Blue Growth Development in the Mediterranean Sea: Quantifying the Benefits of an Integrated Wave Energy Converter at Genoa Harbour
Abstract
:1. Introduction
2. Material and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
Significant Wave Height | |
Revenue Stream (electricity /kWh) | |
Repowering at year 20 | |
Peak Wave Period | |
AEP | Annual Energy Production |
bbl | Barrels of Oil Equivalent |
CapEx | Capital Expenditure |
CF | Capacity Factor |
CoV | Coefficient of Variation |
ETS | Emission Trading System |
kW | Kilo Watts |
kWh | Kilowatt Hours |
LCoE | Levelised Cost of Electricity |
m | Meters |
MW | Mega Watt |
MWh | Megawatt Hours |
NECP | National Energy and Climate Plan |
NG | Natural Gas |
OM | Operation & Maintenance |
OWC | Oscillating Water Column |
PBP | Payback Period |
PPP | Public-Private Partnerships |
PV | Present Value |
SWAN | Simulating WAves Nearshore |
TEUS | Twenty-Foot Equivalent Unit |
Tn | Tonne |
TWh | Terrawatt Hours |
WEC | Wave Energy Converter |
References
- JRC. The Strategic Energy Technology (SET) Plan; European Commission: Brussels, Belgium, 2017; p. 88. [Google Scholar] [CrossRef]
- European Commission. A Clean Planet for all a European Strategic Long-Term Vision for a Prosperous, Modern, Competitive and Climate Neutral Economy; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- European Commission. The European Green Deal, Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- Nicholls, R.J.; Cazenave, A. Sea-level rise and its impact on coastal zones. Science 2010, 328, 1517–1520. [Google Scholar] [CrossRef] [PubMed]
- Weisse, R.; Bellafiore, D.; Menéndez, M.; Méndez, F.; Nicholls, R.J.; Umgiesser, G.; Willems, P. Changing extreme sea levels along European coasts. Coast. Eng. 2014, 87, 4–14. [Google Scholar] [CrossRef] [Green Version]
- Makris, C.; Galiatsatou, P.; Tolika, K.; Anagnostopoulou, C.; Kombiadou, K.; Prinos, P.; Velikou, K.; Kapelonis, Z.; Tragou, E.; Androulidakis, Y.; et al. Climate change effects on the marine characteristics of the Aegean and Ionian Seas. Ocean Dyn. 2016, 66, 1603–1635. [Google Scholar] [CrossRef]
- Lionello, P.; Scarascia, L. The relation between climate change in the Mediterranean region and global warming. Reg. Environ. Chang. 2018, 18, 1481–1493. [Google Scholar] [CrossRef]
- Leone, G. Mediterranean Quality Status Report; UN Environment Programme; UN: New York, NY, USA, 2017. [Google Scholar]
- Wang, H.; Mao, X.; Rutherford, D. Cost and Benefits of Offshore Power at the Power of Shenzhen; International Council on Clean Transportation: Washington, DC, USA, 2017. [Google Scholar]
- Samadi, S.; Lechtenbohmer, S.; Schneider, C.; Arnold, K.; Fischedick, M.; Schüwer, D.; Pastowski, A. Decarbonization Pathways for the Industrial Cluster of the Port of Rotterdam; Wuppertal Institute: Wuppertal, Germany, 2016. [Google Scholar]
- Franzitta, V.; Curto, D.; Milone, D.; Trapanese, M. Energy Saving in Public Transport Using Renewable Energy. Sustainability 2017, 9, 106. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Eurostat, Italy Country Profile; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- IEA. International Energy Agency, Italy Country Profile; IEA: Paris, France, 2020. [Google Scholar]
- Integrated National Energy and Climate Plan (Italy); Ministry of Economic Development, Ministry of the Environment and Protection of Natural Resources and the Sea, Ministry of Infrastructure and Transport: Rome, Italy, 2019. Available online: https://ec.europa.eu/energy/sites/ener/files/documents/it_final_necp_main_en.pdf (accessed on 12 August 2020).
- Silva, D.; Rusu, E.; Soares, C.G. Evaluation of various technologies for wave energy conversion in the Portuguese nearshore. Energies 2013, 6, 1344–1364. [Google Scholar] [CrossRef]
- Rusu, E. Evaluation of the Wave Energy Conversion Efficiency in Various Coastal Environments. Energies 2014, 7, 4002–4018. [Google Scholar] [CrossRef] [Green Version]
- Rusu, E.; Onea, F. A review of the technologies for wave energy extraction. Clean Energy 2018, 2, 10–19. [Google Scholar] [CrossRef] [Green Version]
- Franzitta, V.; Viola, A.; Trapanese, M. Design of a transverse flux machine for power generation from seawaves. J. Appl. Phys. 2014, 115, 17E712. [Google Scholar] [CrossRef] [Green Version]
- Kuo, Y.S.; Chung, C.Y.; Hsiao, S.C.; Wang, Y.K. Hydrodynamic characteristics of Oscillating Water Column caisson breakwaters. Renew. Energy 2017, 103, 439–447. [Google Scholar] [CrossRef]
- Vicinanza, D.; Contestabile, P.; Di Lauro, E. Overtopping Breakwater for Wave Energy Conversion: Status and Perspective. In Proceedings of the 12th European Wave and Tidal Energy Conference, Cork, Ireland, 27 August–1 September 2017. [Google Scholar]
- Vicinanza, D.; Di Lauro, E.; Contestabile, P.; Gisonni, C.; Lara, J.L.; Losada, I.J. Review of Innovative Harbor Breakwaters for Wave-Energy Conversion. J. Waterw. Port Coast. Ocean Eng. 2019, 145. [Google Scholar] [CrossRef]
- PORTOS-Ports Towards Energy Self-Sufficiency. 2020. Available online: https://www.greenport.com/news101/energy-and-technology/ship-to-shore-power-contract-for-port-of-genoa (accessed on 12 August 2020).
- International Maritime Organization (IMO). Reducing Greenhouse Gas Emissions from Ships; International Maritime Organization: London, UK, 2020. [Google Scholar]
- Port Technology, Port of Genoa. 2020. Available online: https://www.porttechnology.org/news/port-of-genoa/ (accessed on 12 August 2020).
- Ports of Genoa, The Port Environmental Energy Plan (PEAP). 2020. Available online: https://www.portsofgenoa.com/en/green-port-en/environmental-energy-plan-peap.html (accessed on 12 August 2020).
- World Ports Sustainable Program, Port of Genoa—Onshore Power Supply to vessels. 2020. Available online: https://sustainableworldports.org/project/port-of-genoa-onshore-power-supply-to-vessels/ (accessed on 12 August 2020).
- Agenzia Nazionale per l’attrazione Degli Investimenti e lo Sviluppo d’impresa SpA. 2020. Available online: https://gareappalti.invitalia.it/tendering/tenders/000151-2018/view/detail/1 (accessed on 12 August 2020). (In Italian).
- Green Port, Ship to Shore Power Contract for the Port of Genoa. 2020. Available online: https://www.greenport.com/news101/energy-and-technology/ship-to-shore-power-contract-for-port-of-genoa (accessed on 12 August 2020).
- Ibarra-Berastegi, G.; Sáenz, J.; Ulazia, A.; Serras, P.; Esnaola, G.; Garcia-Soto, C. Electricity production, capacity factor, and plant efficiency index at the Mutriku wave farm (2014–2016). Ocean Eng. 2018, 147, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Naty, S.; Viviano, A.; Foti, E. Wave Energy Exploitation System Integrated in the Coastal Structure of a Mediterranean Port. Sustainability 2016, 8, 1342. [Google Scholar] [CrossRef] [Green Version]
- Rusu, L.; Onea, F. The performance of some state-of-the-art wave energy converters in locations with the worldwide highest wave power. Renew. Sustain. Energy Rev. 2016, 75, 1348–1362. [Google Scholar] [CrossRef]
- Lavidas, G.; Venugopal, V. A 35 year high-resolution wave atlas for nearshore energy production and economics at the Aegean Sea. Renew. Energy 2017, 103, 401–417. [Google Scholar] [CrossRef] [Green Version]
- Mentaschi, L.; Besio, G.; Cassola, F.; Mazzino, A. Developing and validating a forecast/hindcast system for the Mediterranean Sea. J. Coast. Res. 2013, 65, 1551–1556. [Google Scholar] [CrossRef]
- Mentaschi, L.; Besio, G.; Cassola, F.; Mazzino, A. Performance evaluation of Wavewatch III in the Mediterranean Sea. Ocean Model. 2015, 90, 82–94. [Google Scholar] [CrossRef]
- SWAN User Manual Cycle III Version 41.01; Technical Report; Delft University of Technology Faculty of Civil Engineering and Geosciences Environmental Fluid Mechanics Section: Delft, The Netherlands, 2020.
- Booij, N.; Holthuijsen, L.; Ris, R. The “SWAN” wave model for shallow water. In Proceedings of the 25th International Conference on Coastal Engineering, Orlando, FL, USA, 2–6 September 1996. [Google Scholar]
- Amarouche, K.; Akpınar, A.; Çakmak, R.E.; Houma, F.; Bachari, N.E.I. Assessment of storm events along the Algiers coast and their potential impacts. Ocean Eng. 2020, 210, 107432. [Google Scholar] [CrossRef]
- Camus, P.; Mendez, F.J.; Medina, R. A hybrid efficient method to downscale wave climate to coastal areas. Coast. Eng. 2011, 58, 851–862. [Google Scholar] [CrossRef]
- Mucerino, L.; Albarella, M.; Carpi, L.; Besio, G.; Benedetti, A.; Corradi, N.; Firpo, M.; Ferrari, M. Coastal exposure assessment on Bonassola bay. Ocean Coast. Manag. 2019, 167, 20–31. [Google Scholar] [CrossRef]
- Saviano, S.; De Leo, F.; Besio, G.; Zambianchi, E.; Uttieri, M. HF Radar Measurements of Surface Waves in the Gulf of Naples (Southeastern Tyrrhenian Sea): Comparison With Hindcast Results at Different Scales. Front. Mar. Sci. 2020, 7, 492. [Google Scholar] [CrossRef]
- Contestabile, P.; Di Lauro, E.; Buccino, M.; Vicinanza, D. Economic Assessment of Overtopping BReakwater for Energy Conversion (OBREC): A Case Study in Western Australia. Sustainability 2016, 9, 51. [Google Scholar] [CrossRef]
- Disciplinare Di Gara Telematica, Procedura Per L’affidamento Del Servizio Di Progettazione Di Fattibilità Tecnica Ed Economica Afferente All’intervento Di Realizzazione Della Nuova Diga Foranea Del Porto Di Genova—Ambito Bacino Di Sampierdarena; Invitalia: Rome, Italy, 2020. (In Italian)
- Babarit, A.; Hals, J.; Muliawan, M.; Kurniawan, A.; Moan, T.; Krokstad, J. Numerical benchmarking study of a selection of wave energy converters. Renew. Energy 2012, 41, 44–63. [Google Scholar] [CrossRef]
- Blok, K.; Nieuwlaar, E. Introduction to Energy Analysis, 2nd ed.; Routledge: London, UK, 2017. [Google Scholar]
- De Andres, A.; Medina-Lopez, E.; Crooks, D.; Roberts, O.; Jeffrey, H. On the reversed LCOE calculation: Design constraints for wave energy commercialization. Int. J. Mar. Energy 2017, 18, 88–108. [Google Scholar] [CrossRef]
- Rusu, E.; Onea, F. Estimation of the wave energy conversion efficiency in the Atlantic Ocean close to the European islands. Renew. Energy 2016, 85, 687–703. [Google Scholar] [CrossRef]
- Bozzi, S.; Besio, G.; Passoni, G. Wave power technologies for the Mediterranean offshore: Scaling and performance analysis. Coast. Eng. 2018, 136, 130–146. [Google Scholar] [CrossRef]
- Lavidas, G. Selection index for Wave Energy Deployments (SIWED): A near-deterministic index for wave energy converters. Energy 2020, 196, 117131. [Google Scholar] [CrossRef]
- Sannino, G.; Pisacane, G. Ocean Energy Exploitation in Italy: Ongoing R&D Activities. Technical Report September; Italian National Agency for New Technologies, Energy and Sustainable Economic Development: Guipuzcoa, Spain, 2017. [Google Scholar]
- Lavidas, G. Developments of energy in EU-unlocking the wave energy potential. Int. J. Sustain. Energy 2018, 38, 208–226. [Google Scholar] [CrossRef]
- Markets Insider, Commodities, CO2 European Emission Allowance in Euro. 2020. Available online: https://markets.businessinsider.com/commodities/co2-european-emission-allowances (accessed on 12 August 2020).
- De Leo, F.; De Leo, A.; Besio, G.; Briganti, R. Detection and quantification of trends in time series of significant wave heights: An application in the Mediterranean Sea. Ocean Eng. 2020, 202, 107155. [Google Scholar] [CrossRef]
- De Leo, F.; Besio, G.; Mentaschi, L. Trends and variability of sea waves under RCP8.5 emission scenario in the Mediterranean Sea. Ocean Dyn. Under Review.
- Aldersey-Williams, J.; Rubert, T. Levelised cost of energy—A theoretical justification and critical assessment. Energy Policy 2019, 124, 169–179. [Google Scholar] [CrossRef]
- Lazard. LAZARD’s Levelized Cost of Storage Analysis—Version 4.0. 2020. Available online: https://www.lazard.com/media/450774/lazards-levelized-cost-of-storage-version-40-vfinal.pdf (accessed on 12 August 2020).
- Simonetti, I.; Cappietti, L.; El Safti, H.; Oumeraci, H. Numerical Modelling of Fixed Oscillating Water Column Wave Energy Conversion Devices: Toward Geometry Hydraulic Optimization. In International Conference on Offshore Mechanics and Arctic Engineering; American Society of Mechanical Engineers: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Simonetti, I.; Cappietti, L.; Elsafti, H.; Oumeraci, H. Evaluation of air compressibility effects on the performance of fixed OWC wave energy converters using CFD modelling. Renew. Energy 2018, 119, 741–753. [Google Scholar] [CrossRef]
- Friedrich, D.; Lavidas, G. Evaluation of the effect of flexible demand and wave energy converters on the design of Hybrid Energy Systems. Renew. Power Gener. 2017, 12. [Google Scholar] [CrossRef] [Green Version]
- Luppa, C.; Cavallaro, L.; Foti, E.; Vicinanza, D. Potential wave energy production by different wave energy converters around Sicily. J. Renew. Sustain. Energy 2015, 7, 061701. [Google Scholar] [CrossRef]
Total Cost €/MW | ||||
---|---|---|---|---|
MW | 1,500,000 €/MW | 2,000,000 €/MW | 2,500,000 €/MW | 3,000,000 €/MW |
0.5 | 900,000€ | 1,200,000€ | 1,500,000€ | 1,800,000€ |
1 | 1,800,000€ | 2,400,000€ | 3,000,000€ | 3,600,000€ |
1.5 | 2,700,000€ | 3,600,000€ | 4,500,000€ | 5,400,000€ |
2 | 3,600,000€ | 4,800,000€ | 6,000,000€ | 7,200,000€ |
2.5 | 4,500,000€ | 6,000,000€ | 7,500,000€ | 9,000,000€ |
3 | 5,400,000€ | 7,200,000€ | 9,000,000€ | 10,800,000€ |
0.5 MW | 1 MW | 1.5 MW | 2 MW | 2.5 MW | 3 MW | |
---|---|---|---|---|---|---|
AEP (MWh/year) | 387.55 | 775.11 | 1162.66 | 1550.21 | 1937.77 | 2325.32 |
Oil avoided Tn CO2/year | 293.92 | 587.85 | 881.77 | 1175.70 | 1469.62 | 1763.54 |
NG avoided Tn CO2/year | 199.52 | 399.05 | 598.57 | 798.10 | 997.62 | 1197.14 |
Total Cost €/MW | ||||
---|---|---|---|---|
PBP Electricity Only, for CF: 8.85% | ||||
1,500,000 €/MW | 2,000,000 €/MW | 2,500,000 €/MW | 3,000,000 €/MW | |
0.5 MW | 20.2 | 29.9 | 42.1 | 57.8 |
1 MW | 10.1 | 15.0 | 21.0 | 28.9 |
1.5 MW | 6.7 | 10.0 | 14.0 | 19.3 |
2 MW | 5.0 | 7.5 | 10.5 | 14.5 |
2.5 MW | 4.0 | 6.0 | 8.4 | 11.6 |
3 MW | 3.4 | 5.0 | 7.0 | 9.6 |
PBP with Electricity and Avoided Oil Emissions, for CF: 8.85% | ||||
0.5 MW | 18.1 | 26.5 | 36.8 | 49.6 |
1 MW | 9.0 | 13.3 | 18.4 | 24.8 |
1.5 MW | 6.0 | 8.8 | 12.3 | 16.5 |
2 MW | 4.5 | 6.6 | 9.2 | 12.4 |
2.5 MW | 3.6 | 5.3 | 7.4 | 9.9 |
3 MW | 3.0 | 4.4 | 6.1 | 8.3 |
PBP with Electricity and Avoided Natural Gas (NG) Emissions, for CF: 8.85% | ||||
0.5 MW | 18.7 | 27.5 | 38.3 | 52.0 |
1 MW | 9.4 | 13.8 | 19.2 | 26.0 |
1.5 MW | 6.2 | 9.2 | 12.8 | 17.3 |
2 MW | 4.7 | 6.9 | 9.6 | 13.0 |
2.5 MW | 3.7 | 5.5 | 7.7 | 10.4 |
3 MW | 3.1 | 4.6 | 6.4 | 8.7 |
Total Cost €/MW | ||||
---|---|---|---|---|
PBP Electricity Only, for CF: 15% | ||||
1,500,000 €/MW | 2,000,000 €/MW | 2,500,000 €/MW | 3,000,000 €/MW | |
0.5 MW | 10.6 | 14.9 | 19.7 | 25.2 |
1 MW | 5.3 | 7.4 | 9.9 | 12.6 |
1.5 MW | 3.5 | 5.0 | 6.6 | 8.4 |
2 MW | 2.6 | 3.7 | 4.9 | 6.3 |
2.5 MW | 2.1 | 3.0 | 3.9 | 5.0 |
3 MW | 1.8 | 2.5 | 3.3 | 4.2 |
PBP with Electricity and Avoided Oil Emissions, for CF: 15% | ||||
0.5 MW | 9.6 | 13.4 | 17.7 | 22.4 |
1 MW | 4.8 | 6.7 | 8.8 | 11.2 |
1.5 MW | 3.2 | 4.5 | 5.9 | 7.5 |
2 MW | 2.4 | 3.4 | 4.4 | 5.6 |
2.5 MW | 1.9 | 2.7 | 3.5 | 4.5 |
3 MW | 1.6 | 2.2 | 2.9 | 3.7 |
PBP with Electricity and Avoided Natural Gas (NG) Emissions, for CF: 15% | ||||
0.5 MW | 9.9 | 13.9 | 18.3 | 23.2 |
1 MW | 4.9 | 6.9 | 9.1 | 11.6 |
1.5 MW | 3.3 | 4.6 | 6.1 | 7.7 |
2 MW | 2.5 | 3.5 | 4.6 | 5.8 |
2.5 MW | 2.0 | 2.8 | 3.7 | 4.6 |
3 MW | 1.6 | 2.3 | 3.0 | 3.9 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lavidas, G.; De Leo, F.; Besio, G. Blue Growth Development in the Mediterranean Sea: Quantifying the Benefits of an Integrated Wave Energy Converter at Genoa Harbour. Energies 2020, 13, 4201. https://doi.org/10.3390/en13164201
Lavidas G, De Leo F, Besio G. Blue Growth Development in the Mediterranean Sea: Quantifying the Benefits of an Integrated Wave Energy Converter at Genoa Harbour. Energies. 2020; 13(16):4201. https://doi.org/10.3390/en13164201
Chicago/Turabian StyleLavidas, George, Francesco De Leo, and Giovanni Besio. 2020. "Blue Growth Development in the Mediterranean Sea: Quantifying the Benefits of an Integrated Wave Energy Converter at Genoa Harbour" Energies 13, no. 16: 4201. https://doi.org/10.3390/en13164201
APA StyleLavidas, G., De Leo, F., & Besio, G. (2020). Blue Growth Development in the Mediterranean Sea: Quantifying the Benefits of an Integrated Wave Energy Converter at Genoa Harbour. Energies, 13(16), 4201. https://doi.org/10.3390/en13164201