
energies

Article

Solution of Optimal Power Flow Using
Non-Dominated Sorting Multi Objective Based
Hybrid Firefly and Particle Swarm
Optimization Algorithm

Abdullah Khan 1,2,* , Hashim Hizam 1,2,*, Noor Izzri Abdul-Wahab 1,2

and Mohammad Lutfi Othman 1,2

1 Department of Electrical and Electronic Engineering, Faculty of Engineering, University Putra Malaysia,
Serdang 43400, Malaysia; izzri@upm.edu.my (N.I.A.-W.); lutfi@upm.edu.my (M.L.O.)

2 Advanced Lightning, Power and Energy Research, Faculty of Engineering, University Putra Malaysia,
Serdang 43400, Malaysia

* Correspondence: gs52859@student.upm.edu.my (A.K.); hhizam@upm.edu.my (H.H.);
Tel.: +60-1159696953 (A.K.); +60-389466312 (H.H.)

Received: 7 May 2020; Accepted: 13 July 2020; Published: 18 August 2020
����������
�������

Abstract: In this paper, a multi-objective hybrid firefly and particle swarm optimization (MOHFPSO)
was proposed for different multi-objective optimal power flow (MOOPF) problems. Optimal power
flow (OPF) was formulated as a non-linear problem with various objectives and constraints.
Pareto optimal front was obtained by using non-dominated sorting and crowding distance methods.
Finally, an optimal compromised solution was selected from the Pareto optimal set by applying
an ideal distance minimization method. The efficiency of the proposed MOHFPSO technique was
tested on standard IEEE 30-bus and IEEE 57-bus test systems with various conflicting objectives.
Simulation results were also compared with non-dominated sorting based multi-objective particle
swarm optimization (MOPSO) and different optimization algorithms reported in the current literature.
The achieved results revealed the potential of the proposed algorithm for MOOPF problems.

Keywords: optimal power flow; multi-objective optimization; non-dominated sorting; ideal distance
minimization; total fuel cost minimization; voltage profile enhancement; real power loss minimization;
hybrid firefly and particle swarm optimization

1. Introduction

In 1962, the optimal power flow (OPF) problem was presented by cf. Carpenter [1,2]. It is an
effective, non-linear optimization method in an electrical power system. OPF became a modern
research topic in power system operation and control in the last four decades. It is generally applied
to find the optimized adjustment of control variables of a power network that comprises of selected
objective, such as fuel cost, active power loss etc., simultaneously fulfilling limits of equality and
inequality constraints.

In multi-objective optimization, more than one conflicting objectives are solved simultaneously.
Multi-objective optimization algorithm gives a set of optimal values as a Pareto optimal solution
instead of single value. Without any further knowledge of Pareto optimal front, it is impossible to
get a final optimized solution [3]. Therefore, it is imperative to calculate many Pareto optimal values
simultaneously. In conventional optimization techniques, a multi-objective problem is converted into a
single-objective problem by applying an appropriate weighting factor technique. This technique gives
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a single optimal solution. However, it should be executed as many times as the member of optimal
solutions to find Pareto optimal front [4].

Classically, weighted sum approach, ε-constraint method and goal attainment technique have
been applied to solve multi-objective optimal power flow (MOOPF) problems. The weighted sum
technique changes a multi-objective problem into a single-objective problem by applying appropriate
weights to the conflicting objectives [5,6]. In the ε-constraint approach [7], one key objective is selected
for optimization and the remaining objectives are treated as constraints within a particular range,
such as ε. The goal attainment method is achieved by further modification of that particular range ε in
order to find a Pareto optimal value for the multi-objective problem [8]. The above stated approaches
necessitate multiple executions and calculation time to find a Pareto optimal value.

Various MOOPF based evolutionary methods have been developed in the present research.
These multi-objective algorithms are efficient as compared to classical methods because these algorithms
can find a final Pareto optimal value in one execution. For example, the fruit fly optimization (FFO)
method has been designed for MOOPF problems [9] and MOOPF based social spider algorithm has
been developed [10]. Improved colliding bodies (ICB) method has been used to solve the MOOPF
problems [11]. An adaptive seeker technique, including TCSC devices, has been used for MOOPF
problems in [12]. An MOOPF based NSGA-III is incorporated with adaptive elimination strategy [13].
An improved sine and cosine technique has been used to solve OPF problems in [14]. Single objective
OPF and MOOPF based Jaya optimization method [15] and its modified version have been used in [16].
Harmony search optimization method [4], gravitational search algorithm (GSA) [17] and modified
shuffle frog leaping algorithm [18] have been applied to handle the MOOPF problems. In [19], an efficient
ABC approach has been presented to solve OPF problems. Different algorithms have been developed
under steady and contingency state; black-hole-based optimization (BHBO) [20], different search method
(DSM) [21], quasi-oppositional teaching learning based optimization (TLBO) [22], Lévy mutation based
teaching learning algorithm [23] and krill herd algorithm (KHA) [24]. In [25], a moth-flame method
has been presented to solve non-smooth economic dispatch issues based on the properties of emissions.
A MOOPF based differential evolution approach has been detailed in [26]. In [27], a multi objective
gravitational search technique, based on non-dominated sorting, has been used for OPF problems.

Many optimization techniques are based on natural phenomena [28–30]. One of these known
nature-inspired methods is particle swarm optimization (PSO) technique. The PSO method uses the
swarm’s social behavior, such as hunting activities of fishes and birds [31]. One, among many other
categories, can be devised by hybridizing it with other appropriate natural-inspired optimization
techniques [32]. Hybridization can take advantage of different types of natural-inspired techniques to
design more robust method, which can handle challenging problems more efficiently [33]. Keeping this
idea in mind, Aydilek İB developed a hybrid firefly and particle swarm optimization (HFPSO) [34].
A balance is kept between exploration and exploitation in order to avoid premature solution [35].
The PSO method has fast convergence ratio and needs less execution resources. However, when particles
are closed, the method confines in local optima as a result of slow convergence [28]. On the other
hand, firefly optimization algorithm (FOA) has some key advantages over the PSO method [36].
For instance, this method has no local or global best variables. Therefore, it is free from being caught
up in local optima. Moreover, due to the absence of a velocity vector, the method is very efficient in
exploration [37]. The HFPSO algorithm had not been applied to the OPF problem before.

In this paper, a non-dominated sorting and crowding distance based multi-objective hybrid
firefly and particle swarm optimization (MOHFPSO) algorithm was designed for MOOPF problems.
The proposed MOHFPSO algorithm was tested on standard IEEE 30-bus and IEEE 57 bus test
systems for conflicting objectives. To verify effectiveness of the proposed algorithm, the obtained
results were compared with the present literature as well as individual simulation results of original
MOPSO technique.

The key contributions of this work are as follows:

• A novel hybrid multi-objective optimization algorithm is designed and applied to OPF problems;
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• Non-dominated sorting and Euclidean approaches are formulated and used in the algorithm to
calculate Pareto optimal front and optimal solution in a single run as a main contribution;

• Considering various conflicting objective functions, and the approach is implemented on two
standard test systems;

• The effectiveness of the proposed approach is compared with MOPSO and literature.

This article is arranged as follows: Section 2 gives mathematical formulation with different
objective functions of the OPF problem. Multi-objective optimization is deliberated in Section 3. Then,
a brief description of PSO and FOA is provided in Section 4. Afterwards, the developed MOHFPSO
technique and its application for OPF problems are mentioned in Sections 5 and 6. Simulation results of
MOHFPSO for OPF problems, discussion and comparison are presented in Section 7. Finally, the article
is concluded in Section 8.

2. Problem Formulation of OPF

Optimal adjustment of control variables is very important to achieve an optimized OPF solution in
a power system considering various objectives. These different objectives can be formulated as follows:

Objective 1: Fuel cost minimization.

In this objective, total fuel cost of the interconnected generation units is considered to be minimum.
Mathematical expression of this objective function is defined as follows [38]:

FC =

NG∑
i=1

fi (PGi) (1)

where fi represents fuel cost of the i-th generator and NG denotes the number of that generator.
The fuel cost function of the interconnected generation units with quadratic cost function is formulated
as follows:

fi (PGi) = ai + bi(PGi) + ciP2
Gi $/hr (2)

where fuel cost coefficients of the i-th generator are represented by ai, bi and ci.

Objective 2: Active power loss minimization.

Active power loss has been taken as another objective function to minimize the interconnected
power network considering different equality and inequality limits. This objective function may be
defined mathematically as follows [38]:

PL =
TNB∑
i=1

TNB∑
j=1

Gi j

2

[∣∣∣V2
i

∣∣∣+ ∣∣∣∣V2
j

∣∣∣∣− 2|Vi|
∣∣∣V j

∣∣∣ cos(∂i − ∂i)
]

(3)

where TNB represents the number of network buses, Gi j denotes the conductance between i-th and
j-th bus, respectively. Voltage magnitude of the i-th and j-th bus are represented by Vi and V j, and the
voltage angles between i-th and j-th node of transmission lines are denoted by ∂i and ∂ j.

Objective 3: Voltage profile improvement.

Bus voltage of an interconnected power system is a basic indicator of service quality and security
indices [39]. The present objective function deals with voltage profile enhancement of all buses,
with 1 p.u. as a reference. The objective function can be mathematically expressed as follows [38]:

VD =
NL∑
i=1

|Vi − 1.0| (4)
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where NL is the number of load bus, Vi is the voltage magnitude of the load bus and 1 represents a
reference voltage in pre-unit, respectively.

Objective 4: Voltage Stability Enhancement.

Voltage of a power system should function within its limits during load surge, otherwise this
disturbance changes the power system’s configuration. So, a voltage collapse accrues [40]. Therefore,
the main objective is to enhance the voltage stability of the system. Voltage stability index (L-index or
La) of a particular j-th node is expressed by the following mathematical formulation [38]:

La =

∣∣∣∣∣∣∣1−
ng∑

i=1

Fi j
Vi
V j
∠
(
θi j + ∂i − ∂ j

)∣∣∣∣∣∣∣a = 1, 2, 3, . . . . . . , NL (5)

where Fi j denotes the element of complex matrix F. It can be calculated by using [F] = − [YLG]
[YLL]

; YLG and
YLL denote the sub matrices of the admittances matrix considering a particular bus. Overall, L-index,
considering the voltage stability of power system, is formulated as follows [38]:

Lmax = max[La], a = 1, 2, 3, . . . . . . , NL (6)

System Equality and Inequality Constraints

The OPF based objective functions are optimized by applying equality and inequality constrains.
Equality constrains are expressed mathematically as follows:

Pgi − Pdi = Vi

N∑
i=1

V j
((

Gi j cos δi j
)
+ (Bi j sin δi j

)
) (7)

Qgi −Qdi = Vi

N∑
i=1

V j
((

Gi j sin δi j
)
+ (Bi j cos δi j

)
) (8)

where imaginary and real power generations at the i-th bus are represented by Qgi and Pgi, respectively,
and imaginary and real power demands at the i-th bus are denoted by Qdi and Pdi. Gi j and δi j are the
susceptance and voltage angle difference between i-th and j-th terminals.

Inequality constrains applied to the objective functions are formulated mathematically as
follows [38]:

(I) Generator constraints:

Vmn
gi ≤ Vgi ≤ Vmx

gi i = 1, 2, 3, . . . . . . . . .NG (9)

where Vgi represents voltage magnitude and Vmx
gi and Vmn

gi denote the maximum and minimum ranges
of the voltage magnitude of the i-th generating unit respectively.

Pmn
gi ≤ Pgi ≤ Pmx

gi i = 1, 2, 3, . . . . . . . . .NG − 1 (10)

where Pgi denotes active power output, apart from active power of the slack bus and Pmx
gi and Pmn

gi denote
the maximum and minimum limits of the active power output of the i-th generating unit respectively.

Qmn
gi ≤ Qgi ≤ Qmx

gi i = 1, 2, 3, . . . . . . . . .NG (11)

where Qgi represents reactive power output. Qmx
gi and Qmn

gi represent the maximum, as well as minimum
limits of the reactive power outputs of the i-th power generating unit.
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(II) Transformer constraints:

Tmn
i ≤ Ti ≤ Tmx

i i = 1, 2, 3, . . . . . . . . .NT (12)

where Ti denotes the tap setting of the regulation transformer. Tmx
i and Tmn

i show the maximum and
minimum ranges of the tapping ratio of the i-th regulation transformer respectively.

(III) Switchable VAR sources:

Qmn
Ci ≤ QCi ≤ Qmx

Ci i = 1, 2, 3, . . . . . . . . .Nc (13)

where QCi represents injected reactive power by the i-th compensator capacitor, whereas its maximum
and minimum limits are denoted by Qmx

Ci and Qmn
Ci .

(IV) Security constraints:

Vmn
li
≤ Vli ≤ Vmx

li
i = 1, 2, 3, . . . . . . . . .NL (14)

where Vli shows voltage magnitude of the i-th load (demand) bus and Vmx
li

and Vmn
li

represent the
maximum and minimum limit of the voltage of the i-th load bus respectively.

Slinei ≤ Smx
linei i = 1, 2, 3, . . . . . . . . .NI (15)

where Slinei represents the loading, whereas Smx
linei denotes the upper limit of loading of the i-th

transmission line.
Inequality constrains have been combined and stated as a quadratic penalty formula. Moreover,

it is sum of a specific objective function, multiplication of penalty constant, and the square of the
control variable [20]. Penalty function can be expressed as follows:

JAvg= J + αp
(
PGi − Plim

Gi

)2
+ αv

∑NL

i=1

(
VLi −Vlim

Li

)2
+ αq

∑NG

i=1
+αs

∑nl

i=0

(
Sli − Smax

li

)2
(16)

where J represents an objective function, and α shows a predefined penalty factor. Limit of the control
variable can be mathematically defined as follows [20]:

xlim=

{
xmax; x xmax

xmin; x xmin (17)

where x denotes the control variable. Upper and lower limits of the control variable are represented by
xmax and xmin.

3. Multi-Objective Function

In general, an absolute multi-objective optimization problem includes more than one contradictory
objective functions, to be solved simultaneously within limits of equality and inequality constrains.
The optimization algorithms presented previously from the literature were single-objective optimization
techniques. These algorithms are not considered pure multi-objective optimization techniques used
for OPF problems, as no performance valuation standard has been applied in the optimization of these
multi-objective problems. Two basic objectives are necessary to implement a multi-objective problem.
These fundamental objectives are convergence of the Pareto optimal front and the distribution of the
estimated results. Many authors, from the literature, have formulated the multi-objective problems
by linear combination of various single objective functions, however they ignored the fundamental
rules. In addition, these multi-objective designed problems are generally attempted by combining and
converting the objective functions into a single function and using standard techniques to perform
that single-objective as a goal. However, this approach can only achieve acceptable results if the
combination (i.e., control term and linear scaling error) fits. In contrast, a pure non-dominated sorting
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concept based multi-objective optimization algorithm for OPF problems has been developed in this
article. It is a better approach to estimate and establish trade-offs between Pareto optimal sets as well
as to select a concluding result afterwards from that set using multi-objective optimization. Moreover,
a Pareto-optimal solution is the one, in which the Pareto optimal front cannot be better in any goal
without declination in some other goal. Mathematical formulation of the multi-objective optimization
is given as follows [38]:

Min fi(v), i = 1, 2, 3, . . . . . . , n (18)

Subjected to g j(v), j = 1, 2, 3, . . . . . . , m (19)

hk (v) ≤ 0, k = 1, 2, 3, . . . . . . , K (20)

where fi represents the i-th goal function and v is resultant vector that denotes a solution. Objective functions,
equality and inequality constrain are shown by n, m, and K, respectively.

In multi-objective problems, any two resultant values, such as v1 and v2, can have first possibility,
one dominates other, or second possibility, none dominates other, based on none dominated soring.
Resultant value v1 dominates v2 if the subsequent two situations are met, without ignoring generality,
in minimization problems [38].

∀i ∈ {1, 2, 3, . . . . . . n}: fi(v1) ≤ fi(v2) (21)

∃ j ∈ {1, 2, 3, . . . . . . n} : f j(v1) f j(v2) (22)

If these conditions are violated, then the value v1 does not dominate the value v2. If v1 dominates
v2, then the value v1 is non-dominated solution of the multi-objective problem [38].

Best Compromise Solution

In this paper, Euclidean distance concept was used to achieve a best compromise solution
from Pareto optimal set for MOOPPF problems. Various objective functions, such as fi, f j and fk,
were represented as different axes of the Cartesian coordinate system. An infeasible minimum reference
point ( fimin , f jmin , fkmin) was selected for all objectives. Best solution is a particular point in Pareto
optimal set that has minimum distance d from the reference point. The best compromise solution has
optimum vales ( fai, fbj, fck) of all objective functions. Minimum distance can be defined by following
mathematical formulation [41]:

D =
[(

fai − fimin

)2
+

(
fbj − f jmin

)2(
fck − fkmin

)2
]1/2

(23)

d = min(D) (24)

4. A Brief Description of Particle Swarm Optimization (PSO) and Firefly Optimization
Algorithm (FOA)

PSO is a population based algorithm developed by Kennedy and Eberhart [42]. This method uses
mixed actions of a swarm. Two basic expressions of the algorithm are personal best Pb and global
best Gb. Position (x) and velocity (v) of a particular entity in a swarm is updated in every iteration.
The above detail is formulated mathematically as follows:

vi(t + 1) = wvi(t) + c1 r1(Pbi(t) − xi(t)) + c2 r2(gb(t) − xi(t)) (25)

xi(t + 1) = xi + vi(t + 1) (26)

W = Wmax
−

(
wmax

−wmin
)
∗ iteration

Max iteration
(27)
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where vi and xi represent velocity and position of each particle, whereas t is the current iteration value
and t + 1 denotes the next iteration. Pb shows particle best value and gb represents global best value.
W is an inertial weight and c is an acceleration coefficient. Random value within the limits of 0 and 1 is
denoted by r. Detail of PSO technique is given in [42].

FOA method is based on emission of flashlight from fireflies for their survival [36,43]. The technique
is based on medium’s absorption and intensity of the flashlight. According to inverse square law,
the light intensity depends on distance and medium absorption. Further detail with the mathematical
formulation is mentioned in [44].

5. Multi-Objective Hybrid Firefly and Particle Swarm Optimization (MOHFPSO) Technique

In this article, a non-dominated based multi-objective hybrid firefly and particle swarm
optimization algorithm was developed. The algorithm is applied to Pareto optimal set and an
optimal solution is selected from that set. The strength of both FOA and PSO algorithms has been
considered to maintain a hybrid balance between exploration and exploitation [45,46]. The FOA
method gives better exploitation due to the absence of the velocity vector (V) and personal best (pbest)
terms in it. On the other hand, the PSO method is better in exploitation due to the presence of these
terms. Figure 1 presents a flowchart of MOHFPSO technique in detail.
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Figure 1. Flowchart demonstrates the optimization procedure of the basic multi-objective hybrid firefly
and particle swarm optimization (MOHFPSO) method.

Firstly, different input parameters are stated. Afterwards, initial positions and velocities of
partials within their limits are initialized and global and local best particles are calculated according to
Equations (18)–(20). After that, resulting fitness values are sorted based on non-dominated sorting,
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according to Equations (21) and (22), and compared in the last alteration. Finally, the current situation
is kept and velocity vector and position are executed as following [34]:

f (i, t) =

 t, i f f itrnee value
(
pt

i ≤ gbt−1
)

f , i f f itrnee value (pt
i gbt−1)

(28)

xi(t + 1) = xi(t)B0e−řr2i j
(
xi(t) − gbt−1

)
+ a ∈i (29)

vi(t + 1) = xi(t + 1) − xi_temp (30)

where pt
i symbolizes fitness value of the particle and xi_temp represents current position of particle,

whereas gb denotes the previous global best value. r represents the specific distance and B0

shows attraction.
FOA part will be executed if fitness value is same or improved as compared to the previous final

best fitness value according to Equations (29) and (30). Else, the fitness value will be taken by the PSO
part according to the Equations (25) and (26) for further improvement.

6. Application of the MOHFPSO Algorithm to Optimal Power Flow Problems

In this section, the proposed MOHFPSO algorithm was applied to OPF problems with a step by
step procedure.

Step 1. Describe the power system data that include real and reactive power limits, generators data,
voltage limits of generator buses, initial values of active power, reactive power of capacitors
and turn ratios of the tap-controlled transformers.

Step 2. Simulate the basic power flow case and calculate the primary solutions of the particular objective
functions, such as total generation cost, real power losses, voltage stability enhancement and
voltage profile improvement, on the basis of Equations (1), (3), (4), and (6).

Step 3. Define the general parameters, such as initial population (Pop), maximum iterations
(terationmax), designed variables (X) and its limits (Xmin, Xmax), dimensions (D) and algorithm
specified parameters (C, w and V).

Step 4. Locate positions of swarm population within a particular range as independent variables based
on the following equations:

Swarm− population =


x1,1 x1,2

x2,1 x2,2

· · · x1,n
· · · x2,n

...
...

xm,1 xm,2

...
...

. . . xm,n

 (31)

k = 1, 2, 3, . . . , m, and j = 1, 2, 3, . . . , n

where n and m denote the control and different solutions. Calculation of the j-th variable xk, j
and k-th candidate solution is done as follows:

xk, j = xmin
j + r and (·)

[
xmax

j − xmin
j

]
(32)
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where xmax
j and xmin

j are the limits of the j-th designed variables and rand (.) denotes the random
number within limits of (0–1). For more clarification, the physical components of Xk, j can be
formulated as follows:

Swarm− population =



PG1,2, . . . . . . PG1,NGG , T1,1, . . . . . .T1,NTT , VG1,1, . . . . . . .V1,NGG , QC1,1, . . . . . . . Q1,NCC

PG2,2, . . . . . . PG2, NGG , T2,1, . . . . . .T2,NTT , VG2,1, . . . . . . .V2,NGG , QC2,1, . . . . . . . Q2,NCC

...

PGm,2, . . . . . . PGm,NGG , Tm,1, . . . . . .Tm,NTT , VGm,1, . . . . . .Vm,NGG , QCm,1, . . . . . . Qm,NCC


(33)

Step 5. Execute the load flow for every multi-objective function and compute the value of the specific
objective function that relates to the solution.

Step 6. Evaluate the fitness value for multi-objective and find the personal best (pbest) and global best
(gbest) solutions according to Equations (18)–(20).

Step 7. Sort the obtained fitness values based on non-dominated sorting according to
Equations (21) and (22).

Step 8. At this stage, crowding distance approach is applied.
Step 9. Check the progress in the calculated values in the final iteration as stated by Equation (28).
Step 10. Compute the result according to the modified vector of controlled variables. Calculate the

new values of the objective functions and include the allocated penalty(ies) to the objective
function if it violates the control variable limits, according to Equation (16).

Step 11. Match the optimized value of objective function. If final values are optimized to earlier ones,
then perform the Equations (29) and (30), otherwise apply the Equations (25) and (26) separately.

Step 12. If termination criteria are met, then print the optimal solution values after stopping, else go
back to stage 7.

For further explanation, flowchart of the proposed OPF problems based MOHFPSO algorithm is
shown in Figure 2.Energies 2020, 13, x FOR PEER REVIEW 9 of 28 
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7. Computational Results and Discussion

In this paper, MOHFPSO algorithm was used for optimization of total fuel cost (FC), optimization
of real power loss (PL), optimization of voltage profile improvement or voltage deviations (VD) and
optimization of voltage stability improvement (L-index). Five multi-objective functions with various
combinations were taken to deal with the OPF problems. The program has been coded using MATLAB
R2011a on a PC having 4 GHz Intel® Core™ i7 CPU with 8 GB RAM. The algorithm was executed
30 times. The achieved simulation results of the current work are discussed below. In order to show
effectiveness of the proposed MOHFPSO algorithm, optimum values of the results were indicated with
bolt face in corresponding tables. Standard IEEE 30-bus and 57-bus test [47] systems were applied to
verify performance and effectiveness of the proposed algorithm.

The standard IEEE 30-bus test system comprises of six generator units installed at bus number 1,
2, 5, 8, 11 and 13. Loads are placed at 24 load buses. Four tap-controlled transformers are installed
between branches 6–9, 6–10, 4–12 and 27–28 within the limits of 0.9–1.1. Turn ratios of the tap-controlled
transformers, voltages of the generation units and reactive power injection, such as shunt capacitors,
are taken as independent variables. The voltage magnitudes of generators and load buses are restricted
within the limits of 0.95–1.05 p.u. and 0.9–1.05 p.u. Nine shunt-capacitors (VAr injectors), each having
capacity of 5 MVAr and range of 0–30 MVAr, are placed at buses 10, 12, 15, 17, 20, 21, 23, 24 and 29.
More detail of the IEEE 30-bus test system is mentioned in [47]. Firstly, the three bi-objective functions
of OPF problems, such as FC and PL (Case-I), FC and VD (Case-II) and FC and L-index (Case-III) are
optimized at the same time by applying MOHFPSO based method. In addition, two triple-objective
functions of OPF problems, namely FC, PL and L-index (Case-IV) and FC, PL and VD (Case-V),
are evaluated simultaneously by applying the proposed HFPSO method. Best results and optimal
control variables of the above cases are mentioned in Table 1 (in bold) and Table A1, respectively.
The obtained solutions of the MOHFPSO method for different cases are also compared with simulated
results of the original PSO algorithm and various algorithms from current literature.

Table 1. Optimum simulation results of Cases I–V for IEEE 30-bus power network “Multi-objective”.

Results Initial
Status

Case I Case II Case III Case IV Case V

MOHFPSO MOPSO MOHFPSO MOPSO MOHFPSO MOPSO MOHFPSO MOPSO MOHFPSO MOPSO

Cost ($/h) 902.020 819.5330 822.32 803.266 803.6946 800.138 800.2531 828.990 832.2023 828.490 830.6012
PLoss (MW) 5.8482 5.6827 5.7015 9.82738 9.8406 8.8500 9.0782 5.8563 5.5024 5.5700 5.9383

TVD - 1.7448 1.2864 0.11610 0.1122 2.4492 2.572 0.3392 1.3179 0.3392 0.3215
Lmax 0.1735 0.119 0.1173 0.13697 0.1378 0.1058 0.1102 0.1212 0.1269 0.1212 0.1372

7.1. Case I: Minimization of FC and PL

In this section, FC and PL are measured simultaneously as a first multi objective function in order
to solve the OPF problems besides confirming its efficiency. Tables 1 and A1 illustrate the acquired
best results and optimum values of control variables of the proposed MOHFPSO technique (see Case
I). Optimum results of the current case using the proposed method are compared with simulated
results of original PSO and various methods mentioned in the current literature, such as NSGA-II [48],
MJaya [49], QOMJaya [50], MOABC/D [51], MOTALBO [52] and MOMICA [53]. Detailed comparison
of the optimum results is shown in Table 2 (with obtained values in Bold). Obtained values, considering
FC and PL simultaneously as an objective function by applying the proposed HFPSO method,
are 819.53 $/h and 5.6827 MW. However, minimum values of the original MOPSO method are 822.32 $/h
and 5.7015 MW and require more CPU time per simulation (sec). It can be found that the proposed
method achieved the best minimized values as compared to other techniques. Consequently, it is clear
from Table 2 that the algorithmic efficiency of MOHFPSO concerns solution superiority. It is also clear
from Figure 3 that the achieved Pareto optimal front of MOHFPSO algorithm is more optimized as
compared to Pareto optimal front of original PSO algorithm.
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Table 2. Comparison studies for Case-I applying various bi-objective methods.

Method
Bi-Objective Functions Based on IEEE 30-Bus Test System

FC, $/h PL, MW Time (s)

MOHFPSO 819.5330 5.6827 166.36
MOPSO 822.32 5.7015 170.24

NSGA-II [48] 823.88 5.7699 -
MJaya [49] 826.9651 5.7596 -

QOMJaya [50] 827.9124 5.7960 -
MOABC/D [51] 827.6360 5.2451 -
MOTALBO [52] 830.781 5.2742 -
MOMICA [53] 848.0544 4.5603 -

Energies 2020, 13, x FOR PEER REVIEW 11 of 28 

 

7.1. Case I: Minimization of FC and PL 

In this section, FC and PL are measured simultaneously as a first multi objective function in 
order to solve the OPF problems besides confirming its efficiency. Table 1 and A1 illustrate the 
acquired best results and optimum values of control variables of the proposed MOHFPSO technique 
(see Case I). Optimum results of the current case using the proposed method are compared with 
simulated results of original PSO and various methods mentioned in the current literature, such as 
NSGA-II [49], MJaya [50], QOMJaya [51], MOABC/D [52], MOTALBO [53] and MOMICA [54]. 
Detailed comparison of the optimum results is shown in Table 2 (with obtained values in Bold). 
Obtained values, considering FC and PL simultaneously as an objective function by applying the 
proposed HFPSO method, are 819.53 $/h and 5.6827 MW. However, minimum values of the original 
MOPSO method are 822.32 $/h and 5.7015 MW and require more CPU time per simulation (sec). It 
can be found that the proposed method achieved the best minimized values as compared to other 
techniques. Consequently, it is clear from Table 2 that the algorithmic efficiency of MOHFPSO 
concerns solution superiority. It is also clear from Figure 3 that the achieved Pareto optimal front of 
MOHFPSO algorithm is more optimized as compared to Pareto optimal front of original PSO 
algorithm. 

 
Figure 3. The MOHFPSO and original PSO based Pareto optimal fronts for Case-I. 

Table 2. Comparison studies for Case-I applying various bi-objective methods. 

Method 
Bi-Objective Functions Based on IEEE 30-Bus Test System 

FC, $/h PL, MW Time (s) 
MOHFPSO 819.5330 5.6827 166.36 

MOPSO 822.32 5.7015 170.24 
NSGA-II [49] 823.88 5.7699 - 

MJaya [50] 826.9651 5.7596 - 
QOMJaya [51] 827.9124 5.7960 - 

MOABC/D [52] 827.6360 5.2451 - 
MOTALBO [53] 830.781 5.2742 - 
MOMICA [54] 848.0544 4.5603 - 

  

Figure 3. The MOHFPSO and original PSO based Pareto optimal fronts for Case-I.

7.2. Case II: Minimization of FC and VD

In this part, FC and VD are calculated simultaneously as a second multi objective function to
deal with the OPF problems as well as to check the effectiveness of the proposed MOHFPSO method.
Table 1 explains the obtained best solutions and Table A1 shows the optimal control variables of the
method (see Case II). Optimum solutions of this case from the proposed method are also compared
with simulated results of original PSO and different techniques cited in the current literature work,
such as BB-MPSO [54], MINSGA-II [54] and MOMICA [53]. Comparison of the optimum results
in this case is presented in Table 3 (with optimum values in Bold). Achieved optimum solutions,
in view of FC and VD simultaneously as a bi-objective function, by applying the proposed method are
803.2668 $/h and 0.1161 p.u. with less computational time per simulation (sec). On the other hand,
the minimum values from the original MOPSO method are 803.694 $/h and 0.1122 p.u. Hence, it is
concluded that the proposed MOHFPSO technique reached the best optimum solutions as compared
to other methods. The achieved Pareto optimal front of proposed MOHFPSO method is compared to
optimize the original MOPSO method, as plotted in Figure 4.

Table 3. Comparison studies for Case-II applying various bi-objective methods.

Method
Bi-Objective Functions Based on IEEE 30-Bus Test System

FC, $/h VD, p.u. Time (s)

MOHFPSO 803.2668 0.1161 102.35
MOPSO 803.6946 0.1122 109.57

BB-MPSO [54] 804.9639 0.1021 -
MINSGA-II [54] 805.0076 0.0989 -
MOMICA [53] 804.9611 0.0952 -
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7.3. Case III: Minimization of FC and L-Index

In this section, FC and L-index or Lmax are simulated at the same time as a third multi objective
function concerning the OPF problems in order to find usefulness of the proposed MOHFPSO technique.
Table 1 describes the optimal solutions of the proposed MOHFPSO and original PSO methods (see Case
III). Optimum values of the current case using the proposed technique are also matched with simulated
values of original PSO and several methods taken from the present literature, such as NSGA-II [4],
MOHS [4], MODE [55], MOTLBO [52], MOSPEA [56] and QOM-Jaya [50] separately. Broad comparison
of the optimum solutions of this case and other algorithms is presented in Table 4 (with optimum
solutions in Bold). Achieved optimum solutions, concerning FC and L-index simultaneously as a
bi-objective function, by using the suggested MOHFPSO technique are 800.138 $/h and 0.1161 p.u.
However, the minimum solutions of the original MOPSO method are 800.2531 $/h and 0.1122. It is,
therefore, obvious from the comparison that the proposed technique reached the best minimum values
as compared to those associated with other methods. It is evident from Table 4 that the algorithmic
effectiveness of the proposed method is regarding solution dominance. The simulated Pareto optimal
front of proposed MOHFPSO technique is better as compared to the original MOPSO technique,
as graphed in Figure 5.

Table 4. Comparison studies for Case-III applying various bi-objective methods.

Method
Bi-Objective Functions Based on IEEE 30-Bus Test System

FC, $/h L−index p.u. or Lmax Time (s)

MOHFPSO 800.138 0.1058 129.87
MOPSO 800.2531 0.1122 144.81

NSGA-II [4] 800.31 0.1083 -
MOHS [4] 799.94 0.1075 -

MODE [55] 800.59 0.1249 -
MOTLBO [52] 803.631 0.1020 -
MOSPEA [56] 809.79 0.1146 -
QOM-Jaya [50] 800.892 0.1248 -
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7.4. Case IV: Minimization of FC, PL and L-Index

In this section, three objectives, such as FC, PL and L-index (i.e., max Lmax), were simulated
simultaneously, as a fourth multi-objective function, using the proposed MOHFPSO and original PSO
methods for OPF problems. Table 1 shows obtained optimum results for this case (see Case IV) and the
optimal control variables of the case are represented in Table A1. Table 5 (with obtained optimum
results in Bold) compares optimum solutions of this case by applying the proposed MOHFPSO method
with original PSO and various methods from the current literature work, such as MJaya [50] and
QOMJaya [50]. Obtained optimum results, as a triple-objective function, by using the recommended
HFPSO method are 828.4980 $/h, 5.5700 MW and 0.1212. On the other hand, minimum values of the
original MOPSO technique are 832.2023 $/h, 5.5024 MW and 0.1269. So, it is obvious from Table 5
that the proposed method achieves the best solutions as compared to other methods, in terms of its
optimization efficacy. Furthermore, Figure 6 describes Pareto optimum fronts of FC, PL and L-index
by applying proposed MOHFPSO and original MOPSO methods. It can be seen from the graphical
representation in Figure 4 that the proposed method has finer Pareto front and improved solutions.

Table 5. Comparison analysis for case-IV using different triple-objective methods.

Method
Triple-Objective Functions Based on IEEE 30-Bus Test System

FC, $/h PL (MW) L−Index p.u. or Lmax Time (s)

MOHFPSO 828.4980 5.5700 0.1212 90.67
MOPSO 832.2023 5.5024 0.1269 109.66

MJaya [50] 836.7026 6.4545 0.1244 -
QOMJaya [50] 829.7163 6.7391 0.1243 -
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7.5. Case V: Minimization of FC, PL and VD

In this case, FC, PL and VD are simulated simultaneously, as a fifth triple-objective function for
the OPF problems, by applying the proposed MOHFPSO technique. Optimum results of this case
are presented in Table 1 (see Case-V). Comparison of optimum values of this case with original PSO
technique is mentioned in Table 6 (with best obtained values in Bold). Moreover, best solution values of
the proposed MOHFPSO method are 828.9908 $/h, 5.8563 MW, and 0.3392 p.u. However, best solution
values of the original PSO technique are 830.6012 $/h, 5.8563 MW, and 0.3215 p.u. So, it is noticeable
from the Table 6 that the proposed method obtained the best optimized values as compared to original
methods. Furthermore, Figure 7 describes Pareto optimum fronts of FC, PL and VD by using the
proposed MOHFPSO and original MOPSO methods. Graphical representation in Figure 5 shows that
the proposed method has better Pareto optimal front.

Table 6. Comparison analysis for Case-V using various triple-objective methods.

Method
Triple-Objective Functions Based on IEEE 30-Bus Test System

FC, $/h PL (MW) VD (p.u.) Time (s)

MOHFPSO 828.9908 5.8563 0.3392 66.83
MOPSO 830.6012 5.9383 0.3215 38.64Energies 2020, 13, x FOR PEER REVIEW 15 of 28 
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A large scale, standard IEEE 57-bus test power system has been used to prove the robustness
of the proposed method for OPF problems. The standard IEEE 57-bus test system includes seven
generator units connected at bus number 1, 2, 3, 8, 6, 8, 9 and 12. Loads are installed at 42 load buses.
17 tap-controlled transformers are located at branches 19, 20, 31, 35, 36, 37, 41, 46, 54, 58, 59, 65, 66, 71,
73, 76 and 80 within the ranges of 0.9–1.1. Turn ratios of the tap-controlled transformers, voltages of the
generation units and reactive power injection such as shunt capacitors are considered as independent
variables. The voltage magnitudes of generators and load buses are restricted within the limits of
0.95–1.05 p.u. and 0.9–1.05 p.u. Three shunt-capacitors (VAr injectors), each having capacity of 5MVAr
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and range of 0–30 MVAr, are placed at buses 18, 25 and 53. More detail of the IEEE 57-bus test system
is cited in [47]. Rest of the cases are tested based on IEEE 57-bus test system. Cases VI to VIII are
bi-objective functions of OPF problems, such as FC and PL (Case-VI), FC and VD (Case-VII) and FC
and L-index (Case-VIII) and optimized at the same time by using proposed MOHFPSO based method.
In addition, Cases IX and X are triple-objective functions of OPF problems, namely FC, PL and L-index
(Case-IX) and FC, PL and VD (Case-X) and are elevated simultaneously by applying the proposed
method. Best results of the above all cases are mentioned in Table 7 (in Bold) and optimal values of
control variables are represented in Table A2. The obtained solutions of the MOHFPSO method for
various cases are also matched with simulated optimized results of the original MOPSO algorithm and
various algorithms from present literature.

Table 7. Optimum simulation results of Cases VI–X for IEEE 57-bus power network “Multi objective”.

Results
Case-VI Case-VII Case-VIII Case-IX Case-X

MOHFPSO MOPSO MOHFPSO MOPSO MOHFPSO MOPSO MOHFPSO MOPSO MOHFPSO PSO

Cost ($/h) 41,629.387 41,689.68 41,700.416 41,782 41,601.043 41,606.46 41,726.379 41,836.5 41,862.898 41,921.09
PLoss (MW) 12.4145 12.6628 15.4814 14.819 13.3002 13.3730 11.1026 10.3812 9.7629 11.5285

TVD - - 0.8647 0.9592 1.7054 1.7643 0.2049 0.2433 - -
Lmax 0.2278 0.2630 0.2944 0.2929 0.2001 0.2018 0.2043 0.2391 0.2093 0.2099

7.6. Case VI: Minimization of FC and PL

In this case, two objectives functions, such as FC and PL, are simulated simultaneously, using the
MOHFPSO and MOPSO techniques, as a bi-objective function for OPF problems. Control variables
and optimum results of the current case are tabulated in Tables 7 and A2 (see Case-VI) respectively.
Furthermore, in Table 8 (with obtained results in Bold), the obtained optimum results are compared
with the simulated values of PSO and different methods from literature, such as MOALO [57] and
APFPA [58]. Best values of FC and PL, based on the proposed MOHFPSO technique, are 41,629.387 $/h
and 12.4145 MW, as shown in Table 8. Figure 8 describes Pareto optimum fronts from the proposed
MOHFPSO. It can be seen that the proposed method has finer Pareto front and improved solutions.

Table 8. Comparison studies for Case-VI applying various bi-objective methods.

Method
Bi-Objective Functions Based on IEEE 57-Bus Test System

FC, $/h PL, MW Time (s)

MOHFPSO 41,629.387 12.4145 122.12
MOPSO 41,689.681 12.6628 146.01

MOALO [57] 41,797.6457 14.8083 -
APFPA [58] 43,485.933 12.1513 -
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7.7. Case VII: Minimization of FC and VD

The current case shows the optimization of objectives functions, such as FC and DV simultaneously,
as a seventh bi-objective function based on the proposed MOHFPSO method. Best solutions of the
present case are shown in Table 7 (see Case-VII). Resulting minimum values from the proposed
MOHFPSO, original MOPSO method and the literature, such as MODA [59], ECHT [60], PSO [61],
SSO [61] and PSO-SSO [61] are compared in Table 9 (with obtained minimum values in Bold).
Minimum values using the proposed method are 41,700.416 $/h and 0.8647 p.u., while the minimum
values from the original MOPSO method are 41,782.65 $/h and 0.9592 p.u. Hence, Table 9 proves the
capacity of the MOHFPSO over the PSO method based on optimization superiority. The proposed
method also results in better Pareto optimal front as compared to the original PSO method, as shown
in Figure 9.

Table 9. Comparison studies for Case-VII applying various bi-objective methods.

Method
Bi-Objective Functions Based on IEEE 57-Bus Test System

FC, $/h VD, p.u. Time (s)

MOHFPSO 41,700.416 0.8647 155.38
MOPSO 41,782.65 0.9592 68.29

MODA [59] 42,101.75 0.013 -
ECHT [60] 41,697.50 0.77253 -
PSO [61] 41,841.4 1.56 -
SSO [61] 41,705.87 0.6856 -

PSO-SSO [61] 41,713.72 0.6817 -

Energies 2020, 13, x FOR PEER REVIEW 18 of 28 

 

Table 9. Comparison studies for Case-VII applying various bi-objective methods. 

Method 
Bi-Objective Functions Based on IEEE 57-Bus Test System 

FC, $/h VD, p.u. Time (s) 
MOHFPSO 41,700.416 0.8647 155.38 

MOPSO 41,782.65 0.9592 68.29 
MODA [60] 42,101.75 0.013 - 
ECHT [61] 41,697.50 0.77253 - 
PSO [62] 41,841.4 1.56 - 
SSO [62] 41,705.87 0.6856 - 

PSO-SSO [62] 41,713.72 0.6817 - 

 
Figure 9. The proposed MOHFPSO and original MOPSO based Pareto optimal fronts for Case-VII. 

7.8. Case VIII: Minimization of FC, and L-Index 

In this section, FC and L-index or Lmax are simulated as an eighth multi-objective function in 
order to solve the OPF problems based on the proposed MOHFPSO technique. Table A2 shows the 
optimal values of control variable of the proposed MOHFPSO and original MOPSO technique (see 
Case-VIII). Minimum values of the present case using the proposed technique are also matched with 
simulated values of original PSO in Table 10 (with obtained minimum values in Bold). Minimum 
values solving bi-objective function such as FC and L-index simultaneously of the proposed method 
are 41,601.043 $/h and 0.2001 p.u., and the minimum values of the original MOPSO technique are 
41,606.46 $/h and 0.2018. Hence, the MOPSO method results in greater optimal values as compared 
to the proposed method, and Pareto optimal front of the original MOPSO technique is also worse as 
compared to the proposed MOHFPSO technique, as shown in Figure 10. 

Table 10. Comparison studies for Case-VIII applying various bi-objective methods. 

Method 
Bi-Objective Functions Based on IEEE 57-Bus Test System 

FC, $/h ࡸ − . ࢞ࢋࢊࡵ  Time (s) ࢞ࢇࡸ ܚܗ  .࢛
MOHFPSO 41,601.043 0.2001 211.61 

MOPSO 41,606.46 0.2018 223.99 
 

Figure 9. The proposed MOHFPSO and original MOPSO based Pareto optimal fronts for Case-VII.



Energies 2020, 13, 4265 17 of 24

7.8. Case VIII: Minimization of FC, and L-Index

In this section, FC and L-index or Lmax are simulated as an eighth multi-objective function in order
to solve the OPF problems based on the proposed MOHFPSO technique. Table A2 shows the optimal
values of control variable of the proposed MOHFPSO and original MOPSO technique (see Case-VIII).
Minimum values of the present case using the proposed technique are also matched with simulated
values of original PSO in Table 10 (with obtained minimum values in Bold). Minimum values solving
bi-objective function such as FC and L-index simultaneously of the proposed method are 41,601.043 $/h
and 0.2001 p.u., and the minimum values of the original MOPSO technique are 41,606.46 $/h and 0.2018.
Hence, the MOPSO method results in greater optimal values as compared to the proposed method,
and Pareto optimal front of the original MOPSO technique is also worse as compared to the proposed
MOHFPSO technique, as shown in Figure 10.

Table 10. Comparison studies for Case-VIII applying various bi-objective methods.

Method
Bi-Objective Functions Based on IEEE 57-Bus Test System

FC, $/h L−Index p.u. or Lmax Time (s)

MOHFPSO 41,601.043 0.2001 211.61
MOPSO 41,606.46 0.2018 223.99
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7.9. Case IX: Minimization of FC, PL and L-Index

In this part, FC, PL and L-index (i.e., Lmax) have been taken as a ninth multi-objective, OPF function.
Optimum values of control variable settings of the present case based on HFPSO are tabulated in
Table A2 (see Case IX). Table 11 (with values in Bold) shows minimum value obtained from the
proposed MOHFPSO algorithm, such as 41,726.379 $/h, 11.1026 MW and 0.2049 p.u., and the original
PSO method, such as 41,836.5 $/h, 10.3812 MW and 0.2433 p.u. It is, therefore, evident that the proposed
method achieves more optimized results as compared to the MOPSO method. Figure 11 shows Pareto
optimum fronts using the proposed MOHFPSO and original MOPSO methods. It can be seen from the
plot in Figure 9 that the proposed method has finer Pareto front.
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Table 11. Comparison analysis for Case-IX using various triple-objective methods.

Method
Triple-Objective Functions Based on IEEE 57-Bus Test System

FC, $/h RPL (MW) L−Index p.u. or Lmax Time (s)

HFPSO 41,726.379 11.1026 0.2049 315.60
MOPSO 41,836.5 10.3812 0.2433 319.02Energies 2020, 13, x FOR PEER REVIEW 20 of 28 
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7.10. Case X: Minimization of FC, PL and VD

In this section, FC, PL and VD are calculated simultaneously as a tenth multi-objective function for
the OPF problems. Obtained results of the present case based on the proposed and MOPSO method are
shown in Table 7 (see Case-X). Results are compared in Table 12 (with values in Bold to indicate the best
results). Best solutions of the proposed method are 828.9908 $/h, 5.8563 MW and 0.3392 p.u., and best
values of the original MOPSO technique are 830.6012 $/h, 5.8563 MW and 0.3215 p.u. Therefore, in the
Table 12, it is evident that the proposed method achieves the best optimized values as compared to the
original methods. Furthermore, Figure 12 describes Pareto optimum fronts of the current case.

Table 12. Comparison study for Case-X using various triple-objective techniques.

Method
Triple-Objective Functions Based on IEEE 57-Bus Test System

FC, $/h PL (MW) VD (p.u.) Time (s)

MOHFPSO 41,862.898 9.7629 0.2093 508.54
MOPSO 41,921.09 11.5285 0.2099 483.063
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8. Conclusions

In this paper, the basic purpose was to design and apply the MOHFPSO and MOPSO algorithms in
order to solve the MOOPF problem based on non-dominated sorting and ideal distance minimization
approach. In this research, three bi-objectives, which include simultaneous minimization of fuel cost
and transmission loss, simultaneous minimization of fuel cost and voltage deviation and simultaneous
minimization of fuel cost and L-index, and two tri-objective functions, which include simultaneous
minimization of fuel cost with L-index and loss and simultaneous minimization of fuel cost with loss
and voltage deviation were studied to authenticate the efficiency and capability of the MOHFPSO and
MOPSO methods. The recommended algorithms were successfully tested on the IEEE 30-bus and
IEEE 57-bus test networks to achieve optimal adjustment of the control variables to near global setting.
The obtained simulated results of the proposed methods were compared with various optimization
algorithms reported in the present literature. The comparison showed that the proposed MOHFPSO
approach was more effective to achieve the best solution than MOPSO and the approaches in the
current literature. It was also found that the MOHFPSO and MOPSO were potential means for
treating multi-objective optimization problem, where several Pareto-optimal solutions could be found,
in a single run, from the simulation results. However, the generated Pareto fronts were better and
required short simulation time by applying MOHFPSO approach as compared to MOPSO method.
Simulation time of the developed approach was high for a large scale system. Finally, it can be
concluded that the above-mentioned MOHFPSO algorithm is motivating in consideration of simulation
time for further work.

9. Future Work

The proposed techniques can be applied to more large-scale practical power systems based
consideration of simulation time improvement to solve the other variants, such as optimal minimization
of total emission and reactive power.
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Appendix A

Table A1. Optimum simulation control variables of Cases I–V for IEEE 30-bus power network “Multi-objective”.

Control Variable Initial Status
Case I Case II Case III Case IV Case V

MOHFPSO MOPSO MOHFPSO MOPSO MOHFPSO MOPSO MOHFPSO MOPSO MOHFPSO MOPSO

PG1 (MW) 99.248 132.9672 69.887 175.030 175.725 176.964 178.0319 137.08 71.093 140.773 119.1704
PG2 (MW) 80 50.8487 63.138 49.5777 49.3114 48.8429 49.2006 39.861 64.8319 41.4072 52.3021
PG5 (MW) 50 28.6418 50.000 21.7406 21.4884 21.3551 21.4066 37.067 48.2392 35.9052 33.7852
PG8 (MW) 20 35 35.000 22.6142 22.247 21.1517 21.8374 28.187 35 27.3027 31.198
PG11 (MW) 20 22.8993 30.000 12.2134 12.4712 11.9193 10 22.131 30 24.7157 30
PG13 (MW) 20 18.8816 38.443 12.0000 12 12 12 25.684 37.5742 20.2878 22.3005
VG1 (p.u) 1.05 1.1 1.1000 1.0421 1.0414 1.1 1.1 1.0478 1.1 1.1 1.0787
VG2 (p.u) 1.04 1.0892 1.0946 1.0251 1.024 1.1 1.1 1.0481 1.1 1.0649 1.0676
VG5 (p.u) 1.01 1.0643 1.0775 1.0142 1.014 1.0737 1.0734 1.0313 1.0824 1.0658 1.0421
VG8 (p.u) 1.01 1.0773 1.0869 1.0045 1.0053 1.0814 1.0819 1.0491 1.0881 1.0543 1.0507
VG11 (p.u) 1.05 1.1 1.1000 1.0466 1.0679 1.1 1.1 0.966 1.061 1.012 1.0542
VG13 (p.u) 1.05 1.0999 1.1000 0.9811 0.9856 1.1 1.1 1.053 1.0708 1.0421 1.0314

T6,9 1.078 1.0423 1.0466 1.0688 1.0751 0.9976 0.9817 0.9405 0.9945 1.0216 1.0251
T6,10 1.069 0.9 0.9000 0.9000 0.9 0.9 0.9 0.9948 0.9988 1.0353 1.0185
T4,12 1.032 0.9941 0.9761 0.9379 0.9362 0.9499 0.9427 0.9755 1.0043 0.9154 1.0332

T28,27 1.068 0.9785 0.9745 0.9705 0.9651 0.9205 0.9 0.9686 1.0083 0.9712 1.0015
QC10 (Mvar) 0 5 4.9546 2.7691 0.0057 5 5 1.5327 4.1368 1.5814 2.6662
QC12 (Mvar) 0 2.4017 4.4331 2.4519 0.7511 5 0 2.1635 3.0014 3.5097 2.7866
QC15 (Mvar) 0 4.1609 4.8996 4.9953 5 5 5 1.6641 3.1318 3.5327 2.6061
QC17 (Mvar) 0 3.3938 4.9325 5.0000 0.5524 5 0 2.4001 2.6075 2.8148 3.4346
QC20 (Mvar) 0 3.9695 5.0000 5.0000 5 5 5 4.753 1.0603 1.4796 1.7429
QC21 (Mvar) 0 0 5.0000 4.4838 5 5 5 4.213 1.601 1.3909 3.5982
QC23 (Mvar) 0 5 4.2653 4.9962 5 4.9999 5 3.383 4.6702 0.1871 2.0906
QC24 (Mvar) 0 0 5.0000 5.0000 5 5 5 4.1564 1.9945 3.0401 2.6266
QC29 (Mvar) 0 5 2.3369 2.6731 1.952 5 5 1.285 4.181 3.7882 1.7781
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Table A2. Optimum simulation control variables of Cases VI–X for IEEE 57-bus power network “Multi-objective”.

Control Variable
Case VI Case VII Case VIII Case IX Case X

MOHFPSO MOPSO MOHFPSO MOPSO MOHFPSO MOPSO MOHFPSO MOPSO MOHFPSO PSO

PG1 (MW) 140.6333 155.1915 145.9066 123.75 141.3625 142.3974 137.9766 155.7437 154.0375 132.2372
PG2 (MW) 100 80.9419 89.558 75.466 100 87.7263 86.4643 65.4923 67.786 100
PG3 (MW) 40 44.7842 40 40 40 44.8455 40 45.3583 44.3832 57.6318
PG6 (MW) 68.3132 69.1368 73.7595 60.492 69.162 71.175 69.3992 63.9422 100 92.4105
PG8 (MW) 445.7546 435.2929 455.9187 473.44 458.6034 460.2767 469.2318 421.2054 387.1094 440.4937
PG9 (MW) 100 100 100 82.463 100 100 100 100 97.6074 30
PG13 (MW) 359.6073 377.0029 361.1385 410 355.7381 357.8237 361.4745 410 410 410
VG1 (p.u) 1.1 1.1 1.0313 1.0443 1.1 1.1 1.0965 1.1 1.1 1.1
VG2 (p.u) 1.1 1.1 1.0324 1.0558 1.1 1.1 1.0973 1.1 1.1 1.1
VG3 (p.u) 1.0917 1.0929 1.0178 1.0447 1.0924 1.0924 1.0893 1.1 1.1 1.0937
VG6 (p.u) 1.1 1.1 1.0406 1.0456 1.1 1.1 1.0895 1.1 1.1 1.1
VG8 (p.u) 1.1 1.1 1.0607 1.0706 1.1 1.1 1.1 1.1 1.1 1.1
VG9 (p.u) 1.1 1.0959 1.0388 1.0348 1.1 1.0959 1.0999 1.1 1.1 1.1
VG13 (p.u) 1.0864 1.0847 1.0245 1.037 1.0865 1.0861 1.0746 1.091 1.1 1.1

QC18 (Mvar) 20 6.3146 20 5.0984 20 20 2.5444 17.1254 10.3047 3.0548
QC25 (Mvar) 15.4808 14.1836 10.1919 14.236 11.9803 10.9924 15.2447 13.6022 15.6684 16.5082
QC53 (Mvar) 10.5882 10.0646 13.702 13.998 9.7685 0 7.3698 11.4095 8.2762 9.0105

T4,18 0.9 1.0826 0.9591 0.9876 1.1 0.9 0.9 0.9 1.0226 0.9
T4,18 1.1 0.9 1.1 1.0046 0.9 0.9 1.0094 1.0097 0.9014 0.9

T21,20 1.0765 0.9231 1.1 0.9907 0.9 0.9 1.1 1.0464 1.0418 1.0184
T24,25 1.0405 0.9459 0.9765 0.9815 0.9 0.9 0.9646 1.1 0.9186 1.0999
T24,25 1.1 0.9275 1 1.0077 0.9347 0.9404 0.9431 1.0447 1.1 0.9016
T24,26 0.9951 0.9 1.0179 1.0233 0.9612 0.9959 0.9913 0.9893 0.9967 1.008
T7,29 0.9 0.9239 1.0081 1.0229 0.9 0.9 0.9 0.9 0.9 0.9

T34,32 1.0123 0.9 0.9288 0.9451 0.9 0.9 0.9 1.1 0.9275 0.9
T11,41 0.9 0.9 0.9 0.9 0.9 0.9363 0.932 0.9178 0.9437 0.9
T15,45 0.9044 1.1 0.9713 0.9831 0.9344 0.9049 0.9 0.9 0.9 0.9
T14,46 0.9 1.0457 0.9661 0.9809 0.93 0.9031 0.9 0.9023 0.9017 0.9
T10,51 0.9107 1.0511 0.9844 0.9917 0.9267 0.9072 0.9 0.9 0.9107 0.9
T13,49 0.9 1.0072 0.9433 0.9477 0.9113 0.9 0.9 0.9 0.9 0.9
T11,43 0.9 1.0068 0.9645 0.9983 0.9 0.9117 0.9 1.1 0.9 1.1
T40,56 1.1 0.9 1.0174 0.9735 0.9813 1.1 1.008 1.1 1.0188 1.1
T39,57 0.9 0.9142 0.947 0.9697 0.9 1.0026 0.9 1.0836 1.0304 1.0794
T9,55 0.9 0.9379 1.0198 1.0323 0.9 0.9 0.9 0.9 0.9 0.9
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