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Abstract: Finding an appropriate technique to detect an islanding issue is one of the major
challenges associated with the design of a resilient grid-linked photovoltaic-based distributed
power generation (PV-DPG) system. In general, the technique used for islanding detection must be
able to sense the disruptions from the electric grid and quickly disconnect PV-DPG from the grid.
The quick disconnection of PV-DPG mostly avoids power quality problems, damage to power assets,
voltage stability issues, and frequency instability. In this paper, a new islanding detection technique
that is based on tunable Q-factor wavelet transform (TQWT) and an artificial neural network (ANN)
is proposed for PV-DPG. The proposed approach consists of two steps: in the first step, the vital
detection parameters are computed by performing simulations considering all possible switching
transients, islanding events, and faults from the grid side. Then, the decomposition of obtained signals
is done using TQWT on different levels. Using the obtained coefficients, at each level, features such as
range, minimum, mean, standard deviation, maximum, energy, and log energy entropy are computed.
The optimal feature set was selected as the input for the second step. The classification of the
non-islanding and islanding states for PV-DPG is made using the ANN classifier in the second step,
which achieved an accuracy of 98%. The results representing the efficiency of the proposed approach
in noisy and non-noisy environments are also explained. Overall, it is understood that the proposed
islanding detection technique would provide suitable insights to detect an islanding issue.

Keywords: photovoltaics; distributed generation; grid faults; islanding detection; islanding issues
in power system; resilient photovoltaic system; robust power system; signal processing; tunable-Q
wavelet transform; artificial neural network
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1. Introduction

Globally, there has been an increasing and ongoing transition towards renewable energy resources
(RERs) for power generation for several years. As of 2018, the global energy generation through RERs
was over 26%, and by the end of 2019, renewable energy installations expanded by 7.6% [1,2]. With the
help of these RERs, on-site energy generation is possible that is generally referred to as the distributed
power generation (DPG). A standard DPG is characterized by power generation based on RERs such as
solar, wind, hydro, hydrogen fuel cells, and power storage through various battery systems. In some
cases, multiple RERs-based power generation facilities called microgrids are linked and are referred to
as hybrid RERs-based microgrids [3]. The use of electricity from such DPG is commercially and socially
favorable in some cases for the prosumers [3,4]. In some cases, depending upon the benefits provided
by the electric utility in terms of power selling and, incentives for supplied power during peak hours,
favorable selling prices etc., the DPG systems are linked to the electric power grid, which has led to
considerable progress in DPG-linked electrical power grids in different countries.

DPG that are interconnected with the grid may be affected by islanding issue due to grid
disturbances, and identifying these will be a challenging task. Islanding is a process where the
grid is removed from the network, and the entire load is directed to the DPG system that is still
connected [5,6]. So, it is essential to detect these islanding events and respond in time for a resilient
DPG. Otherwise, the islanding issues will pose many unavoidable problems that include, power quality,
voltage stability, energy loss, and damage the power assets [6]. In some cases, due to grid or load
side disturbances, the electrical lines might fall, which needs immediate reconstruction. During this
time, there exists a risk for the utility staff, if they do not recognize fallen lines during reconstruction.
This proves that, in DPG-based microgrids, there exist several risks, making us realize and think of
engineering microgrids from a resilience point of view and it can be done in many ways. Indeed,
there are numerous ways to understand resilience, for example, in recent studies, network analysis is
employed to understand the resilience and sustainability of industrial symbiosis system that facilitates
energy, water and material flows [7,8]. The same network approach is further extended and applied
in few critical infrastructures like energy resources and power sector, information technology and
communication, finance, healthcare and public health, transportation, and food and agriculture for
understanding the implications of interconnectedness and interdependencies on resilience [9,10].

Recent studies, for this reason, have called for engineering greater resilience in microgrids [11,12].
This study explicitly addresses the resilience of DPG in the context of islanding. Infrastructure resilience
is composed of four phases: first, the systems preparedness to evade disruptions; second, their ability
to withstand and absorb impacts of inevitable disturbances; third, the capacity to recover and respond;
and fourth, the capability to learn and adapt [13–15]. Using this four phases approach, a previous study
on power resilience enhancement of PV based DPG for the New York location [15] has been carried out.
Based on their resilience assessment, they suggested the development of effective grid disturbance
detection techniques as a critical area for research. Our study is focused on improving the resilience of
DPG through early detection of islanding and allowing local facilities to respond very quickly.

There exist a few standards that may address the islanding issue, for example, the IEEE 1547.4 that
mainly focuses on the functioning of local facilities considering the engineering aspects [16]. As per
the IEEE 1547.4, the solution to “electrical islanding,” is simply to provide power when utility power is
not available [16,17]. Here, the islanding time is generally less than 2 s, so the detection should be
made very quickly, which means there is a need to apply appropriate techniques that allow prompt
strategic actions. The islanding detection techniques are classified under two broad categories, remote
and local approaches. The techniques of remote islanding detection (RID) are mainly focused on
some kind of communications between the electric power grid and DPG. Under the RID category, two
different schemes are used those include the transfer trip and power line carrier communication (PLCC)
schemes [17–20]. The RID method is more effective than local methods but is more expensive when
using dispersed power generators in the electric power supply system [18–21]. The other category
is the local islanding detection (LID); here the determination of unit parameters is given a priority,
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and they mostly rely on applied LID techniques. These units parameters include voltage, current,
frequency, impedance, active power, and reactive power on the DPG, i.e., the power converter side
(inverter) [22]. Such approaches are often graded into passive, active, and hybrid techniques [18].
Typical connection levels, harmonic distortion at the DPG location, are regulated by passive techniques
for the interface parameters voltage, current, and frequency [19]. Here, the thresholds may be
paralogism and null, and are typically set experimentally. The lower threshold setting can cause a
disturbance and isolates in higher thresholds cannot be identified [20]. Recently, active strategies were
being used and implemented for islanding detection considering the minor grid disturbances [21].
An active islanding detection scheme is also proposed in the literature for active power and reactive
power control loops of the synchronous DPG [22,23]. Timely detection of the islanding situation is
guaranteed using these schemes for both static load and motor load, even when there is an exact match
between generation and load demand. The passive technique is primarily utilized during islanding
issues identification, and the active techniques are secondary, and the combination of these approaches
improves many efficiency indexes [20,21]. The hybrid techniques mainly operate on the combined
characteristics of the methods mentioned above and are easily applicable to complex structures [24].

The drawback of large non-detection zones and threshold setting requirement associated with
the above-mentioned islanding detection method is handled by employing signal processing and
intelligent classification (SP&IC) techniques [25–31]. Techniques of SP&IC are typically used to boost
the efficiency of passive islanding detection approaches. The methods for signal processing mostly
assist researchers in separating the features for islanding detection from the calculated signals [26,27].
There exist numerous signal processing techniques, but the most used techniques for islanding
detection are the Fourier transform, Wavelet transform, s-transform, tt-transform, and Hilbert–Huang
transform [28–31]. In the wavelet transform, the energy coefficients are extracted as vectors for wavelet
transformation (WT) in various frequency bands in the transient voltage signal phasing process to
identify islanding incidents [26,31]. The findings indicate that traditional wavelet processing under
noisy conditions was replaced with stage space. The phasing space approach can also be used to derive
possible vectors from 3-phase DPG terminal power signaling systems and equate output and traditional
wavelets. However, the method suggested contributed to heavy computation pressures and volume
specifications. However, recently in photovoltaic based DPG (PV-DPG) networks, techniques such as
hybrid WT and multi-resolution spectroscopy along with a deep learning approach were applied [30,31].
Another method of islanding sensing is the implementation of an adaptive neuro-fuzzy inference device
(ANFIS) and a discrete WT [32]. This study is based on the modern approach named Hilbert–Huang
Transform (HHT) that is used to the study of the islanding. It is a time-frequency method, along with
empirical mode decomposition, which makes it suitable for islanding detection; therefore, HHT is a
very efficient approach for the removal and detection of islanding characteristics [33]. An islanding
detection method based on the combination of a wavelet packet transform (WPT) and a probabilistic
neural network (PNN) was presented [34]. The voltage obtained at the point of common coupling (PCC)
is measured and decomposed by the WPT. Normalized Shannon entropy (NSE) and the normalized
logarithmic energy entropy (NLEE) feature vectors are obtained from the WPT coefficients and finally
fed to the PNN classifier to classify the disturbances. Discrete wavelet transforms with multi-resolution
singular spectrum entropy are utilized to extract the unique features of three-phase voltage signals at
the PCC. The extracted features are fed to support vector machines to detect and classify different types
of faults in a PV-DPG system [35]. In another study, for islanding, detection, Slantlet transform (SLT) is
used, where the characteristics of all potential detection signals are considered in the signal processing
tool. Here, for preventing the selection of thresholds, the Ridge-based Probabilistic Neural Network
(RPNN) method is suggested. The RPNN prevents the threshold selection by means of advanced
training because the behavior features in the hidden model layer of the neural network can be used to
distinguish islanding and non-islanding [36]. In another study, a novel phaselet algorithm-based signal
processing technique is used to detect the islanding phenomenon in DPG [37]. The phaselet algorithm
is versatile and is based on the effective computing capacity of the inverter-based distributed power
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generation (Inv-DPG). The phaselet algorithm is effective when compared to other traditional methods
used for DPG [37]. In recent studies focused on feature extractions, the modified and hybrid approaches
are applied. One such new feature extraction tool is proposed in the literature is the modified SLT,
which is based on the harmony search algorithm (HSA). HSA uses this technique to determine the
most acceptable degree of degradation and an optimum number of transformative Slantlets needed to
detect the islanding. Here also, the RPNN and Vector Machine Approaches (VMA) are used to prevent
thresholds from being chosen [38]. From the above literature review, it is understood that different
SP&IC techniques are being applied to further improve islanding detection in PV-DPGs.

In this paper, a new islanding detection technique that is based on tunable Q-factor wavelet
transform (TQWT) and an artificial neural network (ANN) is proposed for a photovoltaic-based
distributed power generation (PV-DPG) system. The considered DPG system is the 3-phase grid
interconnected photovoltaics (PV). The proposed ANN-based-TQWT could be one of the better
techniques for islanding detection as it provide better practical estimations. Here, all sensing signs,
including voltage, voltage change rate, the dc-link voltage, d-q axis voltage, frequency, and the
frequency change rate, are tested for any device failures. Besides, the intermittent changes and PV-DPG
islanding situations are also considered. The proposed technique is executed in two steps: The first step
is the simulation and calculation of all the possible switching transients, islanding events, and electric
power grid failures. Using TQWT, the signals obtained are decomposed to several stages, and features
like the standard deviation, maximum, range, minimum, mean, energy, and log energy entropy
characteristics are determined from their respective coefficients preferred from 1 to 20. Seven separate
features were gathered from the obtained sub-bands. The Kruskal–Wallis test is performed on the
computed features, and the features with a p-value less than 0.05 are selected as optimal features.
In the second step, the selected optimal features are then fed into the ANN classifier for classifying the
non-islanding and islanding states of PV-DPG.

Overall, in summary, the key contributions of this study are described as follows:

• TQWT signal processing technique is used to extract features from all available detector signals
for islanding detection.

• Threshold selection through the ANN model, which is based on conjugate gradient algorithms to
classify islanding from other grid-disturbance.

The paper is structured in five sections; Section 2 provides the tested system configuration.
In Section 3, the proposed ANN-based TQWT islanding detection technique is described. The obtained
results for the PV-DPG, along with discussions, are presented in Section 4. Lastly, in Section 5,
conclusions are drawn.

2. Configuration of Photovoltaic-Based Distributed Power Generation System

In this paper, an efficient islanding detection technique for a photovoltaic-based distributed power
generation (PV-DPG) system is proposed. For investigating the applicability of the proposed islanding
technique, a 3-phase grid-connected PV with the inverter system that is used in ref [36] is considered
and is shown in Figure 1.

In the PV-DPG, the PV array configuration is achieved by series and parallel connection of PV
modules. The modeled PV array has 86 parallel strings, and each string has 7 PV modules that
are connected in series. Apart from the PV array, in PV-DPG system there exists few other assets.
These assets include the maximum power point tracking (MPPT) equipment, a 2-phase DC/AC
conversion network consisting of 3-level pulse width modulation (PWM) signal fed Insulated Gate
Bipolar Transistor (IGBT) bridge. At the IGBT, harmonics are possible, and these were filtered using
small harmonic filter C and the inverters choke resistor–inductor (RL). Transformer is one other asset
that is used to in the proposed system [36]. Here, the output of a 3-phase inverter is fed to the electric
power grid using the transformer.
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Figure 1. The schematic view of the studied distributed power generation system.

The assets of this PV-DPG system are provided in Table 1. Considering all these assets listed in
Table 1, the system is modeled, simulated, and then analyzed using MATLAB/Simulink tool 2019a.

Table 1. The technical specifications of the studied photovoltaic based distributed power generation
(PV-DPG) model [36].

Asset Name in PV-DPG Specifications

Photovoltaic based distributed power generation

Module make: Sun-power
Module model: SPR-415E-WHT-D
Modules in series: 7
No. of parallel strings: 86 parallel strings
PV-DPG power rating: 250 kW
The reference voltage: 480 V DC
Inverter nominal frequency: 60 Hz
Voltage integral and proportional gain ki: 400, kp: 2
Current integral and proportional gains ki: 20 and kp: 3
Frequency of the PWM carrier: 33 × 60 Hz

Electric power grid Rating: 120 kV, and 2500 MVA

Transformer

Voltage level: 120 kV/25 kV,
Rating: 47 MVA for T1, 25 kV/0.48 kV for T2
Resistance: R0 = 0.025
Reactance: x0 = 0.75

Transmission line

Resistance: R = 3.75 × 10−4 Ω
Inductance: L = 9.935 × 10−5 H
Capacitance: C = 0.8 F
Rating: L1 = 250 kW, L2 = 2 MW, L3 = 30 MW + 2 MVar
Line voltage: 25 kV
Length of the line: Line-1 is 14 km and Line-2 is 8 km

In the PV system, solar irradiance is the primary parameter that is responsible for power
generation. Apart from irradiance, the PV array output parameters will also depend on temperature;
hence, while simulating the PV array model, the input irradiance and operating temperature are
considered as 1000 w/m2 and 45 ◦C respectively. With the irradiance and temperature as inputs,
the operating behavior of the PV array is observed, which is almost in line with the manufacturer’s
predicted outputs. Approximately, at t = 0.15 s, PV array output parameters are found; those include the
voltage (i.e., 481 V) and the power (i.e., 236 kW). In later steps of simulation, the PV behavior is observed
to change concerning the changes in input parameters. To understand this clearly, at approximately
t = 0.3 s, the irradiance input to the PV array model is lowered to 200 w/m2. Accordingly, the observed
reference voltage (i.e., Vdc) is changed to 464 V. The observed variations in the electrical parameters
are shown in Figures 2–4, respectively.
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3. Tunable Q-Factor Wavelet Transform and ANN-Based Islanding Detection Technique

TQWT is one of the wavelet transform techniques widely used in numerous applications. It comes
under the discrete-time wavelets approach with constant input parameters implicitly tunable. In TQWT,
three tunable parameters are possible, and these include the Q-factor (Q), absolute redundancy (r),
and decomposition stage number (j). TQWT is useful for changing the tunable control parameters
to the oscillating actions of the control signal [39]. The Q-factor is commonly known as the middle
frequency/bandwidth ratio, and it regulates the swing within the wavelet as Q is inversely proportional
to the center frequency bandwidth [40]. Based on the Q-factor, the frequency resolution is regulated.
The frequency resolution is enhanced for the high value of Q. Besides, a small Q-factor wavelet is useful
for smooth signal processing [41]. Here, the ratio of the total number of wavelets to the input signal
frequency gives the r parameter, and it can be used to calculate the transform over-sample rate [39].
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However, to have a clear understanding of the frequencies in sub-bands, especially at different stages
of j level decomposition, a general framework support is taken. Indeed, the number of j banks with
two-channel filters is cascaded to fall at j level.

The TQWT is designed with a filter bench with two-channel drains that include low pass and high
pass. The support of low-pass and high-pass filters (LPF and HPF) along with low-pass and high-pass
scalable components are considered here. The two low-pass channels are formed by LPF, and the
high-pass channels are formed by HPF [42,43]. The signal is continuously distributed as a reference to
both low and high-pass networks. Then the low-pass stream is given as an entry to a filter bench for
the next two channels. It implies the j numbers are linked to two-channel filter banks. The high-pass
channel performance of a two-channel filter bench is a sub-band in this relation. A sub-band is also
created by the low-channel of the last two-channel filter. Therefore, in the frequency response of TQWT,
there are sub-bands of j + 1 [44]. The signal frequency converts, with a sampling rate fs resulting in α fs
and β fs, sampling frequencies the input signal s[n] into a low-pass and high-pass sub-band signals.
The process of decomposition and reconstruction using TQWT is shown in Figure 5.
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The mathematical representation for LFP and HPF, (i.e., H0(w) and H1(w)) are described below in
Equations (1) and (2) [45]:

H j
0(ω) =

 π
j−1
m = 0H0

(
ω
αm

)
, |ω| ≤ α jπ

0, α jπ ≤ |ω| ≤ π
(1)

H j
1(ω) =

 H1
(
ω
α j−1

)
π

j−2
m = 0H0

(
ω
αm

)
, (1− β)α j−1π ≤ |ω| ≤ α j−1π

0, f or others ω ∈ [−π, π]
. (2)

The redundancy and Q parameters can be expressed in the TQWT with the α, and β scaling
parameters are represented in Equation (3) [45]:

r =
β

1− α
; Q =

2− β
β

(3)

In Figure 6, the TQWT block diagram is explained in a detailed manner. In this study, the TQWT
technique is applied for islanding detection in renewable-based DPG applications based on the available
theoretical and practical knowledge.
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The proposed TWQT based islanding detection technique is applied for a three-phase
grid-connected photovoltaic (PV) inverter system and is simulated using MATLAB/Simulink tool 2019a.
The input signals are simulated for various islanding and non-islanding signals, as depicted in Table 2.

Table 2. Simulated cases using TQWT approach.

Label Case Case Description Number of Tests

C 1 Islanding Different loads that match with DPG 80
C 2 Islanding Different loads that are larger/lesser than the DPG 120
C 3 Non-islanding Switching the electric motor 20
C 4 Non-islanding Capacitive switching 20
C 5 Non-islanding Changing the loads 20
C 6 Non-islanding Fault events 140

The first two cases (i.e., C1 and C2) are the islanding cases and rest four (i.e., C3, C4, C5, and C6)
are non-islanding cases [36]. They are labeled as C1 to C6, respectively and given below:

• In the first islanding case (i.e., C1), 80 tests were done with signals having different loads that
match with distributed power generation.

• In the second islanding case (i.e., C2), the simulation is done considering 120 tests having signals
with different loads greater or lesser than distributed generators.

• The third case (i.e., C3) with induction motor starting has variations from 5 HP to 215 HP power.
• The fourth (i.e., C4) is also a non-islanding one that mainly focuses on and discusses the

capacitive switching.
• The fifth case (i.e., C5) enumerates the switching of various loads.
• The sixth non-islanding case (i.e., C6) is simulated with various faults like the single line to ground

fault, double line to ground fault, a line-to-line fault case.

The proposed TQWLT technique is used to decompose the islanding and non-islanding signals.
Here, the three tunable parameters of the TQWT like Q-factor (Q), absolute redundancy (r),
and decomposition stage number (j) are used. Here, the application of TQWT was very much
useful, and this is because of the benefits observed in changing the tunable control parameters to the
oscillating actions of the input control signal. As mentioned earlier, here also the preprocessing is
done using LPF and HPF. The proposed approach consists of two steps: firstly, all possible switching
transients, islanding events, and grid faults are simulated, and the vital detection parameters are
computed. By using TQWT, the obtained signals are decomposed into different levels, and the features
such as range, minimum, mean, standard deviation, maximum, energy, and log energy entropy are
computed from coefficients at each level. The optimal feature set was selected as the input for the
second step. Secondly, the ANN classifier is used to classify the non-islanding and islanding states.
The best features were selected through the Kruskal–Wallis test. Then for the classification of islanding
and non-islanding cases, ANN with a conjugate gradient algorithm was used and classified.

3.1. Feature Extraction

The unique characteristics that can be used to classify the islanding and other grid disturbance
cases can be determined using the efficient feature extraction method. Here, the selected signals
are listed in Table 3, along with a brief description. For the selected signals, the TQWT method
is applied and decomposed into different levels depending on the value of Q, r, and j. From each
coefficient, the features mentioned in Table 4 are extracted. In this work, various levels are changed
to select a suitable scale for distinguishing the islanding and the non-islanding cases. Thus, for j
levels, (j + 1)*7 feature vectors are computed. To select the optimal features, the Kruskal–Wallis test
is done. The features with the p-value < 0.05 are chosen as the best features and fed into the ANN
for classification.
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Table 3. The selected signals for feature extraction [36].

Label Parameter Notation Brief Description

Signal 1 VPCC The PCC voltage
- the voltage at the point of common
coupling is considered as a sensitive
parameter for feature extraction

Signal 2 fPCC The PCC frequency
- the frequency at the point of common
coupling is considered as a sensitive
parameter for feature extraction

Signal 3
(

df
dt

)
Change in frequency - change in frequency is considered as a

sensitive parameter for feature extraction

Signal 4
(

dV
dt

)
Change in voltage - change in voltage is considered as a

sensitive parameter for feature extraction

Signal 5
(

dVd
dt

)
Change in Vd

- change in Vd component is considered
as a sensitive parameter for
feature extraction

Signal 6
(

dVq

dt

)
Change in Vq

- change in Vq component is considered
as a sensitive parameter for
feature extraction

Signal 7 VDC The DC link voltage at the VSC
- the DC link voltage at voltage source
inverter is considered as a sensitive
parameter for feature extraction

Table 4. Equations for statistical feature extraction.

Features Description of Equation

Energy (Eji) Eji =
N∑

i =1

∣∣∣dji
∣∣∣2

Mean value (µji) µji =
1
N

N∑
i =1

dji

Minimum value (Minj) Minj = min
(
dji

)
Maximum value (Maxj) Maxj = max

(
dji

)
Standard deviation (σji) σji =

(
1

N−1

N∑
i =1

(
dji − µji

)2
)

Log energy entropy (logEnj) log Enj = −
N∑

i =1
log Eji

Range
(
RGj

)
RGj = Maxj −Minj

Note: where d ji represents the decomposition coefficient, j is the number of decomposition scales, whereas i explains
the number of coefficients for each decomposition level.

3.2. ANN Classifier for Islanding and the Non-Islanding States

The ANN learns via the detecting patterns as well as relationships in data and through
experience [46]. The neuron is the basic computer that calculates a number of inputs and results
with an activator function. If the neuron shoots, the output will be the input of another neuron,
producing a complex network based on the phase of training. The process of neuron firing can be
defined mathematically based on the activation function (f ), as shown in Equation (4).

Y(t) = f

 n∑
i = 1

(Xi(t)Wi(t) + b)

 (4)
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where t represents the time, b is the bias, and at time t, the Y(t), Xi(t), and Wi(t) are represented as
outputs, input, and neural input weight, respectively.

The weights of the neurons are adjusted by the back-propagation during training [47,48]. The ANN
has gained popularity for prediction in electrical load forecasting and classifiers in islanding detection
techniques. Hence, ANN is employed in the proposed work. After rigorous training under different
experimental conditions, the conjugate gradient with Powell–Beale restarts the back-propagation
algorithm selected for the proposed approach, and the used parameters are shown in Table 5.

Table 5. Parameters for artificial neural network (ANN).

Parameters Value/Function

Hidden neurons 40
Amount of neurons output 2

Input neurons 7
Adopted learning mechanism conjugate gradient function

Hidden transfer function tansig
Output transfer function Pure-linear

The structure of an ANN used for islanding detection is represented using three different layers.
These include an input layer with 7 neurons, the output layer, and a hidden layer. Each layer has
neurons; their count is varied. In the hidden layer, neuron count mainly depends on the number of
input features, the number of hidden neurons is selected to be 40, and the neurons in the output layer
are 2. The ANN architecture with a sample of seven input features, 40 hidden neurons, and 2 output
neurons is depicted in Figure 7.
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Classification performance based on overall classification accuracy is calculated using the
mathematical expression given in Equation (5) [45,49]

Accuracy (%) =
TP + TN

TP + TN + FP + FN
∗ 100 (5)

where TP = True Positives, TN = True Negatives, FP = False Positives, and FN = False Negatives.
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4. Results and Discussion

Using the approach shown in Figure 8, the simulation is carried out, and results are analyzed for
nearly 400 separate islanding and other grid disturbances. The main motto for analyzing 400 events is
to measure and test the suggested procedure, i.e., ANN-based TQWT. Among the 400 events, 200 are
the islanding cases, and the other 200 are the grid disturbance activities (non-islanding events). The 200
islanding events were created for different combinations of active and reactive power mismatches
in simulation cases C1 and C2. In comparison, the other 200 non-islanding events were generated
by the multiple switching steps, which may contribute to the disturbances related to faults, safety
concerns, and relaying issues. These 200 non-islanding events were simulated under the cases C3, C4,
C5, and C6.
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Figure 8. The scheme of the suggested ANN-based TQWT technique for islanding detection.

In the simulation case C1, the state of islanding took place at t = 0.3 s. Accordingly, the changes
have been observed in various electrical parameters. Figure 9 demonstrates the parameters at the
point of common coupling, and these include the effective value of voltage, frequency, DC-link voltage
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of voltage source control, and the rate of change of frequency (ROCOF). The obtained results are for
the photovoltaic based distributed power generation (PV-DPG) under different isolation scenarios.
The worst-case was where power consumption was associated with the local PV inverter energy output,
which is the most complicated circumstance where islanding incidents are observed.
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Figure 9. Simulation case of different loads that match with DPG, (a) the effective value of the voltage
at the point of common coupling; (b) frequency value at the point of common coupling; (c) direct
current-link voltage of voltage source control; and (d) rate of change of frequency.

In the simulation case, C2 also, the state of islanding, took place at t = 0.3 s. Here, the different
combinations of active and reactive power mismatches are observed. As per the given islanding events
for the C2 case, the changes have been found in various electrical parameters, see in Figure 10.

From Figure 10, the changes in the parameters that include the effective value of voltage, frequency,
DC-link voltage of voltage source control, and the rate of change of frequency at the point of common
coupling when local power load matches with local power generation are presented.

From the observed results, it is seen that the voltage of the inductive reactive loads is almost very
close to the dc-link voltage of voltage source control of reference loads. For capacitive reactive loads,
PV inverter loses the control of frequency, so islanding condition was more difficult to recognize for
other loads.

In the simulation case C3, the induction motor was introduced at t = 0.3 s, beginning from specific
capacities ranging from 5 to 215 HP. The observed variations when a motor switching value has been
changed for local load are presented in Figure 11. The displayed electrical parameters at the point of
common coupling include effective voltage, the changing frequency, the DC-link voltage of the voltage
source control, and the rate of change of frequency.
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Figure 11. Simulation case of switching the electric motor, (a) the effective value of PCC voltage;
(b) variation of the frequency at the point of common coupling; (c) the dc-link voltage of voltage source
control; (d) rate of change of frequency in the starting of induction motor for non-islanding.
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In the simulation case C4, switching the capacitor bank at various places in the PV-DPG system
is introduced, and the value was beginning from specific capacities ranging from 0.5 to 10 MVAr.
Once the introduced capacitor bank has turned on at t = 0.3 s variations in the electrical parameters are
observed, which include the effective voltage, frequency, and DC-link voltage at the voltage source
control and rate of change of frequency, see in Figure 12.
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Figure 12. Simulation case of capacitive switching, (a) the effective value of PCC voltage; (b) variation
of the frequency at the point of common coupling; (c) the dc-link voltage of voltage source control;
(d) rate of change of frequency in capacitor bank switching for non-islanding.

In the simulation case C5, at t = 0.3 s, various linear and non-linear loads were introduced.
This typically means that the switching on/off of the loads for non-islanding events has taken place.
The observations under the load changing conditions are depicted in Figure 13, and they include the
effective value of point of common coupling voltage, frequency fluctuations, DC-link voltage of voltage
source control, and rate of change of frequency in the conditions of change of load.

In the simulation case C6, different fault occurrences were considered. Here, single, double,
and 3-phase failure events were introduced at t = 0.3 s at various places that are bit away from the
point of common coupling (near and far away from the point of common coupling). The position of
the contact points for three-phase loads is 8 and 14 kilometers from the point of common coupling.

Overall, 140 fault events were applied whose resistance value range between 0–200 ohm, and they
are cleared after 150 ms. Accordingly, the changes have been observed in various electrical parameters.
Figure 14 demonstrates the parameters, and these include the effective value of voltage, frequency,
DC-link voltage of voltage source control, and the rate of change of frequency (ROCOF). From Figure 14,
it is understood that the values for voltage source controls the dc-link voltage and frequency differed
considerably when the resistance of fault event is 200 ohm. At this point, the voltage scale was decreased
by 2%. Therefore, it became more complicated to assess the islanding situation from non-islanding.
In addition to the change in voltage, it is also understood that the change in frequency is considerable.
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Figure 14. Simulation case of different fault events, (a) the effective voltage value at the point of
common coupling; (b) variation of the frequency at the point of common coupling; (c) the dc-link
voltage of voltage source control; (d) rate of change of frequency in fault event for non-islanding.
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4.1. Performance Metrics

These are the samples for PCC voltage, frequency, frequency change, voltage change rate,
VSC (voltage source control) dc-link voltage, which is chosen as the basis of the above procedure
in multiple islanding and non-islanding situations, and the islanding detection relay classification
pattern. The total number of samples considered is 200 islanding and 200 non-islanding. This can be
seen; in islanding cases, the value of this index was not related to other non-islanding events. Several
experiments are conducted to select the optimum values of Q and j. The minimum value suggested
for r is 3, and it can be increased. However, the r increase increases the overlap in the neighboring
frequency response; hence, in this work, the r-value was fixed to be 3. The best value for the parameter
Q and j is to choose. The minimum value of Q is fixed to be 1, and the j value was varied from 1 to
20. Seven characteristics of the collected substrates have been extracted. The Kruskal–Wallis test is
performed on the computed features, and the features with a p-value less than 0.05 are selected as
optimal features. The selected characteristics are fed into an Artificial Neural Network for classification.
According to the classification accuracy, the best j value is selected. The bar plot representing the
classification accuracy for different levels is displayed in Figure 15. Level 18 was achieved with a
maximum accuracy of 98%.
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Hence, for further experimental conditions, the j value is fixed to be 18, and the q value varies
around 1 and 10. The classification accuracy versus the Q value is shown in Figure 16; the Q value
with 1 attained the maximum accuracy.
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Thus, in this work, using the procedure mentioned above, the Q value is selected as 1, and the
j value is selected as 18, with the r value as 3. The seven different features are extracted from 19
sub-bands (j + 1); hence a total feature vector length of 133 was obtained. Through the Kruskal–Wallis
test, the best features are selected for classification.

4.2. The Output of the Training Methodology under Ideal and Noisy Condition

The performance of the classifications of the ANN-based island detection procedure is shown
in Figure 17 in ideal circumstances and noisy environments. The data collection is divided into the
following categories of incidents, such as the case islanding events (C1, C2), load, capacitor, and motor
switching for the cases (C3, C4, C5,) along with fault events in (C6), to assess the classification efficiency
of the proposed solution in depth. Thus, the classification performance for each event can be evaluated
separately. In order to establish the noisy condition, additive white Gaussian noise (AWGN) is used
uniformly and signal to noises ratios (SNR) of 15 dB, 20 dB, and 25 dB on to both islanding and other
grid-distribution signals.
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From Figure 17 it is clear that the classification performance of TQWT with the ANN method
under no-noise conditions attained the highest classification performance, while the classification
accuracy of noisy conditions is between 88.5 to 96. The total number of correct classifications for each
event using the proposed approach is shown in Figure 18.

As it is observed, the value of detection rates for all the events in noisy and no noise conditions
are high; hence the error rate is found to be lower. It proved that the proposed approach is robust,
and they are insensitive to the switching transient and grid faults.
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5. Conclusions

This research investigated a new TQWT and ANN-based islanding detection strategy for a
3-phase, photovoltaic grid-connected network. Our study is focused on improving the resilience of
DPG through early detection of islanding and allowing local facilities to respond very quickly. It can
identify the islanding condition from other disturbance, grid failures, and part variations from local
coupling voltage signal point measurements. First, simulating all potential incidents and calculating
the critical detection parameters by using TQWT, the signals are split down into multiple sub-bands,
and seven different characteristics of each sub-band are determined.

Different experimental conditions are performed to select the best parameters of TQWT. Finally,
the TQWT with Q value 1, r value 3, and j value 18 is selected. Using the statistical features, the energy,
mean value, minimum, maximum, standard deviation, and log energy entropy for any decomposition
level of TQWLT for parameter detection was computed, and the best of them were selected as input
data of the second step. The best features were selected using the Kruskal–Wallis test. The third step,
a classification technique artificial neural network with a conjugate gradient algorithm as the activation
functions in the hidden layer of the model, was utilized to predict islanding and non-islanding events.
The proposed approach attained a classification accuracy of 98%. Further, to validate the proposed
approach, the experiments in noisy conditions are also conducted. The obtained results illustrate that
the suggested approach identifies the highly accurate islanding condition and is insensitive to external
grid disturbances without noise and disturbance.
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List of Nomenclature

σji Standard deviation
E ji Energy
Max j Maximum value
Min j Minimum value
RG j Range
Vd Direct axis voltage
Vq Quadrature axis voltage
d ji Decomposition coefficient
logEnj Log energy entropy
µ ji Mean value
ANFIS Adaptive neuro-fuzzy inference system
ANN Artificial neural network
AWGN Additive White Gaussian noise
C1 Different loads that match with DG
C2 Different loads that are larger/ Lesser then the DG
C3 Changing the loads
C4 Capacitor switching
C5 Switching the electric motor
C6 Fault events
DG Distributed generation
DG Distributed generation
GPV Grid-connected photovoltaic device
HAS Harmony search algorithm
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HHT Hilbert-Huang Transform
HPF High pass filter
HSF High pass scalable component
IGBT Insulated gate bipolar transistor
j Decomposition stage number
LPF Low-Pass Filter
LSF Low pass scalable component
MPPT Maximum power point tracking
MSLT Modified transformation slantlet
PCC Point of common coupling
PLCC Power line carrier communication
PV Photovoltaic
PWM Pulse width modulation
Q Q-factor
R Redundancy
ROCOF Rate of change of frequency
ROCOV Rate of change of voltage
RPNN Ridge-based Probabilistic Neural Network
SLT Slantlet Transform
SNR Signal to noise ratio
SW4 Capacitor bank
TQWT Tunable Q-factor wavelet transform
VSC DC-link voltage
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