Table 5. Computational model initialization parameters.

Parameter Value Description

SO_date 10-Oct-2019 16:00 Stage 0 date time
des_begin 10-Oct-2019 16:40 Notification of DR event
Tth

min (°C) 16.5 Minimum temperature threshold
Tstep (°C) 3 Temperature step increase
Troom (°C) 18 Room temperature

Horizon (h) 4 Forecast horizon
DRt (min) 40 Tertiary DR event duration

SOC_hi 0.8 State of charge maximum threshold
SOC_lo 0.2 State of charge minimum threshold

Occupant thermal comfort feedback is shown in Figure 10a. At 16:40, the model reports the
aggregated occupant thermal comfort is “too warm”. This consensus triggers the optimization
algorithm to set the comfort level gridmap trajectory on a path that reduces the measured room

temperature by 0.5 °C, i.e., S0
η
→ S1, where η = TS0 − 0.5°C. In addition, according to local settings,

the timetable sets the number of occupants in a space to zero at 19:00. A ‘no occupancy’ status has
clearly defined adaptive triggers. Firstly, the comfort signal values (occupants, response, and comfort)
are held at a constant zero, while the number of occupants present in a space is zero. Secondly, at 19:00,
the optimizer begins to alter the comfort level gridmap trajectory by reducing the temperature to a
minimum temperature threshold Tth

min.(local setting) at a rate of 0.5 °C every 10 min. This behavior
is confirmed in the optimizer gridmap visualization and subsequent optimizer nodemap shown in
Figure 11.

The price in the three-tier TOU tariff is translated visually in Figure 10b. Initially, from 16:00
to 19:00 the TOU signal value is set to 9, which represents cost 24.99 p/kWh (peak), reducing to 6
(11.99 p/kWh mid-peak price) at 19:00. The energy cost nodemap data (δec) transformation to the
optimizer gridmap is shown in Figure 11. During peak periods, when the cost of energy is highest,
the gridmap interpretation is to influence the control variable by reducing the temperature setpoint,
which in turn reduces the cost of energy. Similarly, at 19:00 (mid-peak), the gridmap tou signal is set at
mid-scale (nominally 18 °C). The electricity demand forecast is shown in Figure 10c. To help interpret
the demand signals shown, Figure 10d illustrates the calculated weekday demand profile over a 24-h
period. The red circle marks the start of the 4-h horizon window (shaded area). The dv (gridmap) signal
is reconstructed within the optimization algorithm. The results are consistent with the modified layout
of corresponding digraph object node coordinates, which describes the relationship between directional
edges and connecting nodes shown in Figure 11a. The optimal temperature path is calculated at a
sample rate of 10 min. Figure 11b highlights the optimal temperature value over a 4-h horizon window
commencing 16:40. The control action for the continuing 10 min cycle shown is the temperature
value specified at 16:50, that is TS1 = 16.5 °C. This accords with our earlier occupant thermal comfort
feedback report, which registered a consensus to reduce the room temperature by 0.5 °C.
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window: (a) Occupant thermal comfort feedback response; (b) electricity demand forecast: weekday
24 h; (c) cost (tariff); (d) electricity demand forecast.
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gridmap visualization; (b) gridmap projected onto 11× 25 nodemap.

On receipt of a DR event notice (16:40) the normalized demand forecast value δdv is recast to εdv.

The modified demand profile trajectory is defined by the Dijkstra’s shortest path algorithm κs
η
→ κt,

where η = TS0 + Tstep(°C). As can be observed in Figure 12, the change in demand profile at 16:50
increases from 16 °C (TS0 ) to 19 °C (TS24 ). A sample rate of 600 s accounts for the slight delay from the
start of the DR preparatory window to the change in demand profile trajectory. Although the supposed
outcome is to promote an increase in temperature equivalent to Tstep (°C) leading up to the start of
the DR event, the projected value is offset by the continued influence of the thermal comfort (εtc) and
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energy cost (εec) (tou) decision variables. Consequently, in this instance, the optimization algorithm
sets the 4-h ahead optimal temperature value slightly less than the anticipated 19 °C. The layout of
individual digraph objects and their corresponding nodemap representation, shown in Figures 11
and 12, respectively, serve to provide a snapshot of the optimizer outputs over a 4-h horizon window
at any given time. The benefit of the optimizer is now translated into Figure 13, which plots several
decision variables and control actions over a 24-h period. Between Figure 13a,b, we observe the impact
of demand and tariff data on the temperature setpoint (TS1). Furthermore, the outside temperature
(Tout) as no impact on the measured room temperature during this simulation.
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The start of the DR preparatory window is recorded at 16:40 and subsequently sets and holds
des_mode = 1 for 4 h and 40 min (the time leading up to and including the DR event). The BESS is
seen to start a charge period in readiness to the start of the DR event. A tariff mode signal (t_mode)
automatically restricts the use of the BESS until the DR event starts. At 16:40, the power signal (PWR)
switches the primary power source from the grid to BESS. If the cost of energy is peak tariff immediately
after the DR event (t_mode = 3), then the BESS would continue as the primary power source. However,
as can be observed, the BESS SOC signal (SOC) indicates the BESS starts a discharge phase at from the
start of the DR event and continues, in this scenario, to the end of the DR event. At 20:20, the primary
power source reverts to the grid, but the BESS remains available (SOC > SOCth

lo ).
The rate at which the energy source naturally discharges has been magnified to evaluate control actions

when SDR exceeds low and high charge threshold values (local settings). In practice, SDR parameters
should be set accordingly. The simulation results show the calculated electricity demand forecast
profile (demand). Its impact on the optimization algorithm is clear when demand is high (06:00 to
22:00) the aggregated effect is to limit the temperature setpoint (reducing the demand for electricity on
the distribution network). Conversely, when demand is low (22:00 to 06:00), the constraints that govern
the temperature setpoint are relaxed. Here, the optimizer allows, not mandates, an increase in energy
consumption by increasing the space heating temperature setpoint. This finding, while preliminary,
suggests the proposed control strategy has the potential to deliberately lessen peaks in demand
(electrical) and fill in the period of low demand.

At 18:20.36, the impact of a simulated load disturbance ∆Pd (Table 2) within the power subsystem is
highlighted. The large and rapid decreasing frequency excursion shown in the box highlight, signifying
an imbalance between supply and demand, is observed more clearly in Figure 14a. The proposed system
immediate response is to lower the temperature setpoint (TS1), reducing the on-site heat source energy
consumption and thus providing a pro-active response to the stability of the electrical distribution
network [68]. As can be observed in Figure 14b, and in the broader context in Figure 13a, these immediate
interventions have minimal impact on measured room temperature (Troom), hence minimizing occupant
thermal discomfort.
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4. Experimental Evaluation

Testing cannot be expected to catch every error in the software, and system complexity makes
it difficult to evaluate every branch. A traditional approach to software testing during earlier
development and subsequent simulation testing provided a satisfactory level of acceptance. However,
as the hardware-in-the-loop test environment is not entirely under the control of the tester, an element
of nondeterminism is introduced in the test. Furthermore, because of observations documented
during early simulation testing, new features are added to help eliminate transitions to deadlock states.
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These situations arise when a stalemate between two or more processes occurs, and the process is
unable to proceed because each is waiting for the other to respond [70]. Therefore, it is considered
helpful to outline an appropriate test and level of abstraction of the software and hardware devices
for testing.

One of the significant objectives of testing is to assess the integration of the optimizer software
code by connecting other software and hardware components. Therefore, a test environment was
designed to evaluate and report as accurately as possible on the proposed optimization algorithm
interaction with real-world data. An image of prototype equipment, including an industrial controller
and sensor equipment, is shown in Figure 15a.
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Figure 15. Hardware-in-the-loop test environment: (a) Arduino equipment; (b) Android smartphone
demonstrator app example screen images; (c) Arduino equipment block identification map; (d) Arduino
equipment legend.

The test environment composed of the following main components: (1) a revised Simulink®

model designed to send/receive serial data, (2) electronic fan speed controller (EFSC) to regulate
the heat transfer through flow, (3) a 240 VAC 3 kW box fan portable heater, (4) an Industruino
IND.I/O 32u4 Arduino-compatible industrial controller, which includes 2 CH 0 to 10 VDC/4-20 mA
12bit output, and (5) Arduino-compatible remote sensors and communication equipment, including
Android smartphone pre-loaded with an app, developed using MIT App Inventor 2 version nb183c.
In addition to streaming data into the software environment, the industrial controller on-board liquid
crystal display (LCD) panel was codified to visualize the data from remote sensors and user thermal
preferences (registered using the smartphone app). These feedback indicators were supplemented by a
series of light emitting diodes (LEDs) reporting the status of several decision-making variables.

Dedicated values for energy demand forecasting and price indicators are embedded in the computer
model. However, occupant thermal comfort feedback data is input into the system in real-time using
Bluetooth technology. This experiment utilizes the thermal comfort feedback data reported by a single
occupant. A technology update to manage multiple users is a relatively straightforward task. Images
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of the App demonstrator designed to capture occupants thermal comfort report is shown in Figure 15b.
Remote sensors monitor room temperature data, which is communicated to the optimizer in real-time
using low power device 433 MHz (LPD433) equipment. A block diagram of the general arrangement
is shown in Figure 16. The positioning of the optimizer indicates this configuration has the potential to
participate in similar energy management schemes with minimal impact on existing infrastructure.
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Figure 16. Block diagram of experimental evaluation setup.

This paper reports the results of an experimental test carried out in real-time. The test started
on Monday, 6-April-2020, 16:00. At 16:40, the start of a DR preparatory event triggers a pre-set
sequence of control actions designed to prepare the heating services in advance of the 40 min DR event,
which started at 20:40. The test was run for 5.5 h, finishing 10 min after the DR event. Comparison
of the findings shown in Figure 17 with those of earlier computation studies confirms the operation
of the optimization algorithm is consistent with our mathematical arguments, which posits that the
interaction between declared data types can influence an environment space heating. Increasing
the temperature setpoint successively by 0.5 °C at 10-min intervals during the DR preparatory stage
increased the space temperature by 2 °C from the start of the DR preparatory window. Figure 18a
confirms a temperature value of 18.5 °C was recorded at approximately 19:10. It can be observed the
temperature then decreased to 17.4 °C at 20:40, which is the start time of DR event. This behavior may
be explained by the fact that the thermal comfort profile (dark red color) reduced to an equivalent of
16 °C (Tth

min) at 19:00, which is consistent with an expected zero occupancy at the same time.
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Figure 18. Experimental evaluation recorded results at 6-April-2020 16:00 for 5.5 h with DR event:
(a) room temperature (Tr), temperature setpoint (TS1), thermal comfort gridmap data (tc), demand
event signal mode (des_mode), and DR event; (b) control action signal (Tu), primary power switch
signal (PWR), demand (rescaled) (dv), and DR event.

Furthermore, as can be observed in Figure 18b, the control action signal utilized in the earlier
computational study has been modified to regulate the physical heat transfer through flow. Here,
the control action signal (Tu), which operates a 0 to 10 VDC EFSC, is proportional to the difference
between the calculated optimal temperature setpoint (TS1) and the measured temperature (Tr), i.e.,
Tu ∝ Te, where Te = TS1 − Troom. The power switch signal (PWR) shows the virtual energy storage
system is activated at 20:40 and continues to operate as the heating system primary energy source for
the duration of the DR event (shaded area).

Overall, these results are very encouraging. The experimental evaluation raises the possibility that
the proposed optimization algorithm may support small communities in a decentralized environment
with limited access to communication networks. Comparison of the findings with other studies confirms
the novelty of the proposed framework for energy management. It is encouraging elements of this
research are consistent with results found in previous work. Eriksson et al. [71] developed a normalized
weighted constrained multi-objective meta-heuristic optimization algorithm to consider technical,
economic, socio-political, and environmental objectives. The results emphasized the application of a
modified Particle Swarm Optimization (PSO) algorithm to optimize a renewable energy system of any
configuration. The implementation of the Dijkstra’s algorithm (used in this study) is more prevalent in
other applications (e.g., see Reference [72–74]).

Nevertheless, the simplicity Dijkstra’s algorithm makes it a versatile heuristic algorithm. The shortest
path optimization algorithm was designed to compute an optimal water heating plan based on specific
optimality criteria and inputs [75]. The significant feature reported of the proposed algorithm was its
low computational complexity, which opens the possibility to deploy directly on low-cost embedded
controllers. In a further study, a strong relationship between optimization and space heating has
been reported [76]. Here, a neural network algorithm was used to build a predictive model for the
optimization of a HVAC is combined with a strength multi-objective PSO algorithm. Although results
show satisfactory solutions at hourly time intervals for users with different preferences, demand
response mechanisms have not been considered. However, leveraging upon the concepts of Industry
4.0, Short et al. [77] demonstrated the potential to dispatch HVAC units in the presence of tertiary
DR program in a distributed optimization problem could deliver satisfactory performances. Finally,
a more inclusive study proposed an optimization model which takes total operational cost and energy
efficiencies as objective functions [78]. Here, a thermal load is adjusted in the knowledge that a
managed change in temperature value has no significant impact on user comfort. An integrated
demand response mechanism is also considered. Although the results provide a new perspective for
integrated energy management and demand side load management, there is no further exploitation in
real-time user engagement or perspectives on decentralization.
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5. Conclusions

A real-time DR strategy in a decentralized grid has been formulated with both spatial and temporal
constraints. A generic framework established regulatory control of space heating through mechanisms
that automatically respond to changes in grid frequency and in response to explicit tertiary DR event
signals. Design considerations set decision variables and control actions to illustrate the effectiveness
of the novel multi-objective cost function, which is based on a weight-based routing algorithm.
A series of embedded lookup tables based on historical operational data calculate an aggregated rate
of electricity consumption over a rolling 4-h horizon window. As the techniques for enabling and
controlling DR events emerged, extensive simulation studies demonstrated power consumption could
be easily shifted without causing any significant short-term impact on space temperatures. Increasing
growth of renewable energy resources could reduce system inertia, which means networks are more
vulnerable to energy security. The approach offered may benefit rural decentralized community power
systems, including geographical islands, seeking to optimize heating services through optimization
and collaborative energy management. This operation was validated using experimental testing,
which included a response to simulated tertiary DR event signals. The obtained results show an
effectiveness of the decentralized, informatic optimization, and control framework for evolving DR
services. The energy transition offers small communities’ opportunities to meet decarbonization targets.
The gradual shift from centralized fossil fuel power networks to more low carbon decentralized sustainable
smart energy systems is set to disrupt businesses, policymakers, and system analysts. As energy markets
change to meet innovations, the reliance on a single energy source is slowly diminishing. Still, as technology
advances and support for an emerging group of consumers that produce energy continues to gather
momentum, system operators should embrace a changing market to remain relevant in the future.

The context within which DR operates is important as related initiatives need to support the
objectives of DR itself. These are usually encased within a policy objective in response to concerns
relating to the environment. Concerning supporting the achievement of such policy goals, organizations
seeking to participate in the sector need a business model/strategy that will, in the longer-term support
and sustain the success of such policy goals. Therefore, the business model is essential to the objective
of the policy. Martin et al. [79] illustrated the dangers of applying the business model/strategy that
does not support the overall objective of an organization. Here, the policy goal is the European targets
related to energy efficiency and climate change by consumers reducing or shifting their electricity
usage during periods of peak electricity demand in response to time-based tariffs or other forms of
financial incentives. The success of such policy objectives, therefore, are dependent on several factors,
including end-user participation. The opportunities for realizing DR, however, vary across Europe as
they are dependent on the particular regulatory, market, and technical contexts in different European
countries [80]. It is estimated that the distribution networks share of the overall network investment in
energy networks will be 80% by 2050 [81]. Hence, the need for DR solutions to reduce peaks in energy
demand is significant. Thus, in recent times, the emphasis is on developing novel solutions which
can align the energy demand to the energy supply in real-time [82]. A decentralized approach will
support creativity and tailor-made solutions [83,84]. The role of the end-user in successfully delivering
the policy objective is essential, and their buying into new usage patterns is critical [85]. Therefore,
a business model that encourages end-user participation becomes crucial. Hence, a business model
that understands and appreciates the variables of regulatory, market and technical contexts in different
European countries, enabling enhanced end-user engagement is required to support the achievement
of the policy objectives.

Future research will extend the test and validation work, including the integration of scalable
communities and other forms of energy storage and distributed renewable energy generators.
In addition, a business case that scrutinizes how the proposed optimization and control framework
can be mobilized will be investigated in future work.
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Appendix A

Algorithm A1. Optimize and control algorithm
inputs:

temp_room =
{
n
∣∣∣n is pos, and 15.5 ≤ n ≤ 20.5

}
� Troom (◦C)

S0_date← now()
des_mode = {n|n is int, and n ∈ {0, 1}} � 0=normal, 1=event

outputs:
ctrl_action; tou_tariff; des_duration

initialise:
visual_mode; gridmap
horizon = 4 � duration (h)
des_mode = 0
Tstep (°C) = {n|n = 2, and n ∈ {2, 3}}
des_duration = {n|n = 40, and n ∈ {30, 40, 50}} � duration (min)
Tmin = {n|n = 16.0, and 15.5 ≤ n ≤ 17.5}
dt = {tc, dv, ec, optim}

for every 10 min interval do
S0_date← S0_date + 10 min
for each dt do

if dt = tc then
Tth

min ← Tmin � min temp threshold (°C)

prepare comfort values ∀Sn =
{
n
∣∣∣n is an integer, and 0 ≤ n ≤ 24

}
else if dt = dv then

require: des_mode; des_duration; Tstep

prepare demand values ∀Sn = {n|n is an int, and 0 ≤ n ≤ 24}
prepare node path

else if dt = ec then
prepare tou values ∀Sn = {n|n is an int, and 0 ≤ n ≤ 24}

end if
get: δdt(xn)

prepare gridmap
adjacency matrix← digraph← edgelist← gridmap
optimize using dijkstra algorithm
identify edgepath from start to end node ∀Sn = {n|n is an int, and 0 ≤ n ≤ 24}
if dt = optim then

prepare control action � TS1 (°C)

end if
get: visual_mode
display: visualization ∈ {horizon, gridmap, bigpath, biggridmap}

end for
end for
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