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Abstract: Recently, model predictive control (MPC) methods have been widely used to achieve the
control of two-level voltage source inverters due to their superiorities. However, only one of the eight
basic voltage vectors is applied in every control cycle in the conventional MPC system, resulting in
large current ripples and distortions. To address this issue, a dual-vector modulated MPC method is
presented, where two voltage vectors are selected and utilized to control the voltage source inverter
in every control cycle. The duty cycle of each voltage vector is figured out according to the hypothesis
that it is inversely proportional to the square root of its corresponding cost function value, which is
the first contribution of this paper. The effectiveness of this assumption is verified for the first time
by a detailed theoretical analysis shown in this paper based on the geometrical relationship of the
voltage vectors, which is another contribution of this paper. Moreover, further theoretical analysis
shows that the proposed dual-vector modulated MPC method can also be extended to control other
types of inverters, such as three-phase four-switch inverters. Detailed experimental results validate
the effectiveness of the presented strategy.
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1. Introduction

Due to the advantages of two-level voltage source inverters, they have received more and more
attention in the field of renewable energy generation systems, including photovoltaic systems and
energy storage systems, among others. Recently, the control methods of two-level voltage source
inverters have been widely studied to achieve smooth and flexible energy conversion [1–5]. As is
known, vector control is widely used to control two-level voltage source inverters in renewable
energy generation systems as it can achieve power decoupling control. Nevertheless, proportional
and integral controller and pulse width modulation modules are needed, which makes the control
system hard to debug and prolongs the development cycle of the control system. Another control
method, i.e., direct power control, has also been studied to control two-level voltage source inverters.
Compared to vector control, proportional and integral controller and pulse width modulation modules
are removed. However, as the switching frequency is unfixed and the optimal voltage vector is selected
based on an offline switch table, its power control precision is relatively low.

As a simple but effective control method, model predictive control (MPC) has received much
more attention in the field of the optimal control of two-level voltage source inverters lately.

An MPC strategy was designed to control the current of two-level voltage source inverters in [6] in
2007. From then on, many researchers began to study new MPC strategies to reduce the computational
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time [7,8], to lower the switching frequency [9,10], to suppress the common-mode voltage [11,12],
to decrease the current ripples [13–29], or to minimize the power ripples [30–32].

In [7,8], according to the deadbeat control principle, voltage-based cost functions are designed
to replace the conventional current-based cost function. Thus, the calculation burden is reduced
significantly. In [9,10], the concept of multistep MPC is studied and evaluated, which can reduce
the switching frequency obviously, making it very suitable for large power converters. In [11,12],
common-mode voltage suppression methods are studied using an MPC strategy. Thus, the negative
effects of the common-mode voltage are reduced.

Additionally, as a flexible control method, MPC strategies are also studied in [13–29] to reduce the
current ripples by using more voltage vectors instead of only one in every control cycle. In [13–15],
dual-vector MPC strategies are studied. Compared to the conventional single-vector MPC, the control
precision is improved as more voltage vectors are utilized in every control cycle. Moreover, in [16–21],
three voltage vectors are chosen per control cycle to further enhance the control performance, and better
results are obtained. In these methods in [13–21], the duty cycles of each voltage vector are figured
out according to the deadbeat control theory. Although duty cycles can be calculated accurately
theoretically, the actual calculated duty cycle may be smaller than zero or larger than one, which reduces
the control performance to a certain extent.

Alternately, there is another way to determine the duty cycles, which is named modulated
MPC [22–29]. In this type of method, the duty cycle of each voltage vector is deduced by assuming that
it is inversely proportional to its cost function value. As it is simple but effective, many researchers
have studied modulated MPC to control the cascaded H-bridge converter [22], the multilevel
solid-state transformer [23], the direct and indirect matrix converter [24,25], the shunt active filter [26],
the brushless doubly fed induction machine [27], the two-level three-phase inverter [28,29], and so on.
However, although it is shown in [22–29] that the modulated MPC method can achieve current control,
up to now, there still lacks a solid theoretical support for this kind of method, which hinders its
popularization and application.

Additionally, to minimize the power ripples of the converters, modified MPC strategies have also
been studied in [26,30–32]. However, there are still few papers to study the optimal modulated model
predictive direct power control methods as well as the theoretical analysis for power converters.

To fill this gap, a novelty dual-vector modulated MPC strategy is presented for two-level voltage
source inverters with a new duty cycle calculation method as well as a detailed theoretical analysis.
First, twelve hybrid voltage vectors are constructed according to the eight basic voltage vectors of the
two-level voltage source inverter. Next, to decrease the computation amount, the reference voltage is
deduced based on the reference current, and a cost function based on the voltage error is designed.
Then, only three hybrid voltage vectors are required to be evaluated online per control period based
on the information of the reference voltage. Finally, the optimal voltage vector combination is selected.

The main contributions of this paper lie in three aspects.
The first one is that a new duty cycle calculation method of each voltage vector is proposed in

this paper according to the hypothesis that it is inversely proportional to the square root of its cost
function value.

The next one is that, based on a detailed theoretical analysis, the validity of the presented
dual-vector modulated MPC strategy with the new duty cycle calculation method is proved based on
the geometrical relationship of the voltage vectors, which is also verified by experimental results.

The third one is that the proposed dual-vector modulated MPC strategy can also be applied to
control other types of inverters, such as three-phase four-switch inverters, whose effectiveness is also
proved by the geometrical relationship of the voltage vectors as well as the experimental results.
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2. Conventional MPC Strategy

Figure 1 depicts the topology of two-level voltage source inverters. As is known, there are eight
voltage vectors for two-level voltage source inverters, including u0(000), u1(100), u2(110), u3(010),
u4(011), u5(001), u6(101), and u7(111), which are shown in Figure 2.
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Figure 1. Topology of two-level voltage source inverters.
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Figure 2. The eight basic voltage vectors.

Typically, (1) shows the mathematical equation of two-level voltage source inverters on the
α-β reference.

L
d
dt

[
iα
iβ

]
=

[
uα
uβ

]
−R

[
iα
iβ

]
−

[
eα
eβ

]
(1)

where uα, uβ and iα, iβ are the output AC voltages and currents, respectively, and eα and eβ are the back
electromotive forces (EMFs). L stands for the filter inductance with R denoting the parasitic resistance
on it.

If the sample and control cycle is T, based on the Euler’s discretization formula, it can be
calculated that

L
T

[
iα(k + 1) − iα(k)
iβ(k + 1) − iβ(k)

]
=

[
uα(k)
uβ(k)

]
−R

[
iα(k)
iβ(k)

]
−

[
eα(k)
eβ(k)

]
(2)

Based on (2), as well as the sampled current iα(k) and iβ(k) at the kth instant, the current iα(k + 1)
and iβ(k + 1) at the next control cycle can be calculated, as depicted in (3).[

iα(k + 1)
iβ(k + 1)
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=
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L
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]
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T
L
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]
(3)

As there is an inherent one-step delay in the MPC system, to reduce its influences, it can be
compensated by using the optimal voltage vector selected in the last control period to predict the
current iα(k + 1) and iβ(k + 1) firstly. Next, the eight basic voltage vectors uk+1 = [uα(k + 1), uβ(k + 1)]T

can be further utilized to calculate the current iα(k + 2) and iβ(k + 2) based on (4).[
iα(k + 2)
iβ(k + 2)

]
=

(
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RT
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)[ iα(k + 1)
iβ(k + 1)

]
+

T
L

[
uα(k + 1) − eα(k + 1)
uβ(k + 1) − eβ(k + 1)

]
(4)
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Finally, by evaluating the prediction errors of all the eight basic voltage vectors using the cost
function defined in (5), an optimal voltage vector can be chosen and utilized to control the inverter
during the next control cycle.

g = (iαref − iα(k + 2))2 + (iβref − iβ(k + 2))2 (5)

where iαref and iβref are the reference currents.
As only one voltage vector is utilized in every control cycle in the above conventional MPC

strategy, the current total harmonic distortion (THD) is quite large.
Aiming to solve this problem, a dual-vector modulated MPC strategy is presented in this paper

by using two voltage vectors in every control cycle. Detailed theoretical analysis is carried out to verify
the validity of the presented dual-vector modulated MPC strategy. Comparative experimental results
also verified its effectiveness.

3. Dual-Vector Modulated MPC Strategy

According to [7,8], to simplify the MPC strategy, a cost function based on the reference voltage is
defined in this paper.

First, the reference voltage is deduced according to the deadbeat control theory, which is shown in (6).[
uαref

uβref

]
= R

[
iα(k + 1)
iβ(k + 1)

]
+

[
eα(k + 1)
eβ(k + 1)

]
+

L
T
(

[
iαre f
iβre f

]
−

[
iα(k + 1)
iβ(k + 1)

]
) (6)

where uαref and uβref are the reference voltages.

To limit the voltage within the linear modulation region, if um =
√

u2
αref + u2

βref > udc/
√

3,

uαref and uβref are calculated based on (7). uαref =
uαref
um

udc√
3

uβref =
uβref
um

udc√
3

(7)

Then, a voltage-based cost function is defined as

G = (uαref − uα(k))
2 + (uβref − uβ(k))

2 (8)

Through using this voltage-based cost function, the calculation burden can be reduced as the
prediction of the current for many times in each control cycle is not required any more.

To select and apply two voltage vectors per control period, twelve hybrid voltage vectors are
constructed according to the eight basic voltage vectors of the two-level voltage source inverter.
They are us1(u0, u1), us2(u1, u2), us3(u7, u2), us4(u2, u3), us5(u0, u3), us6(u3, u4), us7(u7, u4), us8(u4, u5),
us9(u0, u5), us10(u5, u6), us11(u7, u6), and us12(u6, u1), respectively, which are illustrated in Figure 3.
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The relationship between the twelve constructed hybrid voltage vectors and the basic voltage
vectors is depicted in (9).

usi = di,uju j + di,ukuk (9)

where di,uj + di,uk = 1, di,uj is the duty cycle of uj and di,uk is the duty cycle of uk.
For example, as us1 is combined by u0 and u1, their relationship can be expressed as

us1 = d1,u0u0 + d1,u1u1 (10)

To calculate the values of the twelve constructed hybrid voltage vectors, the duty cycles of the
basic voltage vectors should be calculated first. Different from the methods in [22–29], which lack
theoretical support, here a new duty cycle calculation method is proposed by assuming that it is
inversely proportional to the square root of its cost function value, as shown in (11), where m is a
positive coefficient. In Section 4, the effectiveness of this proposed hypothesis is verified in detail by a
particular theoretical analysis.

di =
m
√

Gi
(11)

Based on (9) and (11), the duty cycles of the basic voltage vectors are deduced. For instance,
the duty cycles of u0 and u1 that construct us1 can be calculated based on (12). d1,u0 =

√
G1√

G0+
√

G1

d1,u1 =
√

G0
√

G0+
√

G1

(12)

where G0 and G1 are the values of the cost function shown in (8), which are obtained by substituting u0

and u1 into (8), respectively.
Finally, based on (9)–(12), the combined voltage vectors are figured out.
To simplify the predictive control, the voltage vector plane can be divided into six sectors,

as illustrated in Figure 3. Then, according to the reference voltage shown in (6) and (7), its location can
be obtained easily based on Table 1, where θ = arctan(uβref/uαref).

Table 1. Sectors of the reference voltage.

Symbol Angle Range Sector

θ

[0, 60◦) I
[60◦, 120◦) II

[120◦, 180◦) III
[180◦, 240◦) IV
[240◦, 300◦) V
[300◦, 360◦) VI

Based on the position of the reference voltage, the alternative voltage vectors that should be
evaluated online can be preselected based on Table 2. For instance, if the reference voltage is located at
sector I, only us1, us2, and us3 require to be evaluated online. So, as only three instead of twelve voltage
vectors are required to be evaluated online, the calculation amount is reduced notably. Then, an optimal
hybrid voltage vector among the three hybrid voltage vectors can be chosen to control the inverter in
the next control cycle.

For clarity, Figure 4 is given to show the control principle of the presented strategy. Moreover, the detailed
implementation steps are also depicted below.

Step 1: Calculate the reference voltage based on (6) and (7);
Step 2: Get the values of the reference voltage based on Table 1;
Step 3: Choose three candidate voltage vectors based on Table 2;
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Step 4: Figure out the duty cycles of the basic voltage vectors that construct the three candidate
voltage vectors based on (8) and (12);

Step 5: Get the values of the three candidate voltage vectors based on (9);
Step 6: Evaluate the cost function values of the three candidate voltage vectors based on (8) and

select the voltage vector that can minimize the cost function as the optimal one.
Finally, the optimal vector is utilized to control the voltage source inverter.

Table 2. Voltage vector selection method.

Sector of the Reference Voltage Selected Voltage Vectors

I us1, us2, and us3
II us3, us4, and us5
III us5, us6, and us7
IV us7, us8, and us9
V us9, us10, and us11
VI us11, us12, and us1
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4. Theoretical Analysis of the Proposed Method

To validate the correctness of the presented duty cycle calculation method shown in (11), a rigorous
theoretical analysis is proposed. Here, the case that the reference voltage vector is located at sector I is
taken as an example, where it overlaps with the segment OD in Figure 5.
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As us1 is constructed by u0 and u1, their relationship has been shown in (10). Based on (10),
(13) can be deduced.

us1 = u0 + d1,u1(u1 − u0)

= u1 + d1,u0(u0 − u1)
(13)

Based on (13) and Figure 5(a), it can be known that |OA| = d1,u1*|u1 − u0| and |AB| = d1,u0*|u1 − u0|.
Thus, |OA|/|AB| = d1,u1/d1,u0. According to (11) and (12), it can be deduced that

d1,u1

d1,u0
=

√
G0
√

G1
(14)

According to the cost function shown in (8), it can be known that{
G0 = |OD|2

G1 = |BD|2
(15)

Thus, it can be deduced that
|OA|
|AB|

=
|OD|
|DB|

(16)

By rearranging (16) with the law of sines in consideration, it can be further deduced that

sin ∠ODA
sin ∠OAD

=
|OA|
|OD|

=
|AB|
|DB|

=
sin ∠ADB
sin ∠DAB

(17)

Considering that ∠OAD + ∠DAB = π, it can be known that

sin ∠OAD = sin ∠DAB (18)

Thus, (19) is finally deduced based on (17) and (18).

sin ∠ODA = sin ∠ADB (19)

Based on (19), it can be calculated that ∠ODA + ∠ADB = π or ∠ODA = ∠ADB. In the following,
both of the two cases are analyzed respectively.

First, if ∠ODA + ∠ADB = π is true, it can be calculated that point D must be located on the segment
OB. In this situation, it can be figured out based on (16) that point D and point A will be the same point.
That means us1 = uαβref is true. Thus, the current control error can be minimized under this condition,
which shows the validity of the duty cycle calculation algorithm proposed in this article.

Second, if point D is not located on the segment OB, ∠ODA = ∠ADB should be true. In this
situation, it can be obtained that ∠ODA = ∠ADB < ∠OAD as ∠OAD = ∠ADB + ∠DBA. As ∠DOA < π/3
is true, and ∠ODA + ∠OAD + ∠DOA = π, it can be deduced that ∠ODA + ∠OAD >2π/3. As ∠OAD is
larger than ∠ODA, ∠OAD > π/3 > ∠ODA can be deduced. As ∠DOA < π/3 and ∠OAD > π/3 are true,
it can be known that ∠OAD > ∠DOA. According to the law of sines, |OD| > |AD| is finally deduced.
As |AD| stands for the square root value of the cost function of us1, and |OD| denotes the square root
value of the cost function of u0, a conclusion is obtained, i.e., the control accuracy is increased when us1

is utilized to replace u0.
Similarly, it is easy to verify that |DB| > |AD| is true, which means the control accuracy of us1

is increased compared to that of u1. Moreover, based on Figure 5b,c, it can also be verified that the
control error can be reduced by using us2 or us3 instead of u0, u1, and u2. This shows the validity of the
proposed duty cycle calculation method in this work.

When the reference voltage vector locates at other sectors, similar results can be obtained.
Therefore, the validity of the presented strategy is verified in terms of theory, which provides a solid
foundation for its popularization and application.
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5. Experimental Results

To further verify the correctness of the presented algorithm, an experimental prototype illustrated
in Figure 6 is designed, including a two-level voltage source inverter, a DC power source, an AC
power source, and a filter. Here, DSP28335 is selected as the controller, where the software code of the
proposed algorithm is running in it. The experimental waveforms and data are recorded using an
eight-channel oscilloscope. The parameters of the experimental system used in this work are listed in
Table 3.
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Table 3. System parameters.

Symbol Parameters Values

udc DC voltage 250 V
e Peak of back EMF 150 V
L Filter inductance 20 mH
R Parasitic resistance 0.05 Ω
T Sampling period 66.67 µs

5.1. Steady State Results

To verify the validity of the presented dual-vector modulated MPC algorithm for two-level
source inverters, its steady state control performance is tested and compared with the conventional
single-vector MPC.

In the first experiment, the reference current is set as 3 and 8 A, with the frequency of the back
EMF set as 50 Hz. The results are depicted in Figures 7–10.Energies 2020, 13, x FOR PEER REVIEW 9 of 17 
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Figure 7. Current waveforms at 3 A. (a) The traditional model predictive control (MPC) method.
(b) The presented MPC method.



Energies 2020, 13, 4200 9 of 16

Energies 2020, 13, x FOR PEER REVIEW 9 of 17 

 

 
(a) 

 
(b) 

Figure 7. Current waveforms at 3 A. (a) The traditional model predictive control (MPC) method. (b) 

The presented MPC method. 

Furthermore, Figure 8 shows the current THDs of the traditional MPC method as well as the 

proposed MPC method when the current is 3 A. It can be known from Figure 8 that the current THD 

is decreased obviously when the proposed MPC method instead of the traditional MPC method is 

utilized to control the two-level voltage source inverter, which shows the superiority of the proposed 

method again. 

  
(a) (b) 

Figure 8. The current total harmonic distortion (THD) (3 A). (a) The traditional MPC strategy. (b) The 

presented MPC strategy. 

Additionally, Figure 9 depicts the current waveforms of the two methods when the current is 

set as 8 A with the current THDs depicted in Figure 10. 

 

 

 

ia ic

(1A/div, 5ms/div) (1A/div, 1ms/div)

ib ia

ic

ib

ia ic

(1A/div, 5ms/div) (1A/div, 1ms/div)

ib ia

ic

ib

M
ag

(%
 o

f 
F

u
n

d
am

e
n

ta
l)

0 5

50

Frequency(kHz)
10 15 20

0

0.5

2.0

1.5

1.0

THD=7.71%

M
ag

(%
 o

f 
F

u
n

d
am

e
n

ta
l)

0 5
Frequency(kHz)

10 15 20
0

0.5

2.0

1.5

1.0

THD=4.93%

Figure 8. The current total harmonic distortion (THD) (3 A). (a) The traditional MPC strategy. (b) The
presented MPC strategy.
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Figure 9. Current waveforms at 8 A. (a) The traditional MPC strategy. (b) The presented MPC strategy.
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Figure 10. The current THD (8 A). (a) The traditional MPC strategy. (b) The presented MPC strategy.

Figure 7 illustrates the current waveforms when the reference current is set as 3 A. It is obvious
to see that the current ripples of the conventional MPC method are larger than that of the proposed
dual-vector modulated MPC strategy in this paper, which shows the validity of the presented method
in this work.

Furthermore, Figure 8 shows the current THDs of the traditional MPC method as well as the
proposed MPC method when the current is 3 A. It can be known from Figure 8 that the current THD
is decreased obviously when the proposed MPC method instead of the traditional MPC method is
utilized to control the two-level voltage source inverter, which shows the superiority of the proposed
method again.
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Additionally, Figure 9 depicts the current waveforms of the two methods when the current is set
as 8 A with the current THDs depicted in Figure 10.

It is clear to see from Figure 9 that the current ripples of the presented MPC strategy are decreased
compared to the conventional MPC method. Meanwhile, the current THDs of the presented method in
this article are also reduced, as illustrated in Figure 10, which verifies the validity of the presented
dual-vector modulated MPC strategy as well as the theoretical analysis again.

Furthermore, to show the superiority of the presented algorithm with different currents, another
experiment is carried out, and the current THDs are recorded, plotted, and finally illustrated in
Figure 11.
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Figure 11. The current THDs with different currents. (a) The frequency is 50 Hz. (b) The frequency is
20 Hz.

Figure 11a shows the current THDs with different currents with the frequency set as 50 Hz.
Figure 11b illustrates the current THDs with different currents at 20 Hz. It is apparent to see that the
current THDs of the presented algorithm are decreased with different currents, which further verifies
its validity.

5.2. Dynamic State Results

To further compare the dynamic state control performance of the presented algorithm with the
conventional one, more experimental research is conducted here.

Figure 12a,b depicts the experimental waveforms of the double strategies when the current is
stepped up from 3 to 8 A at 50 Hz. Figure 13a,b illustrates the results when the frequency is stepped
up from 20 to 50 Hz with 8 A.
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Figure 12. Dynamic current waveforms of the double strategies. (a) The traditional MPC strategy.
(b) The presented MPC strategy.
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Figure 13. Dynamic current waveforms of the double strategies when the frequency changes. (a) The
traditional MPC strategy. (b) The presented MPC strategy.

From Figures 12 and 13, it can be concluded that both of the double strategies can achieve a
satisfactory dynamic control effect, which shows the effectiveness of the presented method when
the current is changed suddenly. Besides, it is clear to see from Figures 12 and 13 that the current
ripples of the presented dual-vector modulated MPC algorithm at steady state are lower than that of
the conventional single-vector MPC method, which further verifies the effectiveness of the presented
algorithm and the conducted theoretical analysis.

6. Extensions

Although the proposed dual-vector modulated MPC is aiming to control two-level voltage source
inverters, further studies in this paper show that it can also be used to control other types of inverters by
only changing the voltage vectors according to the corresponding inverter, which is another important
contribution of this paper.

Here, a three-phase four-switch inverter is taken as an instance to show the correctness of the
presented dual-vector modulated MPC.

Figure 14 shows the topology of the three-phase four-switch inverter. The four basic voltage
vectors, i.e., V1, V2, V3, and V4, can be depicted as Figure 15, provided that the DC voltages are
well balanced as many papers have studied the DC voltage balance control methods for three-phase
four-switch inverters [33–36].
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Figure 14. Topology of the three-phase four-switch inverter.

To reduce the current ripples, four hybrid voltage vectors are designed in the same way with (9),
as shown in Figure 15, which are Vs1(V1, V2), Vs2(V2, V3), Vs3(V3, V4), and Vs4(V4, V1). In every control
cycle, one of the four hybrid voltage vectors will be selected and utilized to reduce the current ripples.
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Figure 15. Voltage vectors of three-phase four-switch inverters.

The duty cycle of each voltage vector is calculated using the same method as (11). Then, after the
four hybrid voltage vectors are determined, they are substituted into (8) to get an optimal one,
which will then be utilized to control the three-phase four-switch inverter. The detailed implementation
steps are similar to Figure 4. Furthermore, theoretical analysis and experimental studies are carried
out to show its correctness and superiority.

6.1. Theoretical Analysis of the Proposed Method

For convenience, the voltage vector plane is divided into four sectors, as depicted in Figure 15.
Here, the case that the reference voltage vector is located at sector I is taken as an example, as shown in
Figure 16.Energies 2020, 13, x FOR PEER REVIEW 13 of 17 
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Figure 16. Schematic diagram for analyzing the correctness of the presented method for three-phase
four-switch inverters.

First, it is assumed that the end point of Vs1 is D, as shown in Figure 16.
Based on (9), (20) can be deduced.

Vs1 = V1 + d1,V2(V2 −V1) (20)

Thus, based on the geometrical relationship shown in Figure 16, (21) is deduced.{
|AD| = d1,V2

∣∣∣(V2 −V1)
∣∣∣

|BD| = d1,V1
∣∣∣(V2 −V1)

∣∣∣ (21)

Meanwhile, according to the duty cycle calculation method in (11), it can be deduced that

d1,V1

d1,V2
=
|BD|
|AD|

=

√
G2
√

G1
(22)
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According the defined cost function in (8), it can be known that{
G1 = |AC|2

G2 = |BC|2
(23)

Thus, based on (22), it is calculated that

|BD|
|AD|

=
|BC|
|AC|

(24)

By rearranging (24) with the law of sines in consideration, (25) is obtained.

sin ∠BCD
sin ∠BDC

=
|BD|
|BC|

=
|AD|
|AC|

=
sin ∠ACD
sin ∠ADC

(25)

Considering that ∠BDC + ∠ADC = π, it can be known that

sin ∠SDC = sin ∠ADC (26)

Thus, (27) is finally deduced based on (25) and (26).

sin ∠BCD = sin ∠ACD (27)

Based on (27), it can be calculated that ∠BCD + ∠ACD = π or ∠BCD = ∠ACD. In the following,
both of the two cases are analyzed respectively.

First, if ∠BCD + ∠ACD = π is true, it can be calculated that point C must be located on the segment
AB. In this situation, it can be figured out based on (24) that point C and point D will be the same point.
That means Vs1= uαβref is true. Thus, the current control error can be minimized under this condition,
which shows the validity of the duty cycle calculation method proposed in this article.

Second, if point C is not located on the segment AB, ∠BCD = ∠ACD should be true. In this
situation, it can be obtained that ∠BCD = ∠ACD < ∠ADC as ∠ADC = ∠BCD +∠CBD. As ∠CAD < π/3 is
true, and ∠CAD + ∠ADC + ∠ACD = π, it is obtained that ∠ADC + ∠ACD > 2π/3. As ∠ADC is larger
than ∠ACD, ∠ADC > π/3 > ∠ACD can be obtained. As ∠CAD < π/3 and ∠ADC > π/3 are true, it can
be known that ∠ADC > ∠CAD. Based on the law of sines, |AC| > |CD| is finally deduced. Since |AC|

stands for the square root value of the cost function of V1, and |CD| denotes that of Vs1, a conclusion is
obtained, i.e., the control accuracy is increased when Vs1 is utilized to replace V1.

Similarly, |BC| > |CD| can be proved, which means the control accuracy of Vs1 is increased
compared to that of V2. Thus, a conclusion is obtained, i.e., the proposed method is still effective when
it is used to control the three-phase four-switch inverter. That is to say that the proposed method can
be extended.

6.2. Experimental Verification

To validate the validity of the presented algorithm and the theoretical analysis shown above,
experimental research is conducted, too. The parameters are the same as Table 3.

Figure 17 shows the current waveforms of the conventional single-vector MPC when the current
is 4 A, while Figure 18 is the current waveforms of the proposed dual-vector modulated MPC under
the same conditions.

It is clear to see from Figures 17 and 18 that when the proposed dual-vector modulated MPC
method is utilized instead of the conventional single-vector MPC method, the current THD is decreased
by 51.3%, which verifies the correctness of the presented strategy and the theoretical analysis again.

Additionally, compared to the conventional deadbeat control theory-based dual-vector MPC
method [13–21], the proposed method in this paper can reduce the computational time, mainly because
the duty cycle calculation method of this paper is simpler with reduced mathematical operation than
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that of the conventional dual-vector MPC method [13–21]. Thus, less digital processing time is required.
Furthermore, by using the proposed voltage-based cost function as well as the proposed voltage vector
selection method in this paper, the computational time of the proposed method can be further reduced.
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7. Conclusions

In this paper, a dual-vector modulated MPC is proposed based on the hypothesis that the duty
cycle of each voltage vector is inversely proportional to the square root of its corresponding cost function
value for two-level voltage source inverters. Theoretical analysis is conducted based on the geometrical
relationship of the voltage vectors for the first time to prove the correctness of the presented method.
Furthermore, comparative experimental results show the superiority of the presented modulated MPC
strategy, too. Moreover, at the end of the paper, the proposed dual-vector modulated MPC is extended
to control the three-phase four-switch inverter. Both the theoretical analysis and the experimental
results verify its effectiveness. This is another important contribution of this paper.

In the future, the proposed method should be further studied to control many other kinds of
inverters, including multilevel inverters and matrix inverters, as they have similar voltage vector
planes, and research should also be done to analyze its effectiveness in a similar way.

Nevertheless, the proposed method also has a few disadvantages, one of which being that although
it can reduce the current ripples and THDs compared to the single-vector MPC, it cannot minimize
the current ripples and THDs at all operation regions. Although the theoretical analysis shows that
the proposed method can reduce the control error at all operation regions and minimize it in several
special operation regions, no evidence shows that it can minimize the control error at all operation
regions. Therefore, to further solve the disadvantages of the proposed method shown above and
improve its control performance, much work should be done in the future to minimize the control
error of the proposed method at all operation regions.
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