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Abstract: Electric vehicle (EV) charging stations have become prominent in electricity grids in the past
few years. Their increased penetration introduces both challenges and opportunities; they contribute
to increased load, but also offer flexibility potential, e.g., in deferring the load in time. To analyze
such scenarios, realistic EV data are required, which are hard to come by. Therefore, in this article
we define a synthetic data generator (SDG) for EV charging sessions based on a large real-world
dataset. Arrival times of EVs are modeled assuming that the inter-arrival times of EVs follow an
exponential distribution. Connection time for EVs is dependent on the arrival time of EV, and can be
described using a conditional probability distribution. This distribution is estimated using Gaussian
mixture models, and departure times can calculated by sampling connection times for EV arrivals
from this distribution. Our SDG is based on a novel method for the temporal modeling of EV sessions,
and jointly models the arrival and departure times of EVs for a large number of charging stations.
Our SDG was trained using real-world EV sessions, and used to generate synthetic samples of session
data, which were statistically indistinguishable from the real-world data. We provide both (i) source
code to train SDG models from new data, and (ii) trained models that reflect real-world datasets.

Keywords: smart grid; electric vehicle; synthetic data; exponential distribution; Poisson distribution;
Gaussian mixture models; mathematical modeling; machine learning; simulation

1. Introduction

The growth of electric vehicles (EVs) in the past decade has induced significant modifications
in city-wide electric grids. More than one million plug-in EVs were registered in Europe in 2018,
and multiple charging stations have been installed to facilitate this growth. This rise provides
opportunities to collect EV session data and use it to exploit flexibility, balance load and create
responsive grids. Companies can use the data generated from charging stations to understand
consumer behavior, provide incentives and make pricing decisions.

Session data collected from city-wide EV charging stations can be used for both academic
and industrial purposes: the increased inflow of data has huge impacts on the energy informatics
field [1]. Previous studies of different EV datasets include (i) statistical analyses of data collected in
the Netherlands by ElaadNL [2,3], (ii) analysis of energy consumption of EVs on data collected by
the US department of energy [4] and (iii) multiple studies on the socioeconomic effects of switching
to EVs in day to day use [5,6]. However, studies require reliable session data for understanding
behaviors and exploring flexibility. The scarcity of reliable data has been discussed previously [7],
and its necessity has been pointed out for further research purposes. Where data are available, they
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may still be protected under confidentiality by private data collectors, and not freely available for
academic or public use. The lack of availability and difficulty in accessibility of EV charging session
data poses a significant hurdle to further research in the field.

1.1. Related Work

EV session data contains the session duration and charging requirements of each EV. Previous
studies studying the flexibility provided in the power grid [8], and in individual sessions [9], offer
a statistical modeling methodology with which to understand EV sessions. Arrivals of EVs can be
considered as events on a time scale, where session duration and charging load are dependent on each
EV arrival event.

A probabilistic time series model using a generative adversarial network (GAN) has been used
previously to generate synthetic samples in [10]; they modeled energy consumption for users. However,
consumption can be represented as a continuous time series, which is not the case when we consider
EV arrivals as discrete events in time. Another method used to model data was implemented and
validated in [11]; they used a Markov chain model to generate load profiles only in individual
charging stations, based on a Swedish dataset. This does not satisfy the need to model EV arrivals
jointly for a set of charging stations. Statistical characterization of the session plug in times was also
explored: Flammini et al. [12] used beta mixture models to represent the multi-modal distributions.
They analyzed the distribution of arrival times during the day, but did not provide a synthetic
sample generation process that includes a temporal component. Statistical representation of EV
arrivals throughout the day using GMMs can also be used to randomly sample arrivals, e.g., in [3],
for which they took data for 221 EVs to create day long profiles. Other methods include using a
stochastic simulation methodology to generate a schedule of EVs for a population [13]. Aforementioned
works only implemented temporal modeling on continuous time series collected from smart grids,
which is not the case with arrival times of EVs. Arrival times of EVs are discrete events in time,
and hence difficult to model.

The departure time of EV is dependent on the arrival time, so the connection times become
conditional on arrivals. Departure time modeling has been explored exhaustively in [14], for both
uni-modal and multi-modal data distributions. The underlying assumption is that in the 24 h duration,
the probability of the event occurring is a time-varying function. A mixture of multiple distributions can
be used to estimate this function. For EV connection times, these conditional probability distributions
have been modeled using Abe–Lay mixtures [15], and a cylindrical WeiSSVM distribution [16].
Both Abe–Ley mixtures and the WeiSSVM distribution offer good alternatives for initializing the
number of mixtures and their properties. Beta mixture models have also been used; an estimation
method was suggested in [12] to estimate the departure profiles. However, generation and evaluation
of samples from these mixtures were not included. The dependency of connection times on arrival
times introduces a complexity that has not been addressed so far.

For predicting charging demand, a k-nearest neighbors algorithm was evaluated in [17], to predict
the charging requirements of EVs at individual charging stations. However, it did not include the
effect of EV session durations. Other methods including auto-regressive models [18] have also been
explored for smart grids datasets, which can be used to synthetically generate smart meter data.
A combination of arrival times, departure times and charging requirements of EVs have not been
studied, and modeling them together provides an opportunity to generate synthetic samples of EV
session data.

1.2. Contribution

In this paper, we present a state of the art model for generating samples of EV session data that will
generate synthetic samples of (i) arrival times, (ii) connection times and (iii) charging load, for each
EV. We describe this model as synthetic data generator (SDG), as defined in our previous work [19].
This includes temporal statistical modeling of arrivals and modeling of conditional distributions
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for departures and the energy required for charging the EV. This differs from [3], in the sense that
we generate data on each session level, whereas they have only studied charging matrices. Herein,
we also define and release trained parametric SDG models that can be used to generate session data,
which were not provided in [3]. In comparison to [11], wherein load profiles were modeled using a
spatial Markov chain model for five charging stations, our study includes temporal modeling of EV
sessions arrivals for the joint set of multiple charging stations, derived from a large-scale real-world
dataset comprising about 2000 charging stations. Along with this, we also include methods to jointly
model the arrival and departure times of EVs for a large number of charging stations. Compared
to [12], where the arrivals of EVs were characterized for weekends and weekdays, we propose a
modeling method that can be used for any set of days that have similar properties, and adopt different
statistical models. Our approach also gives us further insights into consumer behavior, by providing
us the rates of EV arrivals for different hours, days and months. These generated arrivals will be used
to generate the departures and required energy for each session. Our main contributions from this
paper include:

• A novel approach to generating synthetic data for EV sessions over a group of charging stations
defined as the SDG (Section 2).

• Training of the SDG using a real-world dataset. An analysis of statistical properties of real-world
data is also included (Sections 3 and 4).

• Generation of synthetic samples, and evaluation of similarity with the real-world data.
We compare results from different models that can be used in SDG (Sections 5–7).

• Trained models and code are provided in GitHub (https://github.com/mlahariya/EV-SDG).
Python was used for the models developed in this article (see Appendix A);

2. Modeling Methodology

We define the synthetic data generator (SDG) in this section. We define a parametric model (SDG)
that can be used to generate synthetic samples of EV session data, and its inputs. We assume that
each session can be described using three parameters: (i) arrival time (ta), (ii) connection time (tc)

and (iii) required energy (E). The departure time can be calculated using td = ta + tc. E represents
the charging load that an EV has requested (based on measured charging power throughout the full
session). Session parameters for date d can be generated using Equations (1)–(3).

ta = AM(d) (1)

tc = MMc(ta, d) (2)

E = MMe(ta, d) (3)

In what follows, we define (i) the arrival model (AM), (ii) the mixture model for connection times
(MMc) and (iii) the mixture model for required energy (MMe). Trained SDG models can be used to
generate a sample of data. Data generation is a two step process.

Step 1. Arrivals: We generate the arrival of EVs (ta) for all dates in the input horizon. This horizon is
the period of time for which the data needs to be generated, and can be defined using the first
date (starting date) and the last date (ending date) of this period.

Step 2. Connected time and energy required: Once we have the arrivals of EVs, we generate the
connected time (tc) and energy required (E) for that particular EV arrival.

AM, MMc, MMe is trained for a set of dates (S). Dates present in S will have similar daily properties
(e.g., arrival profiles), and we can define S by assuming a grouping criteria for days, e.g., we can
assume that each month will have similar arrival profiles, i.e., the grouping criteria for dates is months
m. For each month m, all dates of that month will be the elements of set S. Details about defining S in
practice, in particular for a real-world dataset, are included in Section 4.

https://github.com/mlahariya/EV-SDG
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2.1. Arrival Models

Arrivals of EVs in a group of charging stations (poles) can be considered as events over time.
For a large number of poles, we can assume that the inter-arrival times (IATs,∆t) of EVs follow an
exponential distribution (which we validate in Section 4.2). Based on this assumption, one method to
model arrival times of EVs is to model the time in between arrivals (∆t). A second method is to model
the total number of EV arrivals in a time interval. Both these methods are defined below.

2.1.1. Inter-Arrival Time Models

To model inter-arrival times (∆t) we use the exponential distribution, which is characterized by a
rate parameter λ (rate of EV arrivals). Inter-arrival time (IAT) models are defined as follows:

ti = ti−1 + ∆t (4)

PDF(∆t) = λi−1e−λi−1∆t (5)

λ = fS(t) (6)

where the ith EV arrives at time ti, PDF represents the probability distribution function and t is
time of day. The rate parameter λ is dependent on time, and fS defines the profile of λ with respect
to t for the type of days present in S. We can use different methods to fit fS: The mean model is
based on average values of λ for given timeslot ts. This results in a discontinuous mapping between
λ and t, with a sudden change in λ at the boundaries of each timeslot ts. To have continuous λ

throughout the day, we use regression-based methods: either a polynomial model using polynomial
regression, or a localized regression model. Training these models is explained in detail in Section 4.1.1.
In Algorithm 1, we outline the pseudocode to generate arrivals over a given horizon. We use the
date (d) to retrieve the appropriate fS, and predict λ. The IAT between the current and new arrival is
generated as a random sample from the exponential distribution with rate λ. Arrivals are generated
throughout the horizon for each date.

Algorithm 1: Inter-arrival time (IAT) model.
Input : H (Horizon, initial to final date)
Output : T (List of EV arrival times in H)
for d ∈ H do

fS = get arrival rate model for d;
t = 0;
while t < 24 do

λ = fS(t);
∆t = sample from exponential distribution with rate λ;
t = t + ∆t;
append t to list T;

2.1.2. Arrival Count Models

Instead of generating the next arrival of EV, here we focus on generating the number of arrivals in
a given ts (timeslot, e.g., slots of 60 min). The number of arrivals N in ts can be generated as a random
sample from a discrete probability distribution Equation (7). This distribution can be characterized
using parameters P, and Equation (6) can be modified to Equation (8), wherein we model these
parameters. We distribute N arrivals uniformly over the duration of timeslot ts. Arrival count (AC)
models can be defined as follows:

PDF(N) = f (P) (7)
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P = fS(ts) (8)

We model the parameters P of the discrete distribution for each ts using the function fS.
Our underlying assumption that the IATs of EVs follow an exponential distribution amounts to
assuming a Poisson distribution for the number of arrivals N in such a timeslot. Yet, for the Poisson
distribution, the variance is equal to the mean of the distribution, while the number of arrivals may
have a larger variance. In such case we need to include other discrete probability distributions that
describe counts data [20]: we propose using the negative binomial model. In summary, we have two
options to model the arrival counts (AC):

(1) Poisson model: Assuming that N follows a Poisson distribution (characterized by rate parameter
λ; i.e., P is λ).

(2) Negative binomial model: Assuming that the N follows a negative binomial distribution (P
is (µ, α)).

Pseudocode for generation of arrivals of EVs using the Poisson model is given in Algorithm 2
(adaptation to the negative binomial model for sampling N is straightforward).

Algorithm 2: Arrival count (AC) model.
Input :H (Horizon, initial to final date)
Output : T (List of EV arrival times in H)
for d ∈ H do

fS = get arrival rate model for d;
for ts = 1, 2, . . . 24 do

λ = fS(ts);
N = sample from Poisson distribution with rate λ;
A = evenly space N points in ts;
append all t ∈ A to list T;

2.2. Mixture Models (MMc, MMe)

The connection time of each plugged-in EV depends on what time the EV arrived, i.e., its arrival
time. We can model the probability distribution, PDFta(tc) using gaussian mixture models (GMM),
where tc can be generated as a random sample from the probability distribution, Equation (9), once we
know the value of ta. We can group dates of a month (or daytype) into the same type of day, for which
we use the same model. These dates then form a set S (set of dates). Similarly to the connected times,
GMMs can be fitted for required energy (charging load).

MMc : PDFta ,S(tc) (9)

MMe : PDFta ,S(E) (10)

The steps for data generation using SDG are summarized in Figure 1b. We used a trained SDG
model and horizon as inputs. As seen in Figure 1a, we provided the methodology to train the models
from a raw dataset. In Section 3 we describe the data cleaning and prepossessing, and session clustering
steps. Then come the details of training and evaluation in Section 4.
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Figure 1. Modeling methodology for (a) training SDG models, and (b) generating synthetic samples.

In this section we define and outline the inputs of SDG, by defining AM for EV arrivals, and MMc

and MMe for connection times and required energy. Inputs are simply the dates d (and arrival times
ta in case of MMc and MMe). We also summarize the parameters of SDG) by characterizing models
using the parameters of the underlying probability distributions.

3. Dataset

The data used here were collected from ELaadNL (https://www.elaad.nl/), which is the
knowledge and innovation center mutually associated with providers of charging infrastructure for
the grid, to prepare for a future with electric mobility and sustainable charging. Operating since 2009,
it has established a network of approximately 2000 public charging stations across The Netherlands.
The EV session data collected by ELaadNL are not publicly available, and we obtained them based on
an agreement. Furthermore, ElaadNL was not involved in the study, and acted only as a data provider.
People interested in the dataset are encouraged to contact us. In this section, we provide the details of
the data cleaning and processing, and session clustering steps (Figure 1a).

3.1. SDG Training Data

The EV sessions’ time series data were prepared for training the SDG (the training process is
detailed in Section 4). These data contain: the date d, month m, type of day dt, arrival time tarr, arrival
timeslot ts, connection time tc and required energy E, as shown in Table 1.

Timeslots have values ranging from 1 to 24, where 1 indicates the timespan 00:00–00:59, 2 indicates
01:00–01:59, etc. Further, ta and tc are real numbers (∈ [0, 24)); e.g., 1.5 means 01:30 A.M. More than
98% of the sessions have tc under 24 h, so we safely assumed that the maximum connection time was
24 h (and removed data points with tc > 24). In the real world, we will have sessions where the EV
departs before it is fully charged. However, the collected data do not include the charging load that
was unmet before the EV departed. Lacking such information, we resorted to assuming the measured
charging load represents fully charging the EV. We represent this charging load, or energy required by
E in kWh.

Further, the training data were properly cleaned, which included removing impractical or incorrect
sessions parameters (where E < 0 or ta = td).

https://www.elaad.nl/
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Table 1. Processed session data. Each row corresponds to an EV session.

d m dt ta ts tc E
Date Month Day Type Arrival Time Arrival Time Slot Connection Time Required Energy

(h) (h) (kWh)

01/01/2015 1 0 0.15 1 4.3 3
. . . . . . . . . . . . . . . . . . . . .

3.2. Charging Stations Analysis

The full ELaadNL dataset contains 1.8 million sessions from January 2012 till June 2018.
The infrastructure consists of charging stations of 10 different types, divided by manufacturer type,
charging speed and other factors. In 2016 the EVnetNL (the infrastructure provider associated with
ELaadNL) stations were transformed to integrate smart charging capability. Hardware and software
of the charging stations (poles) were updated based on the station type. In 2017, more than 50% of
EVnetNL stations were taken over by other charging station operators. Due to those two factors,
we observed a sudden drop in the number of daily active charging stations in 2016 and 2017 (Figure 2).
The years prior to 2014 have a very steep growth curve in terms of active poles, while from 2016
onwards, the active poles become unpredictable because of market factors. As we wanted our model
to reflect charging behavior, and not be influenced by infrastructure changes, we selected the training
data from the reasonably stable year 2015. The data used for training our SDG were from January
to December 2015 of the ElaadNL dataset. This data contains 365,000 sessions. In 2015, the number
of used poles amounted to 1677, out of which 1645 poles were active before and after 2015. We used
the data from these 1645 poles for our analysis. Thus, we considered a constant number of poles to
construct our SDG model, and avoided the effects of a changing number of EV charging stations.

Figure 2. Number of used poles per day, from 2012 to 2018. Each boxplot represents data for 1 month.
The y-axis represents the number of daily active poles.
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3.3. Clustering

We used the expectation maximization (EM) algorithm for training the GMM used in MMc

(defined in Section 2.2). EM algorithm can be initialized with a realistic number of mixtures (along
with mean and variance for each mixture) for it to converge to a practical solution. To achieve this
practical solution, we initialized each GMM with session clusters. EV sessions were clustered based on
arrival and connection times, and here we outline the different types of sessions that are observed in
the real-world data.

Sessions clusters: In our previous work [2], on the same data, we discussed three types of
sessions. Namely, (i) Park to charge: arrivals throughout the day; (ii) Charge near home: arrivals
during evenings, and staying till late at night; (iii) Charge near work: arrivals during early morning,
and staying till evenings. The largest cluster was the park to charge cluster (60% of sessions), followed
by the charge near home (29% of sessions) and the charge near work clusters (11% of sessions).
The DBSCAN algorithm was used to determine these clusters, which is a density based clustering
algorithm. We could see a similar distribution of sessions in the 2015 dataset, after clustering the
sessions. The resulting session clusters are shown in Figure 3. These clusters are only based on 2015
data, contrary to the previous work, which combined the full data for 2012–2016. Please refer to [2] for
further details.

Figure 3. Session clusters for 2015. We used DBScan to cluster EV sessions on a monthly basis,
and combine the data for all months.
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4. Training Additionally, Evaluation

4.1. Training

We used the training data of 2015, as described in Section 3.1, for training and evaluating our
models. Aggregating EV sessions on a monthly basis reveals a higher number of sessions during the
winter months, compared to the summer months. In the case of daily EV sessions, it has been noticed
that all weekdays have similar profiles, which are different from weekends [12]. Thus, we could
assume that days belonging to the same month (m) and daytype (dt, weekday vs. weekend) have
similar profiles, and defined a set of dates (S) as pairs (m, dt) (e.g., for m = January and dt = weekday,
S will have all dates that are weekdays from January). Training data for the model for a (m, dt)

combination comprises the session data for dates present in the respective S. We trained 24 individual
models, one for each of the (m, dt) combination.

4.1.1. Arrival Model

Inter-arrival time models: For IAT models, we modeled the daily profiles of λ, which can be fitted
using (i) a mean model, (ii) a polynomial regression model or (iii) a localized regression model (outlined
in Section 2.1.1). We can rewrite Equation (6) in terms of (m, dt) as in Equation (11). We calculated the
EV arrival rates (λ) for each day and ts (24 timeslots of 60 min each), by fitting the inter-arrival time to
an exponential distribution.

λm,dt = fm,dt(t) (11)

For the mean model, the fitted value for each ts is the average λ (across all days). Accordingly,
each ts has a single value of λ. This results in a discontinuous mapping between λ and t, for which the
function in Equation (11) becomes discontinuous at the boundaries of ts and we see a sudden change
in λ.

For regression methods, we transform λ by taking the logarithm and applying min-max
normalization for each day. This transformation is necessary to correctly fit the peak hours, during
which inter-arrival times are very low (high λ). We take the logarithm in order to more accurately model
the values of λ during the night hours (00:00–06:00), which have few arrivals (low λ). Normalization is
used to scale the arrival rates of all days in S to the same levels. We represent this transformed λ using
λt, and we use s to represent the re-scaling parameter for predicted values. Equation (13) can be used
to get the fitted λ from the regression models fm,dt(t).

(λt)m,dt = fm,dt(t) , 0 < λt ≤ 1 (12)

λm,dt = es fm,dt (t) (13)

For the polynomial regression model we modeled the relationship in Equation (12) using a grid
search for the best polynomial degree (∈ {1, . . . , 50}). Mean squared error (MSE) was used as the error
metric during grid searching. It provides a strong penalty for large errors, which was necessary to fit
the sharp morning peaks during weekdays. This resulted in a continuous and differentiable function
of λ in terms of t.

For the localized regression model, polynomials of degree 1 and 2 with α ∈ {0.125, 0.25, 0.5} were
tested. We noticed that the best results sdfd generated for degree 1 and α = 0.125. This resulted in a
piecewise, continuous and differentiable profile of λ throughout the day.

Scale treatment and randomization: For regression based methods, for which we model λt,
we may encounter a situation wherein f (t) < 0. In this case, λ becomes very low, which can cause
the sampled inter-arrival time (∆t) of EVs to be very large. Since the next EV arrival is calculated
relative to the past arrival Equation (4), such high ∆t may cause the next arrival to be very late, thereby
skipping a large period of time. This becomes problematic when this period covers times with high
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values of λ (hence a high number of EV arrivals, which however will not be generated). For practical
purposes, we impose a lower limit of 1 on λ (meaning we have at least 1 arrival in each ts).

When we transformed λ, we appiedy a min-max normalization on ln(λ) for each day (where the
minimum value of ln(λ) is 0, because λ ≥ 1). Each day in the training data has its own maximum
value of ln(λ). These values can be saved as an array of re-scaling parameters (represented by s in
Equation (13)). When generating session arrivals, we randomly selected a value from this array to
re-scale the predicted values. This helped in introducing variance in to the otherwise smooth profiles
of the predicted λ.

Arrival count models: We mapped each ts to the parameters P that characterize the discrete
distribution of the number of arrivals in that timeslot. Similarly to the IAT models, we have a model
for each (m, dt) combination. Our training data for each model are the numbers of EV arrivals at ts for
each of the days of the respective combination (m, dt).

fm,dt : ts → Pm,dt

{1, . . . , 24} → {Pm,dt ,1, . . . , Pm,dt ,24}
(14)

For the Poisson model, the average number of EV arrivals λ was calculated per ts. In the
Poisson distribution, the mean is equal to its variance, a restriction that is not present in the negative
binomial distribution.

In case of the negative binomial model (with parameters P = {µ, α}), µ is the average number
of EV arrivals per timeslot (=λ), and α is the dispersion parameter, which can be used to define the
variance of the distribution (var = µ + αµ2). A negative binomial distribution model thus allows one
to introduce more variability in the generated number of EV arrivals, compared to a Poisson model.
Both α and µ were fitted for each individual (m, dt) combination. It is possible that the estimated α for
an (m, dt) combination is extremely low, in which case the underlying distribution is more likely to be
Poisson. It is also possible that during night hours (low EV arrivals), the estimation process of α might
result in impractical values (less than 0). To adjust for this, we can use a Poisson distribution wherein
the estimated values of α are negative, or set a lower limit on α (e.g., α ≥ 0.1).

In IAT models, the time of the next EV arrival is the sum of the time of previous EV arrival and
randomly sampled ∆t. As previously stated, this dependency becomes troublesome if ∆t is very large
(due to the low λ, the next EV arrival may be very late, skipping a large time interval) or very low
(high λ, large number of EV arrivals in a small amount of time). Due to that, fitting λ as a function of t
requires caution in IAT models. However, we do not face this problem when using the AC modeling
approach, wherein the number of arrivals are generated separately for each ts. Indeed, a low/high
λ in the previous ts will not affect the number of arrivals in next ts. For practical uses, we can also
assume that night hours with low numbers of EV arrivals are similar, and combine ts = 1–6 into a
single timeslot. The fitted value of λ is then associated with the time from 00:00 to 06:00.

4.1.2. Mixture Models (MMc, MMe)

Similarly to the arrival models, we verified that days belonging to a (month, daytype) combination
have similar distributions in terms of departure times and charging loads, and thus fit models for each
(m, dt) combination. For each ts we fit a Gaussian mixture model to the real-world data, and modified
Equation (9) as follows.

Pta=ts ,m,dt(tc) = GMMm,dt ,ts

=

(
∑K

k=1 φkN (µk, σ2
k )

)
m,dt ,ts

(15)

This resulted in a GMM fitted for each (m, dt, ts) combination, with trained values for (i) mixing
probabilities (φk), (ii) mixture means (µk) and (iii) mixture variances (σ2

k ), for each mixture. We used
expectation minimization to fit the GMM.
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Expectation maximization for fitting GMM requires initialization of mixtures (µk, σ2
k ). The number

of mixtures also needs to be chosen for each model (representing a m, dt, ts combination). We initialized
each GMM based on session clusters (see Section 3.3). We grouped the sessions observed in m, dt, ts,
into their respective session clusters. We used the number of clusters obtained to initialize the K for
the GMM, and calculated the µk, σ2

k from the EV sessions in the respective groups.

4.2. Evaluation

Exponential distribution: We performed a Kolmogorov–Smirnov (KS) goodness-of-fit test to
validate the assumption that inter-arrival times of EV sessions follow the exponential distribution.

Arrival models: Once the AM was trained using the 2015 EV session data, a synthetic sample for
2015 could be generated. This sample was to generate EV arrivals from January 1, 2015 to December
31, 2015. We generate 10 samples for each modeling method (three IAT models and two AC models).
EV arrivals were aggregated on an hourly and daily basis. Since the aggregated values represent count
data, we used a non-parametric Wilcoxon test to assess similarity between the generated samples and
the actual data. We performed the test on a monthly basis for the daily aggregated data and on an
hourly basis for hourly aggregated data. We provide plots for visual comparison.

Mixture models: Connection times were sampled from the fitted GMMs, for the actual EV arrivals.
Density plots were created to evaluate whether the peaks of the conditional probability distributions
were modeled correctly. A similar evaluation was preformed for required energy.

SDG: Final generated data (and actual data) were 3-dimensional, with each session defined by
(ta, tc, E). The actual data comprised 350,000 sessions, and the numbers of sessions in the generated
samples were of the same order. Since two-sample similarity tests for high dimensional data become
unreliable as the data size increases, we used a kernel density estimation (KDE) test [21] and a
multidimensional version of the KS test [22,23]. We did those tests for (ta, tc) and (ta, E) combinations.

In this section we defined different methods for fitting the parameters of SDG. Depending on the
modeling method, the parameters of SDG will also change (λ in case of the exponential distribution,
and (µ , α) in case of the negative binomial distribution).

5. Results

5.1. Assumptions

KS test p-values are greater than 0.05 for each hour of the day, as plotted in Figure 4. This validates
that the inter-arrival times of EV sessions are exponentially distributed (Section 2.1), and thus supports
our chosen models AM of the arrival times.

5.2. Distribution of Arrival Rates λ

To understand how the SDG parameters change with inputs, we have plotted the profiles of λ for
weekend and weekdays for 2015 in Figure 5. We see a similar pattern for all months. Arrival models
were fitted to approximate this behavior of λ. On weekdays, we see two peaks in the profile of λ that
represent high frequencies of EV arrivals.
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Figure 4. KS test p-values: For each (m, dt) combination, 24 KS tests were performed for each timeslot
(ts). High p-values indicate that null hypotheses (IATs are exponentially distributed) could not
be rejected.

Figure 5. Daily λ profiles for 2015: For each (m, dt) combination, we calculated the average arrival
rate λ. The dotted line represents the average over those 12 months; the shaded areas indicate the
percentile range.
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5.3. Arrival Models (AM)

We generated 10 samples of arrivals of EVs for 2015 for both inter-arrival time (IAT) and arrival
count (AC) models. The total number of arrivals per day was calculated and plotted in Figure 6.
Similarly, Figure 7 shows the aggregated hourly EV arrivals. Both these plots are for weekdays,
and similar results were observed in case of weekends. We can clearly see that the generated data are
very similar to the actual data. We further quantitatively compared the values of the actual EV arrivals
with the generated EV arrivals using a Wilcoxon test. The null hypothesis was that the means of these
are equal. High p-values (> 0.05) indicate that the daily generated arrivals are statistically similar to
the actual data. This is represented by ns in the figure, implying that the difference between the two
samples is not significant. The results presented are for comparisons between one month of actual
data to 10 samples of the same month of generated data. We got similar results when we compare the
real-world data to a single sample.

Figure 6. Daily aggregated EV arrivals (2015, weekdays). Significance was calculated based on
Wilcoxon tests (ns: not significant, p-value > 0.05; * p-value ≤ 0.05; ** p-value ≤ 0.01; *** p-value ≤ 0.001;
**** p-value ≤ 0.0001).

Figure 7. Hourly aggregated EV arrivals (2015, weekdays). Significance was calculated based on
Wilcoxon tests (ns: not significant, p-value > 0.05; * p-value≤ 0.05; ** p-value≤ 0.01; *** p-value ≤ 0.001;
**** p-value ≤ 0.0001).
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5.4. Mixture Models (MMc, MMe)

Conditional distributions for connection times (hours) and energy required (kWh) are plotted
in Figures 8 and 9 respectively. The plots on the left were created from the real-world data, and those
on the right were created from the data generated from mixture models (MMc, MMe). These figures
are for weekdays, and similar plots were generated for weekends. Connection times (and energy
required) were generated using GMM and real-world EV arrivals. Vertical divisions in the generated
data for each times slot can be seen, because we use one GMM per {m, dt, ts} combination.

Figure 8. Density plots for connection times (2015, weekdays). Generated data represent sampled
connection times for real-world EV arrivals. Each point represents a bin (10 min by 10 min), and is
colored based on the number of EV sessions in the bin (bins with less than 5 arrivals were not plotted
to keep the graph readable).

Figure 9. Density plots for required energy (2015, weekdays). Generated data represent sampled
energy requirements for real-world EV arrivals. Each point represents a bin (10 min by 0.16 kWh),
and is colored based the number of EV sessions in the bin (bins with less than 5 arrivals were not
plotted to keep the graph readable).

5.5. Synthetic Data Generator (SDG)

We generated full session samples including generated arrival times, connection times and
required energy for all the models. These generated samples were compared with the real-world
session data for 2015. To compare the models’ synthetic samples with real-world data, 2-sample KDE
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tests were performed. In Figure 10a, we show the KDE test for (ta, tc), and Figure 10b shows the
KDE test results on (ta, E). As we can see, the mean model for the IAT, and both models for AC have
average p-values > 0.05, indicating that the generated data are similar to the real-world EV session
data. We observed similar results in the multidimensional KS test. These results conclude that the
generated samples are statistically similar to real-world data.

Figure 10. KDE test p-values: Daily 2 sample 2 dimensional KDE tests to compare real-world and
generated data. Total of 365 tests performed for each model. p-value > 0.05 means datasets are similar.
(a) Results for (arrival times ta, connection times tc). (b) Results for (arrival times ta, energy required E).

6. Discussion

In this paper, we proposed a synthetic data generator (SDG) to create samples of realistic EV
session data. Each session is defined by arrival time, departure time and required energy. We described
two modeling methodologies to generate arrivals, assuming that inter-arrival times follow exponential
distribution. Different methods for modeling the daily profiles of the parameter λ were tested.
For connection times and required energy, mixture models were trained to estimate the probability
distributions. Our real-world dataset was used to train the SDG, and multiple samples of session data
were generated.

Inter-arrival times followed an exponential distribution, which was validated by KS test results.
Wilcoxon tests were used to compare daily and hourly EV arrivals from the generated samples and
real-world data (Figure 4).

Arrival count (AC) models performed better compared to inter-arrival time (IAT) models.
The negative binomial model from the AC models outperformed all the other models for generating
EV arrivals. Samples generated by the IAT model exhibited high variance, which was introduced
during the scale treatment and randomization step (Section 4.1.1). In the IAT models, we note that
regression methods failed to capture the morning peak in the hourly arrivals. This occurred because
the regression curves failed to capture the sharp increase in the number of arrivals. We indeed see
that the polynomial model (IAT:poly) and localized regression model (IAT:loess) generated very low
numbers of samples during morning peaks (ts = 7, 8). In contrast, the AC models were able to capture
both morning and evening peaks, as can be seen in Figure 7. The AC models also captured the variance
in number of arrivals throughout all ts. During night hours, we noticed a difference between the
generated and real-world data. However, for practical purposes, this difference can be neglected as the
average number of arrivals is very low. We can see that the negative binomial model performs best for
both daily and hourly generation. This makes it ideal for both short and long-term data generation.

In our mixture models, Gaussian mixture models (GMM) were able to properly capture peaks
of the conditional probability distributions. We clustered EV sessions based on arrival times and
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connection times, and each peak in the conditional probability distribution corresponds to one session
cluster. Two peaks in required energy distribution represent the morning and evening demand. For the
connection times, we can see that after generating the data, all three session cluster peaks were captured
(Figure 8). In case of required energy, both morning and evening peaks were captured (Figure 9). Since
we were able to capture the probability distributions of tc and E, GMM-based mixture models could
be used for fitting the conditional distributions.

In case of weekdays, during some spring and summer months we observed a very high variance
in the number of daily arrivals in actual data (in Figure 6). The reason is that there are multiple holidays
during May, July and August that have very low numbers of arrivals. In retrospect, we found that
many of these holidays (on weekdays) have arrival profiles similar to weekends. Due to that, arrival
models trained for weekdays are unable to capture this variance. Introducing holidays as another
daytype (dt) or modeling holidays as weekends should help to overcome this limitation.

We modeled the data under the assumption that the number of active charging stations would
remain constant during the time in which the EV session data are collected. Furthermore, the generated
sample is representative of EV sessions that might occur on this constant number of active charging
stations. Hence, the proposed methodology does not model the effect of changing the number of
charging stations, where future research is possible.

7. Conclusions

EV session data collected from charging stations on a electricity gird can be used for flexibility
analysis, making pricing decisions, etc., and are essential for advancement in the field of smart grids.

We defined a synthetic data generator (SDG) to generate samples of EV session data collected
on charging stations. We modeled arrival times of EVs using inter-arrival time (IAT) and arrival
counts (AC) methods. For generating the connection times and required energy, we used mixture
models based on GMM. The generated sample of session data is statistically indistinguishable from
the real-world data, as seen from the KDE test results. We can conclude that our proposed SDG is
suited for generating a synthetic sample of EV session data.

This generated data sample will have the properties of a real-world EV sessions, and can be
used for purposes such as flexibility analysis. We will release the trained SDG models that can
be used to generate new samples of EV session data. Complete code for training and evaluating
the SDG models is open source, and can be used to fit the models on a new EV session data (see
Appendix A). These models can be shared without violating the privacy concerns of the real data
collection companies.

For future work, further exploration is required in studying reduced variance in daily arrivals in
AC models. IAT models for arrival times misses the first peak of weekdays, wherein improvements are
possible. A deeper dive into the mixture models for estimating the conditional distribution of required
energy can also provide an improvement to results.
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Appendix A. Code

Code for training SDG models is open source, and can be accessed on GitHub: https://
github.com/mlahariya/EV-SDG. SDG models trained with a real-world dataset are also included
with the code. These can be used to generate a random sample of EV session data using script

https://github.com/mlahariya/EV-SDG
https://github.com/mlahariya/EV-SDG
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SDG_sample_generate.py. Trained models that can be used as default models to generate samples with
are located at modeling/default_models, and include:

• SDG Model (IAT,mean): IAT model based on mean model.
• SDG Model (IAT,poly): IAT model based on polynomial regression model.
• SDG Model (IAT,loess): IAT model based on localized regression model.
• SDG Model (AC,poisson_fit): AC model based on Poisson distribution.
• SDG Model (AC,neg_bio_reg): AC model based on negative binomial distribution.

Users can also employ our code to fit AM, MMc, and MMe to their own datasets. For training
a SDG model from scratch, this process will be followed: (i) Clean real-world EV session data
(preprocess). (ii) Generate session and pole clusters (preprocess). (iii) Prepare data for SDG training
(preprocess). (iv) Train AM, MMc and MMe models (modeling). (v) Save the model along with a log
file in the ‘res/’ folder. A command line callable script SDG_fit.py can be used to fit the models.

Please visit the repository for further details.
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